當前位置:首頁 » 基礎知識 » 成考數學文科知識點大全
擴展閱讀
兒童術後吃什麼排便 2024-11-05 20:58:37

成考數學文科知識點大全

發布時間: 2022-11-28 17:10:38

⑴ 成考專升本數學都考什麼內容

成人高考專升本的考試就是必經的過程,也就是我們說的入學考試,那麼成考專升本的考試科目都有哪些呢?別的不說,其中女孩子比較害怕的高數科目肯定是有的。成人高考專科起點升本科統考科目均為三門:兩門公共課為政治、外語,一門專業基礎課。其中經管類的專業基礎課為高等數學二,而理工類的專業基礎課時高等數學一。

成考專升本高數考試內容:

高數的全稱是高等數學,一般大學數學分為四門課程:高等數學上冊、高等數學下冊、線性數學、概率論與數理統計,那麼高數一也就是指高等數學上冊,它包括函數與極限、導數與微分、微分中值定理與導數的應用、不定積分、定積分、定積分的應用、空間解析幾何與向量代數七章內容。

而高數二主要考兩個內容,分別是線性代數和概率統計,明顯高數一比高數二多了幾個知識點,所以高數二比高數一容易許多,如果高數一知識掌握的很好,那麼高數二就不再話下了。

成人高考大專450分的滿分一般只要考110分左右就可以錄取,本科450分的滿分一般考100分左右就可以錄取,而且年齡在25周歲以上的報考本校還可以享有20分的加分照顧。登錄湖南成人高考查看更多信息,

⑵ 成人高考數學知識考點

1 集合思想及應用

集合是高中數學的基本知識,為歷年必考內容之一,主要考查對集合基本概念的認識和理解。

例:已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠ ,求實數m的取值范圍。

2 充要條件的判定

充分條件、必要條件和充要條件是重要的數學概念,主要用來區分命題的條件p和結論q之間的關系。

例:已知關於x的實系數二次方程x2+ax+b=0有兩個實數根α、β,證明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要條件

3 運用向量法解題

本節內容主要是幫助考生運用向量法來分析,解決一些相關問題。

例:三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC邊上的中線

AM的長;(2)∠CAB的平分線AD的長;(3)cosABC的值。

4 三個「二次」及關系

三個「二次」即一元二次函數、一元二次方程、一元二次不等式是中學數學的重要內容,具有豐富的內涵和密切的聯系,同時也是研究包含二次曲線在內的許多內容的工具。高考試題中近一半的試題與這三個「二次」問題有關。

例:已知對於x的所有實數值,二次函數f(x)=x2-4ax+2a+12(a∈R)的值都是非負的,求關於x的方程 =|a-1|+2的根的取值范圍。

5 求解函數解析式

求解函數解析式是高考重點考查內容之一,需引起重視。

例:已知f(2-cosx)=cos2x+cosx,求f(x-1)。

例:(1)已知函數f(x)滿足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表達式。

(2)已知二次函數f(x)=ax2+bx+c滿足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表達式。

6 函數值域及求法

函數的值域及其求法是近幾年高考考查的重點內容之一。

例:設m是實數,記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ )。

(1)證明:當m∈M時,f(x)對所有實數都有意義;反之,若f(x)對所有實數x都有意義,則m∈M。

(2)當m∈M時,求函數f(x)的最小值。

(3)求證:對每個m∈M,函數f(x)的最小值都不小於1。

7 奇偶性與單調性(一)

函數的單調性、奇偶性是高考的重點內容之一,掌握判定方法,正確認識單調函數與奇偶函數的圖象。

例:設a>0,f(x)= 是R上的偶函數,(1)求a的值;(2)證明: f(x)在(0,+∞)上是增函數。

8 奇偶性與單調性(二)

函數的單調性、奇偶性是高考的重點和熱點內容之一,特別是兩性質的應用更加突出。本節主要幫助考生學會怎樣利用兩性質解題,掌握基本方法,形成應用意識。

例:已知偶函數f(x)在(0,+∞)上為增函數,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。

例:已知奇函數f(x)是定義在(-3,3)上的減函數,且滿足不等式f(x-3)+f(x2-3)<0,設不等式解集為A,B=A∪{x|1≤x≤ },求函數g(x)=-3x2+3x-4(x∈B)的最大值。

9 指數函數、對數函數問題

指數函數、對數函數是高考考查的重點內容之一。

例:設f(x)=log2 ,F(x)= +f(x)。

(1)試判斷函數f(x)的單調性,並用函數單調性定義,給出證明;

(2)若f(x)的反函數為f-1(x),證明:對任意的自然數n(n≥3),都有f-1(n)> ;

(3)若F(x)的反函數F-1(x),證明:方程F-1(x)=0有惟一解。

10 函數圖象與圖象變換

函數的圖象與性質是高考考查的重點內容之一,掌握函數圖象變化的一般規律,能利用函數的圖象研究函數的性質。

例:已知函數f(x)=ax3+bx2+cx+d的圖象如圖,求b的范圍。

11 函數中的綜合問題

函數綜合問題是歷年高考的熱點和重點內容之一,一般難度較大。

例:設函數f(x)的定義域為R,對任意實數x、y都有f(x+y)=f(x)+f(y),當x>0時f(x)<0且f(3)=-4。

(1)求證:f(x)為奇函數;

(2)在區間[-9,9]上,求f(x)的最值。

12 三角函數的圖象和性質

三角函數的圖象和性質是高考的熱點,在復習時要充分運用數形結合的思想,把圖象和性質結合起來。本節主要幫助考生掌握圖象和性質並會靈活運用。

例:已知α、β為銳角,且x(α+β- )>0,試證不等式f(x)= x<2對一切非零實數都成立。

例:設z1=m+(2-m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范圍。

163三角函數式的化簡與求值

三角函數式的化簡和求值是高考考查的重點內容之一。通過本節的學習使考生掌握化簡和求值問題的解題規律和途徑,特別是要掌握化簡和求值的一些常規技巧,以優化我們的解題效果,做到事半功倍。

例:已知 <β<α< ,cos(α-β)= ,sin(α+β)=- ,求sin2α的值_________.

14 三角形中的三角函數式

三角形中的三角函數關系是歷年高考的重點內容之一。

●已知△ABC的三個內角A、B、C滿足A+C=2B. ,求cos 的值。

15 不等式的證明策略

不等式的證明,方法靈活多樣,它可以和很多內容結合。高考解答題中,常滲透不等式證明的內容,純不等式的證明,歷來是高中數學中的一個難點,本難點著重培養考生數學式的變形能力,邏輯思維能力以及分析問題和解決問題的能力。

16 解不等式

不等式在生產實踐和相關學科的學習中應用廣泛,又是學習高等數學的重要工具,所以不等式是高考數學命題的重點,解不等式的應用非常廣泛,如求函數的定義域、值域,求參數的取值范圍等,高考試題中對於解不等式要求較高,往往與函數概念,特別是二次函數、指數函數、對數函數等有關概念和性質密切聯系,應重視;從歷年高考題目看,關於解不等式的內容年年都有,有的是直接考查解不等式,有的則是間接考查解不等式。

17 不等式的綜合應用

不等式是繼函數與方程之後的又一重點內容之一,作為解決問題的工具,與其他知識綜合運用的特點比較突出。不等式的應用大致可分為兩類:一類是建立不等式求參數的取值范圍或解決一些實際應用問題;另一類是建立函數關系,利用均值不等式求最值問題、本難點提供相關的思想方法,使考生能夠運用不等式的性質、定理和方法解決函數、方程、實際應用等方面的問題。

例:設二次函數f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個根x1、x2滿足0

(1)當x∈[0,x1 時,證明x

(2)設函數f(x)的圖象關於直線x=x0對稱,證明:x0< 。

⑶ 成人高考數學考什麼

成考高起專考試分為理工農醫和文史財經兩類。

根據《考試大綱》的要求,數學科考試主要測試中學數學基礎知識、基本技能和基本方法,考查數學思維能力,內容包括空間想像、直覺猜想、歸納抽象、符號表示、運算求解,以及運用所學數學知識和方法分析、解決問題等。

理工農醫類

考試范圍包括代數、三角、平面解析幾何、立體幾何、概率與統計5部分。在實際考試中,這5部分內容占試卷比例分別為45%、15%、20%、10%和10%。

文史財經類

考試范圍為代數、三角、平面解析幾何、概率與統計4部分。在實際考試中,這4部分內容占試卷比例分別為55%、15%、20%和10%。

代數部分

考試內容有集合和簡易邏輯、函數、不等式和不等式組、數列、導數和復數等(文史財經沒有復數);

三角部分

有三角函數及其有關概念、三角函數式的變換、三角函數的圖像和性質、解三角形等;

平面解析幾何部分

有平面向量、直線、圓錐曲線等;

立體幾何部分

有直線和平面、空間向量、多面體和旋轉體等(文史財經沒有立體幾何部分);

概率與統計初步部分

有概率初步、統計初步等,理工農醫類包含排列、組合與二項式定理,文史財經類包含排列、組合。

成考高起點試卷有選擇題、填空題、解答題3種題型,其中選擇題佔55%,填空題佔10%,解答題佔35%即選擇題85分 其他65分。從試題難度比例上看,較容易題約佔40%,中等難度題約佔50%,較難題約佔10%。

數學只能背誦輔導書每章節列出的基本公式定理,記住數學公式代上數字運算,從歷年真題看基本上都是基本公式定理代上數字運算,難題則是幾個小型基本公式的結合體,從總體看數學還是重基礎,選擇題85分,其他65分。參考資料來自湖南成人高考了解更多成考資訊,

⑷ 歷年成人高考數學常考的考點,需要到的公式之類的,謝謝

1. 對於集合,一定要抓住集合的代表元素,及元素的「確定性、互異性、無序性」。

中元素各表示什麼?

注重藉助於數軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性質:

(3)德摩根定律:

4. 你會用補集思想解決問題嗎?(排除法、間接法)

的取值范圍。

6. 命題的四種形式及其相互關系是什麼?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
8. 函數的三要素是什麼?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
9. 求函數的定義域有哪些常見類型?

10. 如何求復合函數的定義域?

義域是_____________。

11. 求一個函數的解析式或一個函數的反函數時,註明函數的定義域了嗎?

12. 反函數存在的條件是什麼?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③註明定義域)

13. 反函數的性質有哪些?
①互為反函數的圖象關於直線y=x對稱;
②保存了原來函數的單調性、奇函數性;

14. 如何用定義證明函數的單調性?
(取值、作差、判正負)
如何判斷復合函數的單調性?

∴……)
15. 如何利用導數判斷函數的單調性?

值是( )
A. 0 B. 1 C. 2 D. 3

∴a的最大值為3)
16. 函數f(x)具有奇偶性的必要(非充分)條件是什麼?
(f(x)定義域關於原點對稱)

注意如下結論:
(1)在公共定義域內:兩個奇函數的乘積是偶函數;兩個偶函數的乘積是偶函數;一個偶函數與奇函數的乘積是奇函數。

17. 你熟悉周期函數的定義嗎?

函數,T是一個周期。)

如:

18. 你掌握常用的圖象變換了嗎?

注意如下「翻折」變換:

19. 你熟練掌握常用函數的圖象和性質了嗎?

的雙曲線。

應用:①「三個二次」(二次函數、二次方程、二次不等式)的關系——二次方程

②求閉區間〔m,n〕上的最值。
③求區間定(動),對稱軸動(定)的最值問題。
④一元二次方程根的分布問題。

⑸ 成人高考數學必考知識點有哪些

人高考高起專數學一般考的知識點有:

知識點一:集合思想及應用。

知識點二:充要條件的判定。

知識三:運用向量法解題。

知識點四:三個「二次」及關系。

知識點五:求解函數解析式。

數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:mathematics或maths),其英語源自於古希臘語的μθημα(máthēma),有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦被用來指數學。

其在英語的復數形式,及在法語中的復數形式加-es,成mathématiques,可溯至拉丁文的中性復數(mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká)。

在中國古代,數學叫作算術,又稱算學,最後才改為數學。中國古代的算術是六藝之一(六藝中稱為「數」)。

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展。但當時的代數學和幾何學長久以來仍處於獨立的狀態。



⑹ 高三數學文科知識點總結

高中 學習 方法 其實很簡單,但是這個方法要一直保持下去,才能在最終考試時看到成效,如果對某一科目感興趣或者有天賦異稟,那麼學習成績會有明顯提高,分數也會大幅度上漲。以下是我給大家整理的 高三數學 文科知識點 總結 ,希望能幫助到你!

高三數學文科知識點總結1

隨機抽樣

簡介

(抽簽法、隨機樣數表法)常常用於總體個數較少時,它的主要特徵是從總體中逐個抽取;

優點:操作簡便易行

缺點:總體過大不易實行

方法

(1)抽簽法

一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻後,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。

(抽簽法簡單易行,適用於總體中的個數不多時。當總體中的個體數較多時,將總體「攪拌均勻」就比較困難,用抽簽法產生的樣本代表性差的可能性很大)

(2)隨機數法

隨機抽樣中,另一個經常被採用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣。

分層抽樣

簡介

分層抽樣主要特徵分層按比例抽樣,主要使用於總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等N/M。

定義

一般地,在抽樣時,將總體分成互不交叉的層,然後按照一定的比例,從各層獨立地抽取一定數量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣。

整群抽樣

定義

什麼是整群抽樣

整群抽樣又稱聚類抽樣。是將總體中各單位歸並成若干個互不交叉、互不重復的集合,稱之為群;然後以群為抽樣單位抽取樣本的一種抽樣方式。

應用整群抽樣時,要求各群有較好的代表性,即群內各單位的差異要大,群間差異要小。

優缺點

整群抽樣的優點是實施方便、節省經費;

整群抽樣的缺點是往往由於不同群之間的差異較大,由此而引起的抽樣誤差往往大於簡單隨機抽樣。

實施步驟

先將總體分為i個群,然後從i個群鍾隨即抽取若干個群,對這些群內所有個體或單元均進行調查。抽樣過程可分為以下幾個步驟:

一、確定分群的標注

二、總體(N)分成若干個互不重疊的部分,每個部分為一群。

三、據各樣本量,確定應該抽取的群數。

四、採用簡單隨機抽樣或系統抽樣方法,從i群中抽取確定的群數。

例如,調查中學生患近視眼的情況,抽某一個班做統計;進行產品檢驗;每隔8h抽1h生產的全部產品進行檢驗等。

與分層抽樣的區別

整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。

分層抽樣要求各層之間的差異很大,層內個體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內個體或單元差異大;

分層抽樣的樣本是從每個層內抽取若干單元或個體構成,而整群抽樣則是要麼整群抽取,要麼整群不被抽取。

系統抽樣

定義

當總體中的個體數較多時,採用簡單隨機抽樣顯得較為費事。這時,可將總體分成均衡的幾個部分,然後按照預先定出的規則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統抽樣。

步驟

一般地,假設要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進行系統抽樣:

(1)先將總體的N個個體編號。有時可直接利用個體自身所帶的號碼,如學號、准考證號、門牌號等;

(2)確定分段間隔k,對編號進行分段。當N/n(n是樣本容量)是整數時,取k=N/n;

(3)在第一段用簡單隨機抽樣確定第一個個體編號l(l≤k);

(4)按照一定的規則抽取樣本。通常是將l加上間隔k得到第2個個體編號(l+k),再加k得到第3個個體編號(l+2k),依次進行下去,直到獲取整個樣本。

高三數學文科知識點總結2

(1)先看「充分條件和必要條件」

當命題「若p則q」為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

但為什麼說q是p的必要條件呢?

事實上,與「p=>q」等價的逆否命題是「非q=>非p」。它的意思是:若q不成立,則p一定不成立。這就是說,q對於p是必不可少的,因而是必要的。

(2)再看「充要條件」

若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q

回憶一下初中學過的「等價於」這一概念;如果從命題A成立可以推出命題B成立,反過來,從命題B成立也可以推出命題A成立,那麼稱A等價於B,記作A<=>B。「充要條件」的含義,實際上與「等價於」的含義完全相同。也就是說,如果命題A等價於命題B,那麼我們說命題A成立的充要條件是命題B成立;同時有命題B成立的充要條件是命題A成立。

(3)定義與充要條件

數學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如「兩組對邊分別平行的四邊形叫做平行四邊形」這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

顯然,一個定理如果有逆定理,那麼定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。

「充要條件」有時還可以改用「當且僅當」來表示,其中「當」表示「充分」。「僅當」表示「必要」。

(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的「結論」都可作為必要條件。

高三數學文科知識點總結3

1.不等式的定義

在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.

2.比較兩個實數的大小

兩個實數的大小是用實數的運算性質來定義的,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,則有>1?;=1?;<1?.

概括為:作差法,作商法,中間量法等.

3.不等式的性質

(1)對稱性:a>b?;

(2)傳遞性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可開方:a>b>0?(n∈N,n≥2).

復習指導

1.「一個技巧」作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.

2.「一種方法」待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最後利用不等式的性質求出目標式的范圍.

3.「兩條常用性質」

(1)倒數性質:①a>b,ab>0?<;②a<0

③a>b>0,0;④0

(2)若a>b>0,m>0,則

①真分數的性質:<;>(b-m>0);

②假分數的性質:>;<(b-m>0).


高三數學文科知識點總結相關 文章 :

★ 高三文科數學知識要點總結

★ 高三文科數學常考知識點歸納整理

★ 高三文科數學常考知識點整理歸納

★ 2016高三文科數學知識點

★ 高考文科數學知識點總結

★ 高三文科數學常考知識點歸納

★ 高三數學知識點考點總結大全

★ 高考文科數學知識點歸納

★ 高三數學必考知識點復習總結

★ 2020高考文科數學知識點總結

⑺ 成考的數學試題重點難點在哪

成考高起點《數學》科的試題命題工作主要依據是教育部考試中心頒布的《全國各類成人高等學校招生復習考試大綱》,命題的基本思想是重基礎、抓素質、考能力,考應用意識,考創新潛質。重點考查中學數學基礎知識基本技能和基本方法。主要考查中學數學常用的數學基本思想和方法。命題時充分考慮到成人考生不同學習背景的實際情況,力求增加試題的針對性,能夠較好地控制試題的難度。可以說,成人高考高起點《數學》科考試,基本上是一種水平測試。
成人高考高起點《數學》科考試分文史類和理工類,文史類《數學》,考試的知識內容共四大部分,即代數、三角、平面解析幾何及概率與統計初步。其中代數部分在考試中約佔55%的比例,三角部分約佔15%的比例,平面解析幾何部分約佔20%的比例,概率與統計初步部分約佔10%的比例。
理工類《數學》,考試內容共五個部分,前四個部分與文科《數學》大致相同,但多出了立體幾何部分。理科《數學》的代數部分,在考試中約佔45%的比例,三角部分約佔15%的比例,平面解析幾何部分約佔20%的比例,概率與統計初步約佔10%的比例,立體幾何部分約佔10%的比例。

關於高起點專科《數學》考試的試卷形式,全卷共25個小題,滿分150分。題型的分布為:選擇題共17個小題,分值計85分。填空題共4個小題,分值計16分。解答題共4個小題,分值計49分。由於選擇題小題多,分數比重大,涉及知識面廣,主要以考查基礎知識和基本計算為主,所以考生在復習的時候,要有意識地培養對選擇題的解題能力,有意識地提高對選擇題解題能力的培養。這樣有助於考試中多得分。解選擇題有直接法、篩選法、逆推法、特殊值法和圖形法等等。
怎樣在短時間內提高效率呢?考生應盡可能地全面復習,但是在復習中要注意突出重點,注意抓住最主要的知識點。比如代數部分,無論是文科《數學》還是理科《數學》,都應當是復習中的重點內容,因為它占的比重比較大。函數部分也是重中之重,像求函數定義域,求函數值,求函數解析式,分析判斷函數的單調性、奇偶性,特別注意一次函數和二次函數的圖形和性質。二次函數的最大值和最小值及最值簡單的應用題,這些內容每年考試都是必考無疑的。還要注意指數與對數的基本運算,指數函數和對數函數的簡單性質,特別是函數單調性的討論。再比如說數列部分,復習的重點應當放到等差數列和等比數列,通項公式和前n項求和公式上,這是每年必考的,從近幾年看,考試必有一道關於數列的解答題,但試題的難度會適合成人考生的特點。
關於導數這一章,是近兩年考試的一個突出重點。導數部分復習的策略是簡化概念,注重運算,強調應用。導數的基本計算,要注意到理科數學和文科數學導數公式在要求上是有程度差異的,文科《數學》只要求多項式函數求導,理科數學就涉及到了正弦函數、餘弦函數和以e為底的指數函數導數公式。用導數來分析函數的單調增減區間和極值。注意導數的幾何意義,會求曲線的切線方程,還應當注意求函數的最大值和最小值問題,有的時候以導數為工具,解決最值問題更為方便。
總的來講,復習中要抓住重點,抓住考試容易出題的知識點,抓住容易得分的知識點,這樣有助於考試中取得好的成績。 高起專數學重點難點分析難點1 集合思想及應用 集合是高中數學的基本知識,為歷年必考內容之一,主要考查對集合基本概念的認識和理解,以及作為工具,考查集合語言和集合思想的運用.本節主要是幫助考生運用集合的觀點,不斷加深對集合概念、集合語言、集合思想的理解與應用.●難點磁場(★★★★★)已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠ ,求實數m的取值范圍.難點2 充要條件的判定充分條件、必要條件和充要條件是重要的數學概念,主要用來區分命題的條件p和結論q之間的關系.本節主要是通過不同的知識點來剖析充分必要條件的意義,讓考生能准確判定給定的兩個命題的充要關系.●難點磁場(★★★★★)已知關於x的實系數二次方程x2+ax+b=0有兩個實數根α、β,證明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要條件難點3 運用向量法解題 平面向量是新教材改革增加的內容之一,近幾年的全國使用新教材的高考試題逐漸加大了對這部分內容的考查力度,本節內容主要是幫助考生運用向量法來分析,解決一些相關問題.●難點磁場(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC邊上的中線AM的長;(2)∠CAB的平分線AD的長;(3)cosABC的值.難點4 三個「二次」及關系三個「二次」即一元二次函數、一元二次方程、一元二次不等式是中學數學的重要內容,具有豐富的內涵和密切的聯系,同時也是研究包含二次曲線在內的許多內容的工具.高考試題中近一半的試題與這三個「二次」問題有關.本節主要是幫助考生理解三者之間的區別及聯系,掌握函數、方程及不等式的思想和方法.●難點磁場已知對於x的所有實數值,二次函數f(x)=x2-4ax+2a+12(a∈R)的值都是非負的,求關於x的方程 =|a-1|+2的根的取值范圍.難點5 求解函數解析式求解函數解析式是高考重點考查內容之一,需引起重視.本節主要幫助考生在深刻理解函數定義的基礎上,掌握求函數解析式的幾種方法,並形成能力,並培養考生的創新能力和解決實際問題的能力.●難點磁場(★★★★)已知f(2-cosx)=cos2x+cosx,求f(x-1).●案例探究[例1](1)已知函數f(x)滿足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表達式.(2)已知二次函數f(x)=ax2+bx+c滿足|f(1)|=|f(-1)|=|f(0)|=1,求�f(x)�的表達式.難點6 函數值域及求法 函數的值域及其求法是近幾年高考考查的重點內容之一.本節主要幫助考生靈活掌握求值域的各種方法,並會用函數的值域解決實際應用問題.●難點磁場(★★★★★)設m是實數,記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ ).(1)證明:當m∈M時,f(x)對所有實數都有意義;反之,若f(x)對所有實數x都有意義,則m∈M.(2)當m∈M時,求函數f(x)的最小值.(3)求證:對每個m∈M,函數f(x)的最小值都不小於1.難點7 奇偶性與單調性(一)函數的單調性、奇偶性是高考的重點內容之一,考查內容靈活多樣.本節主要幫助考生深刻理解奇偶性、單調性的定義,掌握判定方法,正確認識單調函數與奇偶函數的圖象.●難點磁場(★★★★)設a>0,f(x)= 是R上的偶函數,(1)求a的值;(2)證明: f(x)在(0,+∞)上是增函數.難點8 奇偶性與單調性(二)函數的單調性、奇偶性是高考的重點和熱點內容之一,特別是兩性質的應用更加突出.本節主要幫助考生學會怎樣利用兩性質解題,掌握基本方法,形成應用意識.●難點磁場(★★★★★)已知偶函數f(x)在(0,+∞)上為增函數,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.�●案例探究[例1]已知奇函數f(x)是定義在(-3,3)上的減函數,且滿足不等式f(x-3)+f(x2-3)<0,設不等式解集為A,B=A∪{x|1≤x≤ },求函數g(x)=-3x2+3x-4(x∈B)的最大值.難點9 指數函數、對數函數問題 指數函數、對數函數是高考考查的重點內容之一,本節主要幫助考生掌握兩種函數的概念、圖象和性質並會用它們去解決某些簡單的實際問題.●難點磁場(★★★★★)設f(x)=log2 ,F(x)= +f(x).(1)試判斷函數f(x)的單調性,並用函數單調性定義,給出證明;(2)若f(x)的反函數為f-1(x),證明:對任意的自然數n(n≥3),都有f-1(n)> ;(3)若F(x)的反函數F-1(x),證明:方程F-1(x)=0有惟一解.難點10 函數圖象與圖象變換函數的圖象與性質是高考考查的重點內容之一,它是研究和記憶函數性質的直觀工具,利用它的直觀性解題,可以起到化繁為簡、化難為易的作用.因此,考生要掌握繪制函數圖象的一般方法,掌握函數圖象變化的一般規律,能利用函數的圖象研究函數的性質.●難點磁場(★★★★★)已知函數f(x)=ax3+bx2+cx+d的圖象如圖,求b的范圍.難點11 函數中的綜合問題函數綜合問題是歷年高考的熱點和重點內容之一,一般難度較大,考查內容和形式靈活多樣.本節課主要幫助考生在掌握有關函數知識的基礎上進一步深化綜合運用知識的能力,掌握基本解題技巧和方法,並培養考生的思維和創新能力.●難點磁場(★★★★★)設函數f(x)的定義域為R,對任意實數x、y都有f(x+y)=f(x)+f(y),當x>0時f(x)<0且f(3)=-4.(1)求證:f(x)為奇函數;(2)在區間[-9,9]上,求f(x)的最值.難點12 等差數列、等比數列的性質運用 等差、等比數列的性質是等差、等比數列的概念,通項公式,前n項和公式的引申.應用等差等比數列的性質解題,往往可以迴避求其首項和公差或公比,使問題得到整體地解決,能夠在運算時達到運算靈活,方便快捷的目的,故一直受到重視.高考中也一直重點考查這部分內容.●難點磁場(★★★★★)等差數列{an}的前n項的和為30,前2m項的和為100,求它的前3m項的和為_________.難點13 數列的通項與求和數列是函數概念的繼續和延伸,數列的通項公式及前n項和公式都可以看作項數n的函數,是函數思想在數列中的應用.數列以通項為綱,數列的問題,最終歸結為對數列通項的研究,而數列的前n項和Sn可視為數列{Sn}的通項。通項及求和是數列中最基本也是最重要的問題之一,與數列極限及數學歸納法有著密切的聯系,是高考對數列問題考查中的熱點,本點的動態函數觀點解決有關問題,為其提供行之有效的方法.難點14 數列綜合應用問題縱觀近幾年的高考,在解答題中,有關數列的試題出現的頻率較高,不僅可與函數、方程、不等式、復數相聯系,而且還與三角、立體幾何密切相關;數列作為特殊的函數,在實際問題中有著廣泛的應用,如增長率,減薄率,銀行信貸,濃度匹配,養老保險,圓鋼堆壘等問題.這就要求同學們除熟練運用有關概念式外,還要善於觀察題設的特徵,聯想有關數學知識和方法,迅速確定解題的方向,以提高解數列題的速度.●難點磁場(★★★★★)已知二次函數y=f(x)在x= 處取得最小值- (t>0),f(1)=0.(1)求y=f(x)的表達式;(2)若任意實數x都滿足等式f(x)·g(x)+anx+bn=xn+1[g(x)]為多項式,n∈N*),試用t表示an和bn;(3)設圓Cn的方程為(x-an)2+(y-bn)2=rn2,圓Cn與Cn+1外切(n=1,2,3,…);{rn}是各項都是正數的等比數列,記Sn為前n個圓的面積之和,求rn、Sn.難點15 三角函數的圖象和性質 三角函數的圖象和性質是高考的熱點,在復習時要充分運用數形結合的思想,把圖象和性質結合起來.本節主要幫助考生掌握圖象和性質並會靈活運用.●難點磁場(★★★★)已知α、β為銳角,且x(α+β- )>0,試證不等式f(x)= x<2對一切非零實數都成立.●案例探究[例1]設z1=m+(2-m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范圍.難點16 三角函數式的化簡與求值三角函數式的化簡和求值是高考考查的重點內容之一.通過本節的學習使考生掌握化簡和求值問題的解題規律和途徑,特別是要掌握化簡和求值的一些常規技巧,以優化我們的解題效果,做到事半功倍.●難點磁場(★★★★★)已知 <β<α< ,cos(α-β)= ,sin(α+β)=- ,求sin2α的值_________.難點17 三角形中的三角函數式三角形中的三角函數關系是歷年高考的重點內容之一,本節主要幫助考生深刻理解正、餘弦定理,掌握解斜三角形的方法和技巧.●難點磁場(★★★★★)已知△ABC的三個內角A、B、C滿足A+C=2B. ,求cos 的值.難點18 不等式的證明策略 不等式的證明,方法靈活多樣,它可以和很多內容結合.高考解答題中,常滲透不等式證明的內容,純不等式的證明,歷來是高中數學中的一個難點,本難點著重培養考生數學式的變形能力,邏輯思維能力以及分析問題和解決問題的能力.●難點磁場(★★★★)已知a>0,b>0,且a+b=1.求證:難點19 解不等式不等式在生產實踐和相關學科的學習中應用廣泛,又是學習高等數學的重要工具,所以不等式是高考數學命題的重點,解不等式的應用非常廣泛,如求函數的定義域、值域,求參數的取值范圍等,高考試題中對於解不等式要求較高,往往與函數概念,特別是二次函數、指數函數、對數函數等有關概念和性質密切聯系,應重視;從歷年高考題目看,關於解不等式的內容年年都有,有的是直接考查解不等式,有的則是間接考查解不等式.●難點磁場(★★★★)解關於x的不等式難點20 不等式的綜合應用不等式是繼函數與方程之後的又一重點內容之一,作為解決問題的工具,與其他知識綜合運用的特點比較突出.不等式的應用大致可分為兩類:一類是建立不等式求參數的取值范圍或解決一些實際應用問題;另一類是建立函數關系,利用均值不等式求最值問題、本難點提供相關的思想方法,使考生能夠運用不等式的性質、定理和方法解決函數、方程、實際應用等方面的問題.●難點磁場(★★★★★)設二次函數f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個根x1、x2滿足0 (1)當x∈[0,x1 時,證明x (2)設函數f(x)的圖象關於直線x=x0對稱,證明:x0< .

⑻ 成人高考數學主要考什麼

考試范圍包括代數、三角、平面解析幾何、概率與統計初步四部分。成人高考數學旨在測試中學數學基礎知識、基本技能、基本方法,考察邏輯思維能力、運算能力、空間想像能力以及運用所學數學知識和方法分析問題和解決問題的能力。

高起專和高起本的數學就是高中的內容,文科的考文科的數學,理科的考理科的數學;專升本的數學考的是高數(一)和高數(二),這些都是大專的知識。

(8)成考數學文科知識點大全擴展閱讀:

考試內容的知識要求作如下說明:

考試大綱對所列知識提出了三個層次的不同要求,三個層次由低到高順序排列,且高一級層次要求包含低一級層次要求.三個層次要求分別為:

1、了解:要求考生對所列知識的含義有初步的認識,識記有關內容,並能進行直接運用。

2、理解、掌握、會:要求考生對所列知識的含義有較深的認識,能夠解釋、舉例或變形、推斷,並能運用知識解決有關問題。

3、靈活應用:要求考生對所列知識能夠綜合運用,並能解決較為復雜的數學問題。

⑼ 高考文科數學知識點總結歸納

對於文科生來說,數學是一門比較特別的學科,高考要想數學分數高,必須掌握必考知識點。下面是我為大家整理的高考文科數學知識點,希望對大家有所幫助。

高考文科數學知識點

第一,函數與導數

主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。

第二,平面向量與三角函數、三角變換及其應用

這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。

第三,數列及其應用

這部分是高考的重點而且是難點,主要出一些綜合題。

第四,不等式

主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。

第五,概率和統計

這部分和我們的生活聯系比較大,屬應用題。

第六,空間位置關系的定性與定量分析

主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。

第七,解析幾何

高考的難點,運算量大,一般含參數。

文科數學高頻必考考點

第一部分:選擇與填空

1.集合的基本運算(含新定集合中的運算,強調集合中元素的互異性);

2.常用邏輯用語(充要條件,全稱量詞與存在量詞的判定);

3.函數的概念與性質(奇偶性、對稱性、單調性、周期性、值域最大值最小值);

4.冪、指、對函數式運算及圖像和性質

5.函數的零點、函數與方程的遷移變化(通常用反客為主法及數形結合思想);

6.空間體的三視圖及其還原圖的表面積和體積;

7.空間中點、線、面之間的位置關系、空間角的計算、球與多面體外接或內切相關問題;

8.直線的斜率、傾斜角的確定;直線與圓的位置關系,點線距離公式的應用;

9.演算法初步(認知框圖及其功能,根據所給信息,幾何數列相關知識處理問題);

10.古典概型,幾何概型理科:排列與組合、二項式定理、正態分布、統計案例、回歸直線方程、獨立性檢驗;文科:總體估計、莖葉圖、頻率分布直方圖;

11.三角恆等變形(切化弦、升降冪、輔助角公式);三角求值、三角函數圖像與性質;

12.向量數量積、坐標運算、向量的幾何意義的應用;

13.正餘弦定理應用及解三角形;

14.等差、等比數列的性質應用、能應用簡單的地推公式求其通項、求項數、求和;

15.線性規劃的應用;會求目標函數;

16.圓錐曲線的性質應用(特別是會求離心率);

17.導數的幾何意義及運算、定積分簡單求法

18.復數的概念、四則運算及幾何意義;

19.抽象函數的識別與應用;

第二部分:解答題

第17題:向量與三角交匯問題,解三角形,正餘弦定理的實際應用;

第18題:(文)概率與統計(概率與統計相結合型)

(理)離散型隨機變數的概率分布列及其數字特徵;

第19題:立體幾何

①證線面平行垂直;面與面平行垂直

②求空間中角(理科特別是二面角的求法)

③求距離(理科:動態性)空間體體積;

第20題:解析幾何(注重思維能力與技巧,減少計算量)

①求曲線軌跡方程(用定義或待定系數法)

②直線與圓錐曲線的關系(靈活運用點差法和弦長公式)

③求定點、定值、最值,求參數取值的問題;

第21題:函數與導數的綜合應用

這是一道典型應用知識網路的交匯點設計的試題,是考查考生解題能力和文科數學素質為目標的壓軸題。

主要考查:分類討論思想;化歸、轉化、遷移思想;整體代換、分與合思想

一般設計三問:

①求待定系數,利用求導討論確定函數的單調性;

②求參變數取值或函數的最值;

③探究性問題或證不等式恆成立問題。

第22題:三選一:

(1)幾何證明主要考查三角形相似,圓的切割線定理,證明成比例,求角度,求長度;利用射影定理解決圓中計算和證明問題是歷年高考題的 熱點 ;

(2)坐標系與參數方程,主要抓兩點:參數方程、極坐標方程互化為普通方程;有參數、極坐標方程求解曲線的基本量。這類題,思路清晰,難度不大,抓基礎,不做難題。

(3)不等式選講:絕對值不等式與函數結合型。設計上為:①解含有參變數關於x的不等式;②求解不等式恆成立時參變數的取值;③證明不等式(利用均值定理、放縮法等)。

2018高考文科數學知識點:高中數學知識點 總結

必修一:1、集合與函數的概念(這部分知識抽象,較難理解)2、基本的初等函數(指數函數、對數函數)3、函數的性質及應用(比較抽象,較難理解)

必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角

這部分知識是高一學生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學生的立體意識較強。這部分知識高考佔22---27分

2、直線方程:高考時不單獨命題,易和圓錐曲線結合命題

3、圓方程:

必修三:1、演算法初步:高考必考內容,5分(選擇或填空)2、統計:3、概率:高考必考內容,09年理科佔到15分,文科數學佔到5分

必修四:1、三角函數:(圖像、性質、高中重難點,)必考大題:15---20分,並且經常和其他函數混合起來考查

2、平面向量:高考不單獨命題,易和三角函數、圓錐曲線結合命題。09年理科佔到5分,文科佔到13分

必修五:1、解三角形:(正、餘弦定理、三角恆等變換)高考中理科佔到22分左右,數學佔到13分左右2、數列:高考必考,17---22分3、不等式:(線性規劃,聽課時易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。

高考文科數學知識點總結

乘法與因式分解

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解

-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

根與系數的關系

X1+X2=-b/aX1__X2=c/a注:韋達定理

判別式

b2-4a=0注:方程有相等的兩實根

b2-4ac>0注:方程有一個實根

b2-4ac<0注:方程有共軛復數根

三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))

ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積公式

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB

-ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和公式

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理:a/sinA=b/sinB=c/sinC=2R

注:其中R表示三角形的外接圓半徑

餘弦定理:b2=a2+c2-2accosB

注:角B是邊a和邊c的夾角

高考文科數學知識點總結相關 文章 :

★ 2022北京卷高考文科數學試題及答案解析

★ 2022全國新高考Ⅰ卷文科數學試題及答案解析

★ 2022年全國新高考1卷數學試題及答案解析

★ 2022全國新高考Ⅱ卷文科數學試題及答案解析

★ 高中導數知識點總結大全

★ 山東2022高考文科數學試題及答案解析

★ 湖北2022高考文科數學試題及答案解析

★ 2022河北高考文科數學試題及答案解析

★ 高中文科數學復習指導與注意事項

★ 2017高考數學三角函數知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑽ 成人高考專生本數學公式大全

成人高考專升本數學公式 誘導公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tgA=tanA=sinAcosA2.兩角和與差的三角函數sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化積公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)?sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.積化和差公式 (上面公式反過來就得到了)sin(a)sin(b)=-12?[cos(a+b)-cos(a-b)]cos(a)cos(b)=12?[cos(a+b)+cos(a-b)]sin(a)cos(b)=12?[sin(a+b)+sin(a-b)]5.二倍角公式sin(2a)=2sin(a)cos(a)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)6.半形公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)7.萬能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)8.其它公式(推導出來的 )a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中 tan(c)=baa?sin(a)-b?cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2其他非重點csc(a)=1sin(a)sec(a)=1cos(a)成人高考專升本常用數學公式三角不等式 一元二次方程的解 某些數列的前n項和 二項式鋪開公式 三角函數公式 導數與微分 不定積分表(基本積分)