當前位置:首頁 » 基礎知識 » 高一數學必會知識
擴展閱讀
兒童術後吃什麼排便 2024-11-05 20:58:37

高一數學必會知識

發布時間: 2022-11-28 21:38:41

㈠ 高一數學必背知識點總結

高一新生要作好充分思想准備,以自信、寬容的心態,盡快融入集體,適應新同學、適應新校園環境、適應與初中迥異的紀律制度。下面是我給大家帶來的 高一數學 必背知識點 總結 ,以供大家參考!

高一數學必背知識點總結

一、函數的概念與表示

1、映射

(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對於集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的 方法 。一對多不是映射,多對一是映射

2、函數

構成函數概念的三要素

①定義域②對應法則③值域

兩個函數是同一個函數的條件:三要素有兩個相同

二、函數的解析式與定義域

1、求函數定義域的主要依據:

(1)分式的分母不為零;

(2)偶次方根的被開方數不小於零,零取零次方沒有意義;

(3)對數函數的真數必須大於零;

(4)指數函數和對數函數的底數必須大於零且不等於1;

三、函數的值域

1求函數值域的方法

①直接法:從自變數x的范圍出發,推出y=f(x)的取值范圍,適合於簡單的復合函數;

②換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;

③判別式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

④分離常數:適合分子分母皆為一次式(x有范圍限制時要畫圖);

⑤單調性法:利用函數的單調性求值域;

⑥圖象法:二次函數必畫草圖求其值域;

⑦利用對號函數

⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函數

四.函數的奇偶性

1.定義:設y=f(x),x∈A,如果對於任意∈A,都有,則稱y=f(x)為偶函數。

如果對於任意∈A,都有,則稱y=f(x)為奇

函數。

2.性質:

①y=f(x)是偶函數y=f(x)的圖象關於軸對稱,y=f(x)是奇函數y=f(x)的圖象關於原點對稱,

②若函數f(x)的定義域關於原點對稱,則f(0)=0

③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關於原點對稱]

3.奇偶性的判斷

①看定義域是否關於原點對稱②看f(x)與f(-x)的關系

五、函數的單調性

1、函數單調性的定義:

2設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。

高一數學知識點小結人教版

1.等比數列的有關概念

(1)定義:

如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數(不為零),那麼這個數列就叫做等比數列.這個常數叫做等比數列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_q為非零常數).

(2)等比中項:

如果a、G、b成等比數列,那麼G叫做a與b的等比中項.即:G是a與b的等比中項?a,G,b成等比數列?G2=ab.

2.等比數列的有關公式

(1)通項公式:an=a1qn-1.

3.等比數列{an}的`常用性質

(1)在等比數列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_,則am·an=ap·aq=a.

特別地,a1an=a2an-1=a3an-2=….

(2)在公比為q的等比數列{an}中,數列am,am+k,am+2k,am+3k,…仍是等比數列,公比為qk;數列Sm,S2m-Sm,S3m-S2m,…仍是等比數列(此時q≠-1);an=amqn-m.

4.等比數列的特徵

(1)從等比數列的定義看,等比數列的任意項都是非零的,公比q也是非零常數.

(2)由an+1=qan,q≠0並不能立即斷言{an}為等比數列,還要驗證a1≠0.

5.等比數列的前n項和Sn

(1)等比數列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數列求和中的運用.

(2)在運用等比數列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

高一必修一數學知識點總結

指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈_.

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數時,當是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的.意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變數,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質


高一數學必背知識點總結相關 文章 :

★ 高一數學必背公式及知識匯總

★ 高一數學必背知識點

★ 高一數學必修一基本初等函數知識點總結

★ 高一數學必記知識點概括

★ 高中數學必考知識點歸納

★ 高一數學必修一函數必背知識點整理

★ 高一數學必修的必會知識難點歸納

★ 高一數學的單元及必修知識點歸納

★ 高一數學知識點總結

★ 高中數學知識點全總結

㈡ 高一數學知識點有哪些

高一數學知識點如下:

1、如果一條直線的兩個點在一個平面內,那麼這條直線上的所有點都在這個平面內。

2、元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}。

3、偶次方根的被開方數不小於零,零取零次方沒有意義。

4、換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式。

5、真子集:如果A⊆B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)。

㈢ 高一數學知識點有哪些

高一數學知識點總結:

1、函數的奇偶性

(1)若f(x)是偶函數,那麼f(x)=f(-x)。

(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數)。

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性。

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性。

2、復合函數的有關問題

(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f的定義域由不等式a≤g(x)≤b解出即可;若已知f的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由「同增異減」判定。

數學

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精練早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態。

以上內容參考:網路--數學

㈣ 高一數學知識點有哪些

高一數學知識點如下:

1、如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合。

2、根據「同性則增,異性則減」來判斷原函數在其定義域內的單調性。

3、函數的定義域關於原點對稱是函數具有奇偶性的必要條件。

4、半平面:平面內的一條平行線把這個平面分為2個一部分,在其中每一個一部分稱為半平面。

5、二面角求法:立即法(做出平面角)、三垂線定理及逆定理、總面積射影定理、空間向量之法向量法(留意算出的角與所需規定的角中間的等補關聯)。

㈤ 高一數學知識點總結

高一數學的知識掌握較多,高一試題約占高考得分的60%,一學年要學五本書,只要把高一的數學掌握牢靠,高二,高三則只是對高一的復習與補充。以下是我整理的高一數學集合知識點總結,歡迎參考閱讀!

一.知識歸納:

1.集合的有關概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(aA和aA,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示方法:常用的'有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:N,Z,Q,R,N*

2.子集、交集、並集、補集、空集、全集等概念。

1)子集:若對x∈A都有x∈B,則A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)並集:A∪B={x| x∈A或x∈B}

5)補集:CUA={x| x A但x∈U}

注意:①? A,若A≠?,則? A ;

②若 , ,則 ;

③若 且 ,則A=B(等集)

3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與 、?的區別;(2) 與 的區別;(3) 與 的區別。

4.有關子集的幾個等價關系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

5.交、並集運算的性質

①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

二.例題講解:

【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關系

A) M=N P B) M N=P C) M N P D) N P M

分析一:從判斷元素的共性與區別入手。

解答一:對於集合M:{x|x= ,m∈Z};對於集合N:{x|x= ,n∈Z}

對於集合P:{x|x= ,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以M N=P,故選B。

分析二:簡單列舉集合中的元素。

解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急於判斷三個集合間的關系,應分析各集合中不同的元素。

= ∈N, ∈N,∴M N,又 = M,∴M N,

= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。

點評:由於思路二隻是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

變式:設集合 , ,則( B )

A.M=N B.M N C.N M D.

解:

當 時,2k+1是奇數,k+2是整數,選B

【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為

A)1 B)2 C)3 D)4

分析:確定集合A*B子集的個數,首先要確定元素的個數,然後再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。

解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。

變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那麼集合M的個數為

A)5個 B)6個 C)7個 D)8個

變式2:已知{a,b} A {a,b,c,d,e},求集合A.

解:由已知,集合中必須含有元素a,b.

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

評析 本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有 個 .

【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。

解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.

∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為-2和1,

∴ ∴

變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值.

解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5

∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴

又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1

分析:先化簡集合A,然後由A∪B和A∩B分別確定數軸上哪些元素屬於B,哪些元素不屬於B。

解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。

綜合以上各式有B={x|-1≤x≤5}

變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。

變式2:設M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。

解答:M={-1,3} , ∵M∩N=N, ∴N M

①當 時,ax-1=0無解,∴a=0 ②

綜①②得:所求集合為{-1,0, }

【例5】已知集合 ,函數y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。

分析:先將原問題轉化為不等式ax2-2x+2>0在 有解,再利用參數分離求解。

解答:(1)若 , 在 內有有解

令 當 時,

所以a>-4,所以a的取值范圍是

變式:若關於x的方程 有實根,求實數a的取值范圍。

解答:

點評:解決含參數問題的題目,一般要進行分類討論,但並不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。

㈥ 高一數學知識點重點大全

總結 是在一段時間內對學習和工作生活等表現加以總結和概括的一種書面材料,它是增長才乾的一種好辦法,讓我們一起認真地寫一份總結吧。總結怎麼寫才能發揮它的作用呢?下面是我給大家帶來的 高一數學 知識點重點大全,以供大家參考!

高一數學知識點重點大全

(1)指數函數的定義域為所有實數的集合,這里的前提是a大於0,對於a不大於0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

(2)指數函數的值域為大於0的實數集合。

(3)函數圖形都是下凹的。

(4)a大於1,則指數函數單調遞增;a小於1大於0,則為單調遞減的。

(5)可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函數總是在某一個方向上無限趨向於X軸,永不相交。

(7)函數總是通過(0,1)這點。

(8)顯然指數函數無界。

奇偶性

定義

一般地,對於函數f(x)

(1)如果對於函數定義域內的任意一個x,都有f(-x)=-f(x),那麼函數f(x)就叫做奇函數。

(2)如果對於函數定義域內的任意一個x,都有f(-x)=f(x),那麼函數f(x)就叫做偶函數。

(3)如果對於函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那麼函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

(4)如果對於函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那麼函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:

排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;

如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0的所有實數。

在x大於0時,函數的值域總是大於0的實數。

在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。

而只有a為正數,0才進入函數的值域。

由於x大於0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當a大於0時,冪函數為單調遞增的,而a小於0時,冪函數為單調遞減函數。

(3)當a大於1時,冪函數圖形下凹;當a小於1大於0時,冪函數圖形上凸。

(4)當a小於0時,a越小,圖形傾斜程度越大。

(5)a大於0,函數過(0,0);a小於0,函數不過(0,0)點。

(6)顯然冪函數無界。

定義:

x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。

范圍:

傾斜角的取值范圍是0°≤α<180°。

理解:

(1)注意「兩個方向」:直線向上的方向、x軸的正方向;

(2)規定當直線和x軸平行或重合時,它的傾斜角為0度。

意義:

①直線的傾斜角,體現了直線對x軸正向的傾斜程度;

②在平面直角坐標系中,每一條直線都有一個確定的傾斜角;

③傾斜角相同,未必表示同一條直線。

公式:

k=tanα

k>0時α∈(0°,90°)

k<0時α∈(90°,180°)

k=0時α=0°

當α=90°時k不存在

ax+by+c=0(a≠0)傾斜角為A,

則tanA=-a/b,

A=arctan(-a/b)

當a≠0時,

傾斜角為90度,即與X軸垂直

人教版高一數學必修一知識點梳理

1、柱、錐、台、球的結構特徵

(1)稜柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底 面相 似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標准分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

高一數學知識點總結歸納

一:集合的含義與表示

1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,並且能判斷一個給定的東西是否屬於這個整體。

把研究對象統稱為元素,把一些元素組成的總體叫集合,簡稱為集。

2、集合的中元素的三個特性:

(1)元素的確定性:集合確定,則一元素是否屬於這個集合是確定的:屬於或不屬於。

(2)元素的互異性:一個給定集合中的元素是的,不可重復的。

(3)元素的無序性:集合中元素的位置是可以改變的,並且改變位置不影響集合

3、集合的表示:{……}

(1)用大寫字母表示集合:A={我校的 籃球 隊員},B={1,2,3,4,5}

(2)集合的表示 方法 :列舉法與描述法。

a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

b、描述法:

①區間法:將集合中元素的公共屬性描述出來,寫在大括弧內表示集合。

{x?R|x—3>2},{x|x—3>2}

②語言描述法:例:{不是直角三角形的三角形}

③Venn圖:畫出一條封閉的曲線,曲線裡面表示集合。

4、集合的分類:

(1)有限集:含有有限個元素的集合

(2)無限集:含有無限個元素的集合

(3)空集:不含任何元素的集合

5、元素與集合的關系:

(1)元素在集合里,則元素屬於集合,即:a?A

(2)元素不在集合里,則元素不屬於集合,即:a¢A

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N—或N+

整數集Z

有理數集Q

實數集R

6、集合間的基本關系

(1)。「包含」關系(1)—子集

定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關系,稱集合A是集合B的子集。


高一數學知識點重點大全相關 文章 :

★ 高一數學知識點匯總大全

★ 高一數學知識點大全

★ 高一數學必記知識點概括

★ 高一數學知識點(考前必看)

★ 高一數學必修一知識點匯總

★ 高一數學重點知識點公式總結

★ 高一數學知識點總結歸納

★ 高一數學知識點總結(人教版)

★ 高一數學知識點小歸納

★ 高一數學知識點全面總結

㈦ 高一數學課本基礎必學知識點解析

在聽課中,不但要"知其然",還要"知其所以然",這樣疑問也就在不斷產生,再加以分析思考使問題得以解決,學習也就得到了長進。以下是我給大家整理的 高一數學 課本基礎必學知識點解析,希望大家能夠喜歡!

高一數學課本基礎必學知識點解析1

1、函數的值域取決於定義域和對應法則,不論採用何種 方法 求函數值域都應先考慮其定義域,求函數值域常用方法如下:

(1)直接法:亦稱觀察法,對於結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域.

(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元.

(3)反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可採用此法求得.

(4)配方法:對於二次函數或二次函數有關的函數的值域問題可考慮用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件「一正二定三相等」有時需用到平方等技巧.

(6)判別式法:把y=f(x)變形為關於x的一元二次方程,利用「△≥0」求值域.其題型特徵是解析式中含有根式或分式.

(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可採用單調性法求出函數的值域.

(8)數形結合法求函數的值域:利用函數所表示的幾何意義,藉助於幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域.

2、求函數的最值與值域的區別和聯系

求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.

如函數的值域是(0,16],值是16,無最小值.再如函數的值域是(-∞,-2]∪[2,+∞),但此函數無值和最小值,只有在改變函數定義域後,如x>0時,函數的最小值為2.可見定義域對函數的值域或最值的影響.

3、函數的最值在實際問題中的應用

函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為「工程造價最低」,「利潤」或「面積(體積)(最小)」等諸多現實問題上,求解時要特別關注實際意義對自變數的制約,以便能正確求得最值.

高一數學課本基礎必學知識點解析2

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1.元素的確定性;2.元素的互異性;3.元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N_或N+整數集Z有理數集Q實數集R

關於「屬於」的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作a∈A,相反,a不屬於集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

4、集合的分類:

1.有限集含有有限個元素的集合

2.無限集含有無限個元素的集合

3.空集不含任何元素的集合例:{x|x2=-5}

高一數學課本基礎必學知識點解析3

(1)順序結構:順序結構是最簡單的演算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執行的處理步驟組成的,它是任何一個演算法都離不開的一種基本演算法結構。

順序結構在程序框圖中的體現就是用流程線將程序框自上而下地連接起來,按順序執行演算法步驟。如在示意圖中,A框和B框是依次執行的,只有在執行完A框指定的操作後,才能接著執行B框所

指定的操作。

(2)條件結構:條件結構是指在演算法中通過對條件的判斷根據條件是否成立而選擇不同流向的

演算法結構。

條件P是否成立而選擇執行A框或B框。無論P條件是否成立,只能執行A框或B框之一,不可能同時執行

A框和B框,也不可能A框、B框都不執行。一個判斷結構可以有多個判斷框。

(3)循環結構:在一些演算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,反復執行的處理步驟為循環體,顯然,循環結構中一定包含條件結構。循環結構又稱重復結構,循環結構可細分為兩類:

①一類是當型循環結構,如下左圖所示,它的功能是當給定的條件P成立時,執行A框,A框執行完畢後,再判斷條件P是否成立,如果仍然成立,再執行A框,如此反復執行A框,直到某一次條件P不成立為止,此時不再執行A框,離開循環結構。

②另一類是直到型循環結構,如下右圖所示,它的功能是先執行,然後判斷給定的條件P是否成立,如果P仍然不成立,則繼續執行A框,直到某一次給定的條件P成立為止,此時不再執行A框,離開循環結構。

注意:1循環結構要在某個條件下終止循環,這就需要條件結構來判斷。因此,循環結構中一定包含條件結構,但不允許「死循環」。

2在循環結構中都有一個計數變數和累加變數。計數變數用於記錄循環次數,累加變數用於輸出結果。計數變數和累加變數一般是同步執行的,累加一次,計數一次。


高一數學課本基礎必學知識點解析相關 文章 :

★ 高一數學必修1知識點歸納

★ 高一數學必修一知識點總結

★ 高一數學必修1各章知識點總結

★ 高一數學知識點總結歸納

★ 高中必修一數學知識點總結

★ 高中數學必修一知識點總結

★ 高一上數學知識點總結

★ 高一函數知識點總結歸納

★ 高中數學全部知識點提綱整理

★ 高中數學知識點總結

㈧ 數學高一知識點有哪些

數學高一知識點有:

1、直線的傾斜角定義是x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°。

2、直線的斜率定義是傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示,即斜率反映直線與軸的傾斜程度。

3、冪運算(指數運算)是一種關於冪的數學運算。同底數冪相乘,底數不變,指數相加;同底數冪相除,底數不變,指數相減。冪的冪,底數不變,指數相乘。

4、指數函數是數學中重要的函數。應用到值e上的這個函數寫為exp(x)。還可以等價的寫為ex,這里的e是數學常數,就是自然對數的底數。

5、指數函數的定義域為R,這里的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函數的定義域不連續,因此我們不予考慮,同時a等於0函數無意義一般也不考慮。

㈨ 高一數學必考重要知識點總結

人生要敢於理解挑戰,經受得起挑戰的人才能夠領悟人生非凡的真諦,才能夠實現自我無限的超越,才能夠創造魅力永恆的價值。下面是我給大家帶來的 高一數學 必考重要知識點 總結 ,以供大家參考!

高一數學必考重要知識點總結

反比例函數

形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

自變數x的取值范圍是不等於0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由於反比例函數屬於奇函數,有f(-x)=-f(x),圖像關於原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(2和-2)時的`函數圖像。

當K>0時,反比例函數圖像經過一,三象限,是減函數

當K<0時,反比例函數圖像經過二,四象限,是增函數

反比例函數圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

精選高一數學知識點總結

歸納1

1、「包含」關系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2、「相等」關系(5≥5,且5≤5,則5=5)

實例:設A={x|x2—1=0}B={—1,1}「元素相同」

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那麼AíC

④如果AíB同時BíA那麼A=B

3、不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

歸納2

形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

自變數x的取值范圍是不等於0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由於反比例函數屬於奇函數,有f(—x)=—f(x),圖像關於原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

上面給出了k分別為正和負(2和—2)時的函數圖像。

當K>0時,反比例函數圖像經過一,三象限,是減函數

當K<0時,反比例函數圖像經過二,四象限,是增函數

反比例函數圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2、對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

歸納3

方程的根與函數的零點

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點。

3、函數零點的求法:

(1)(代數法)求方程的實數根;

(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點。

4、二次函數的零點:

(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。

(2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。

(3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。

歸納3

形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

自變數x的取值范圍是不等於0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由於反比例函數屬於奇函數,有f(—x)=—f(x),圖像關於原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(2和—2)時的函數圖像。

當K>0時,反比例函數圖像經過一,三象限,是減函數

當K<0時,反比例函數圖像經過二,四象限,是增函數

反比例函數圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2、對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

歸納4

冪函數的性質:

對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:

排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

排除了為0這種可能,即對於x<0x="">0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;

如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0的所有實數。

在x大於0時,函數的值域總是大於0的實數。

在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。

而只有a為正數,0才進入函數的值域。

由於x大於0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況、

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當a大於0時,冪函數為單調遞增的,而a小於0時,冪函數為單調遞減函數。

(3)當a大於1時,冪函數圖形下凹;當a小於1大於0時,冪函數圖形上凸。

(4)當a小於0時,a越小,圖形傾斜程度越大。

(5)a大於0,函數過(0,0);a小於0,函數不過(0,0)點。

(6)顯然冪函數無界。

解題 方法 :換元法

解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這種方法叫換元法,換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。

換元法又稱輔助元素法、變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。

它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。

高一數學知識點整合

一、直線與方程

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0180

(2)直線的斜率

①定義:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0時,k=0,直線的方程是y=y1。當直線的斜率為90時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);

(4)直線系方程:即具有某一共同性質的直線

(一)平行直線系

平行於已知直線(是不全為0的常數)的直線系:(C為常數)

(二)過定點的直線系

(ⅰ)斜率為k的直線系:直線過定點;

(ⅱ)過兩條直線,的交點的直線系方程為(為參數),其中直線不在直線系中。

(5)兩直線平行與垂直;

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

(6)兩條直線的交點

相交:交點坐標即方程組的一組解。方程組無解;方程組有無數解與重合

(7)兩點間距離公式:設是平面直角坐標系中的兩個點,則

(8)點到直線距離公式:一點到直線的距離

(9)兩平行直線距離公式:在任一直線上任取一點,再轉化為點到直線的距離進行求解。

高一數學必考知識點總結相關 文章 :

★ 高一數學知識點總結

★ 高一數學常考知識點總結

★ 高一數學重要知識點梳理

★ 高一數學重要知識點整理

★ 高一數學知識點總結【必修一】

★ 高一數學知識點小歸納

★ 高一數學知識點梳理歸納

★ 高一數學重點知識點

★ 高中數學必修一三角函數知識點總結

★ 高中數學演算法初步知識點整理

㈩ 高一數學有用必考知識點歸納

在學習要做到以下幾個環節:制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習,每一個環節都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。我給大家整理的 高一數學 有用必考知識點歸納,希望能幫助到你!

高一數學有用必考知識點歸納1

I.定義與定義表達式

一般地,自變數x和因變數y之間存在如下關系:

y=ax^2+bx+c

(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

則稱y為x的二次函數。

二次函數表達式的右邊通常為二次三項式。

II.二次函數的三種表達式

一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

交點式:y=a(x-x?)(x-x?)[僅限於與x軸有交點A(x?,0)和B(x?,0)的拋物線]

註:在3種形式的互相轉化中,有如下關系:

h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

III.二次函數的圖像

在平面直角坐標系中作出二次函數y=x^2的圖像,

可以看出,二次函數的圖像是一條拋物線。

IV.拋物線的性質

1.拋物線是軸對稱圖形。對稱軸為直線

x=-b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點P,坐標為

P(-b/2a,(4ac-b^2)/4a)

當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

3.二次項系數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項系數b和二次項系數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與x軸交點個數

Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

高一數學有用必考知識點歸納2

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素.

2、集合的中元素的三個特性:

1.元素的確定性;2.元素的互異性;3.元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素.

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素.

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

(4)集合元素的三個特性使集合本身具有了確定性和整體性.

3、集合的表示:{}如{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2.集合的表示 方法 :列舉法與描述法.

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N_或N+整數集Z有理數集Q實數集R

關於屬於的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作aA,相反,a不屬於集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上.

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法.用確定的條件表示某些對象是否屬於這個集合的方法.

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}

4、集合的分類:

1.有限集含有有限個元素的集合

2.無限集含有無限個元素的集合

3.空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關系

1.包含關系子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2.相等關系(55,且55,則5=5)

實例:設A={x|x2-1=0}B={-1,1}元素相同

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

①任何一個集合是它本身的子集.AA

②真子集:如果AB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AB,BC,那麼AC

④如果AB同時BA那麼A=B

3.不含任何元素的集合叫做空集,記為

規定:空集是任何集合的子集,空集是任何非空集合的真子集.

三、集合的運算

1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.

記作AB(讀作A交B),即AB={x|xA,且xB}.

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作A並B),即AB={x|xA,或xB}.

3、交集與並集的性質:AA=A,A=,AB=BA,AA=A,

A=A,AB=BA.

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示.

(3)性質:⑴CU(CUA)=A⑵(CUA)⑶(CUA)A=U

高一數學有用必考知識點歸納3

定義:

從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交於一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對於X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平 面相 交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯立,作為它們相交所得直線的方程。

表達式:

斜截式:y=kx+b

兩點式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)

點斜式:y-y1=k(x-x1)

截距式:(x/a)+(y/b)=0

補充一下:最基本的標准方程不要忘了,AX+BY+C=0,

因為,上面的四種直線方程不包含斜率K不存在的情況,如x=3,這條直線就不能用上面的四種形式表示,解題過程中尤其要注意,K不存在的情況。

練習題:

1.已知直線的方程是y+2=-x-1,則()

A.直線經過點(2,-1),斜率為-1

B.直線經過點(-2,-1),斜率為1

C.直線經過點(-1,-2),斜率為-1

D.直線經過點(1,-2),斜率為-1

【解析】選C.因為直線方程y+2=-x-1可化為y-(-2)=-[x-(-1)],所以直線過點(-1,-2),斜率為-1.

2.直線3x+2y+6=0的斜率為k,在y軸上的截距為b,則有()

A.k=-,b=3B.k=-,b=-2

C.k=-,b=-3D.k=-,b=-3

【解析】選C.直線方程3x+2y+6=0化為斜截式得y=-x-3,故k=-,b=-3.

3.已知直線l的方程為y+1=2(x+),且l的斜率為a,在y軸上的截距為b,則logab的值為()

A.B.2C.log26D.0

【解析】選B.由題意得a=2,令x=0,得b=4,所以logab=log24=2.

4.直線l:y-1=k(x+2)的傾斜角為135°,則直線l在y軸上的截距是()

A.1B.-1C.2D.-2

【解析】選B.因為傾斜角為135°,所以k=-1,

所以直線l:y-1=-(x+2),

令x=0得y=-1.

5.經過點(-1,1),斜率是直線y=x-2的斜率的2倍的直線是()

A.x=-1B.y=1

C.y-1=(x+1)D.y-1=2(x+1)

【解析】選C.由已知得所求直線的斜率k=2×=.

則所求直線方程為y-1=(x+1).


高一數學有用必考知識點歸納相關 文章 :

★ 高一數學知識點總結(考前必看)

★ 高一數學常考知識點總結

★ 高中數學必考知識點歸納整理

★ 高一數學知識點總結期末必備

★ 高一數學知識點匯總大全

★ 高一數學期末考試知識點總結

★ 高一數學知識點小歸納

★ 高一數學知識點全面總結

★ 高一數學知識點總結歸納

★ 高一數學重點知識點公式總結