1. 北師大版八年級下冊數學全書概念總結
《數學》(八年級下冊)知識點總結
第一章 一元一次不等式和一元一次不等式組
一. 不等關系
※1. 一般地,用符號「<」(或「≤」), 「>」(或「≥」)連接的式子叫做不等式.
¤2. 要區別方程與不等式: 方程表示的是相等的關系;不等式表示的是不相等的關系.
※3. 准確「翻譯」不等式,正確理解「非負數」、「不小於」等數學術語.
非負數 <===> 大於等於0(≥0) <===> 0和正數 <===> 不小於0
非正數 <===> 小於等於0(≤0) <===> 0和負數 <===> 不大於0
二. 不等式的基本性質
※1. 掌握不等式的基本性質,並會靈活運用:
(1) 不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c, a-c>b-c.
(2) 不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc, .
(3) 不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac<bc,
※2. 比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a<b,那麼a-b是負數;反過來,如果a-b是負數,那麼a<b;
即:
a>b <===> a-b>0
a=b <===> a-b=0
a<b <===> a-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
三. 不等式的解集:
※1.
能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.
※2. 不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.
¤3. 不等式的解集在數軸上的表示:
用數軸表示不等式的解集時,要確定邊界和方向:
①邊界:有等號的是實心圓圈,無等號的是空心圓圈;
②方向:大向右,小向左
四. 一元一次不等式:
※1. 只含有一個未知數,且含未知數的式子是整式,未知數的次數是1. 像這樣的不等式叫做一元一次不等式.
※2. 解一元一次不等式的過程與解一元一次方程類似,特別要注意,當不等式兩邊都乘以一個負數時,不等號要改變方向.
※3. 解一元一次不等式的步驟:
①去分母;
②去括弧;
③移項;
④合並同類項;
⑤系數化為1(不等號的改變問題)
※4. 一元一次不等式基本情形為ax>b(或ax<b)
①當a>0時,解為 ;
②當a=0時,且b<0,則x取一切實數;
當a=0時,且b≥0,則無解;
③當a<0時, 解為 ;
¤5. 不等式應用的探索(利用不等式解決實際問題)
列不等式解應用題基本步驟與列方程解應用題相類似,即:
①審: 認真審題,找出題中的不等關系,要抓住題中的關鍵字眼,如「大於」、「小於」、「不大於」、「不小於」等含義;
②設: 設出適當的未知數;
③列: 根據題中的不等關系,列出不等式;
④解: 解出所列的不等式的解集;
⑤答: 寫出答案,並檢驗答案是否符合題意.
五. 一元一次不等式與一次函數
六. 一元一次不等式組
※1. 定義: 由含有一個相同未知數的幾個一元一次不等式組成的不等式組,叫做一元一次不等式組.
※2. 一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集.如果這些不等式的解集無公共部分,就說這個不等式組無解.
幾個不等式解集的公共部分,通常是利用數軸來確定.
※3. 解一元一次不等式組的步驟:
(1)分別求出不等式組中各個不等式的解集;
(2)利用數軸求出這些解集的公共部分,即這個不等式組的解集.
兩個一元一次不等式組的解集的四種情況(a、b為實數,且a<b)
一元一次不等式
解集
圖示
敘述語言表達
x>b
兩大取較大
x>a
兩小取小
a<x<b
大小交叉中間找
無解
在大小分離沒有解
(是空集)
第二章 分解因式
一. 分解因式
※1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
※2. 因式分解與整式乘法是互逆關系.
因式分解與整式乘法的區別和聯系:
(1)整式乘法是把幾個整式相乘,化為一個多項式;
(2)因式分解是把一個多項式化為幾個因式相乘.
二. 提公共因式法
※1.
如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.
如:
※2. 概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即:
※3. 易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.
三. 運用公式法
※1. 如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.
※2. 主要公式:
(1)平方差公式:
(2)完全平方公式:
¤3. 易錯點點評:
因式分解要分解到底.如 就沒有分解到底.
※4. 運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號.
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍.
※5. 因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
四. 分組分解法:
※1. 分組分解法:利用分組來分解因式的方法叫做分組分解法.
如:
※2. 概念內涵:
分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式.
※3. 注意: 分組時要注意符號的變化.
五. 十字相乘法:
※1.對於二次三項式 ,將a和c分別分解成兩個因數的乘積, , , 且滿足 ,往往寫成
的形式,將二次三項式進行分解.
如:
※2. 二次三項式 的分解:
※3. 規律內涵:
(1)理解:把分解因式時,如果常數項q是正數,那麼把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同.
(2)如果常數項q是負數,那麼把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對於分解的兩個因數,還要看它們的和是不是等於一次項系數p.
※4. 易錯點點評:
(1)十字相乘法在對系數分解時易出錯;
(2)分解的結果與原式不等,這時通常採用多項式乘法還原後檢驗分解的是否正確.
第三章 分式
一. 分式
※1. 兩個整數不能整除時,出現了分數;類似地,當兩個整式不能整除時,就出現了分式.
整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那麼稱
為分式,對於任意一個分式,分母都不能為零.
※2. 整式和分式統稱為有理式,即有:
※3. 進行分數的化簡與運算時,常要進行約分和通分,其主要依據是分數的基本性質:
分式的分子與分母都乘以(或除以)同一個不等於零的整式,分式的值不變.
※4.
一個分式的分子、分母有公因式時,可以運用分式的基本性質,把這個分式的分子、分母同時除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.
二. 分式的乘除法
※1. 分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以以分式,把除式的分子、分母顛倒位置後,與被除式相乘.
即: ,
※2. 分式乘方,把分子、分母分別乘方.
即:
逆向運用 ,當n為整數時,仍然有 成立.
※3. 分子與分母沒有公因式的分式,叫做最簡分式.
三. 分式的加減法
※1.
分式與分數類似,也可以通分.根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
※2. 分式的加減法:
分式的加減法與分數的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.
(1)同分母的分式相加減,分母不變,把分子相加減;
上述法則用式子表示是:
(2)異號分母的分式相加減,先通分,變為同分母的分式,然後再加減;
上述法則用式子表示是:
※3. 概念內涵:
通分的關鍵是確定最簡分母,其方法如下:最簡公分母的系數,取各分母系數的最小公倍數;最簡公分母的字母,取各分母所有字母的最高次冪的積,如果分母是多項式,則首先對多項式進行因式分解.
四. 分式方程
※1. 解分式方程的一般步驟:
①在方程的兩邊都乘最簡公分母,約去分母,化成整式方程;
②解這個整式方程;
③把整式方程的根代入最簡公分母,看結果是不是零,使最簡公母為零的根是原方程的增根,必須捨去.
※2. 列分式方程解應用題的一般步驟:
①審清題意;
②設未知數;
③根據題意找相等關系,列出(分式)方程;
④解方程,並驗根;
⑤寫出答案.
第四章 相似圖形
一. 線段的比
※1. 如果選用同一個長度單位量得兩條線段AB, CD的長度分別是m、n,那麼就說這兩條線段的比AB:CD=m:n ,或寫成
.
※2. 四條線段a、b、c、d中,如果a與b的比等於c與d的比,即
,那麼這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.
※3. 注意點:
①a:b=k,說明a是b的k倍;
②由於線段 a、b的長度都是正數,所以k是正數;
③比與所選線段的長度單位無關,求出時兩條線段的長度單位要一致;
_
圖1
_
B
_
C
_
A
④除了a=b之外,a:b≠b:a, 與 互為倒數;
⑤比例的基本性質:若 , 則ad=bc; 若ad=bc, 則
二. 黃金分割
※1. 如圖1,點C把線段AB分成兩條線段AC和BC,如果
,那麼稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.
※2.黃金分割點是最優美、最令人賞心悅目的點.
四. 相似多邊形
¤1. 一般地,形狀相同的圖形稱為相似圖形.
※2. 對應角相等、對應邊成比例的兩個多邊形叫做相似多邊形.相似多邊形對應邊的比叫做相似比.
五. 相似三角形
※1. 在相似多邊形中,最為簡簡單的就是相似三角形.
※2. 對應角相等、對應邊成比例的三角形叫做相似三角形.相似三角形對應邊的比叫做相似比.
※3. 全等三角形是相似三角的特例,這時相似比等於1.
注意:證兩個相似三角形,與證兩個全等三角形一樣,應把表示對應頂點的字母寫在對應的位置上.
※4. 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比.
※5. 相似三角形周長的比等於相似比.
※6. 相似三角形面積的比等於相似比的平方.
六.探索三角形相似的條件
_
圖2
_
F
_
E
_
D
_
C
_
B
_
A
_
l
_
3
_
l
_
2
_
l
_
1
※1. 相似三角形的判定方法:
一般三角形
直角三角形
基本定理:平行於三角形的一邊且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形與原三角形相似.
①兩角對應相等;
②兩邊對應成比例,且夾角相等;
③三邊對應成比例.
①一個銳角對應相等;
②兩條邊對應成比例:
a. 兩直角邊對應成比例;
b. 斜邊和一直角邊對應成比例.
※2. 平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.
如圖2, l1 //
l2 // l3,則 .
※3. 平行於三角形一邊的直線與其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似.
八. 相似的多邊形的性質
※相似多邊形的周長等於相似比;面積比等於相似比的平方.
九. 圖形的放大與縮小
※1. 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一點,那麼這樣的兩個圖形叫做位似圖形;
這個點叫做位似中心; 這時的相似比又稱為位似比.
※2. 位似圖形上任意一對對應點到位似中心的距離之比等於位似比.
◎3. 位似變換:
①變換後的圖形,不僅與原圖相似,而且對應頂點的連線相交於一點,並且對應點到這一交點的距離成比例.像這種特殊的相似變換叫做位似變換.這個交點叫做位似中心.
②一個圖形經過位似變換後得到另一個圖形,這兩個圖形就叫做位似形.
③利用位似的方法,可以把一個圖形放大或縮小.
第五章 數據的收集與處理
一. 每周幹家務活的時間
※1. 所要考察的對象的全體叫做總體;
把組成總體的每一個考察對象叫做個體;
從總體中取出的一部分個體叫做這個總體的一個樣本.
※2. 為一特定目的而對所有考察對象作的全面調查叫做普查;
為一特定目的而對部分考察對象作的調查叫做抽樣調查.
二. 數據的收集
※1. 抽樣調查的特點: 調查的范圍小、節省時間和人力物力優點.但不如普查得到的調查結果精確,它得到的只是估計值.
而估計值是否接近實際情況還取決於樣本選得是否有代表性.
第六章 證明(一)
二. 定義與命題
※1. 一般地,能明確指出概念含義或特徵的句子,稱為定義.
定義必須是嚴密的.一般避免使用含糊不清的術語,例如「一些」、「大概」、「差不多」等不能在定義中出現.
※2. 可以判斷它是正確的或是錯誤的句子叫做命題.
正確的命題稱為真命題,錯誤的命題稱為假命題.
※3.
數學中有些命題的正確性是人們在長期實踐中總結出來的,並且把它們作為判斷其他命題真假的原始依據,這樣的真命題叫做公理.
※4.
有些命題可以從公理或其他真命題出發,用邏輯推理的方法判斷它們是正確的,並且可以進一步作為判斷其他命題真假的依據,這樣的真命題叫做定理.
¤5. 根據題設、定義以及公理、定理等,經過邏輯推理,來判斷一個命題是否正確,這樣的推理過程叫做證明.
三. 為什麼它們平行
※1. 平行判定公理: 同位角相等,兩直線平行.(並由此得到平行的判定定理)
※2. 平行判定定理: 同旁內互補,兩直線平行.
※3. 平行判定定理: 同錯角相等,兩直線平行.
四. 如果兩條直線平行
※1. 兩條直線平行的性質公理: 兩直線平行,同位角相等;
※2. 兩條直線平行的性質定理: 兩直線平行,內錯角相等;
※3. 兩條直線平行的性質定理: 兩直線平行,同旁內角互補.
五. 三角形和定理的證明
※1. 三角形內角和定理: 三角形三個內角的和等於180°
¤2. 一個三角形中至多隻有一個直角
¤3. 一個三角形中至多隻有一個鈍角
¤4. 一個三角形中至少有兩個銳角
六. 關注三角形的外角
※1. 三角形內角和定理的兩個推論:
推論1: 三角形的一個外角等於和它不相鄰的兩個內角的和;
推論2: 三角形的一個外角大於任何一個和它不相鄰的內角.
2. 八年級下學期數學知識點
第1章 二次根式
二次根式屬於「數與代數」領域的內容,它是在學生學習了平方根、立方根等內容的基礎上進行的,是對七年級上冊「實數」「代數式」等內容的延伸和補充。二次根式的運算以整式的運算為基礎,在進行二次根式的有關運算時,所使用的運演算法則與整式、分式的相關法則類似;在進行二次根式的加減時,所採用的方法與合並同類項類似;在進行二次根式的乘除時,所使用的法則和公式與整式的乘法運演算法則及乘法公式類似。這些都說明了前後知識之間的內在聯系。
本章的主要內容有二次根式,二次根式的性質,二次根式的運算(根號內不含字母、不含分母有理化)。
一、教科書內容和教學目標
本章的教學要求。
(1)了解二次根式的概念,了解簡單二次根式的字母取值范圍;
(2)了解二次根式的性質;
(3)了解二次根式的加、減、乘、除的運演算法則;
(4)會用二次根式的性質和運演算法則進行有關實數的簡單四則運算(不要求分母有理化)。
本章教材分析。
課本在回顧算術平方根的基礎上,通過「合作學習」的三個問題引出二次根式的概念,並說明以前學的數的算術平方根也叫做二次根式。在例題和練習的安排上,著重體現三個方面的要求:一是求二次根式中字母的取值范圍;二是求二次根式的值;三是用二次根式表示有關的問題。
對於二次根式的性質,課本利用第4頁圖1-2給出的。該圖的含義是如果正方形的面積為,那麼這個正方形的邊長就是;反之,如果正方形的邊長為,那麼這個正方形的面積就是,因此就有。從而得出二次根式的第一個性質。至於第二個性質,可以通過學生的計算來發現,所以課本安排了一個「合作學習」,讓學生自己去發現和歸納。該節第一課時的重點在於對這兩個性質的理解和運用,例題和練習的設計就圍繞這兩個性質展開。第二課時是學習二次根式的另外兩個性質,課本安排兩組練習,意在讓學生通過自己的嘗試,與同學的合作交流來發現這兩個性質。通過兩個例題和一組練習,使學生知道運用二次根式的性質,可以簡化實數的運算,也可以對結果是二次根式的式子進行化簡。課本第9頁的「探究活動」既是對二次根式的運用,更在於培養學生的一種探究能力,觀察、發現、歸納等能力。
第1.3節二次根式的運算,包含了二次根式的加、減、乘、除四種運算以及簡單應用,課本安排了3個課時,逐步推進,逐漸綜合。第一課時側重於兩個(相當於兩個單項式)二次根式的乘除,其法則是從二次根式的性質得到的,比較自然。例1是對兩個運演算法則的直接運用,讓學生有一個對法則的熟悉和熟練過程;例2是一個結合實際問題的運用,其中有勾股定理和三角形的面積計算。第二課時是二次根式的加減和乘除混合運算,出現了類似單項式乘以多項式、多項式乘以多項式(包括乘法公式、乘方)、多項式除以單項式的運算。課本中沒有出現「同類二次根式」的概念,只是提到「類似於合並同類項」「相同二次根式的項」,這種類比的方法,學生是能夠理解的,也能夠與整式一樣進行運算。第三課時是二次根式運算的應用。例6的數字看上去比較復雜,其目的是為了二次根式的運算的應用;例7綜合運用了直角三角形的有關知識、圖形的分割、面積的計算等,其解答過程較長,也是對二次根式知識的綜合運用。
二、本章編寫特點
注重學生的觀察、分析、歸納、探究等能力的培養。
在本章知識的呈現方式上,課本比較突出地體現了「問題情境——數學活動——概括——鞏固、應用和拓展」的敘述模式,這種意圖大多通過「合作學習」 來完成。「合作學習」為學生創設了從事觀察、猜測、驗證交流等數學活動的機會。如第5頁先讓學生計算三組與的具體數值,再議一議與的關系,然後得出二次根式的性質「=」。二次根式的其他幾個性質,課本中也是採用類似的方法。在學習了二次根式的有關性質後,課本又設計了一個「探究活動」,通過化簡有關的二次根式,讓學生自己去發現規律、表示規律、驗證規律,並與同伴交流。所有這些都是教材編寫的一種導向,以引起教與學方式上的一些的改變。
注重數學知識與現實生活的聯系。
教材力求克服傳統觀念上學習二次根式的枯燥性,避免大量純式子的化簡或計算,適當穿插實際應用或賦予式子一些實際意義。無論是學習二次根式的概念,還是學習二次根式的性質和運算,都盡可能把所學的知識與現實生活相聯系,重視運用所學知識解決實際問題能力的培養。如二次根式概念的學習,課本通過三個實際問題來引入,其目的就是關注概念的實際背景與形成過程,克服機械記憶概念的學習方式。又如,課本第3頁,用二次根式表示輪船航行的的距離,第11頁求路標的面積,第21頁花草的種植面積問題等。特別是在二次根式的運算中,專門安排了一節內容學習二次根式運算的應用,例6選取的背景是學生熟悉的滑梯,例7選取的背景是學生感興趣的剪紙條,以及作業中的堤壩、快艇問題等等。
充分利用圖形,使代數與幾何有機結合。
對於數與代數的內容,教材重視有關內容的幾何背景,運用幾何直觀幫助學生理解、解決有關代數問題,是教材的一個編寫特點,也是對教學的一種導向。本章中,如二次根式與直角三角形有關邊的計算密切相關,課本在這方面選取了一定量的問題,既豐富了勾股定理的運用,又學習了二次根式的計算。又如二次根式的引入,課本以圖形作為條件,讓學生通過計算給出二次根式的概念;在學習二次根式的性質時,課本通過讓學生讀圖1-2,從正反兩方面來理解其含義,得出二次根式的性質。例題中結合圖形示意,幫助學生理解問題,解決問題;作業或課本練習中設計一些圖形中有關線段長度的計算;通過方格、直角坐標系來畫三角形、確定點的位置等等。課本在安排二次根式的運算在日常生活和生產實際中的應用時,所選取的問題也在於體現學生所學知識之間的聯系,感受所學知識的整體性,不斷豐富學生解決問題的策略,提高解決問題的能力。
三、教學建議
注意用好節前語。
本章的節前語不多,但都緊密結合本節學習的內容,提出一個具體的問題。教學中可以利用它們來創設問題情境,引入課題。如第1.1節「排球網的高AD為2.43米,CB為米,你能用代數式表示AC的長嗎?」短短的幾句話,既是一個學生熟悉的問題情境,又是一個看似熟悉但又具有一定的挑戰懷,與數學學習相聯系的問題,教師可以由此提出一個與本節課學習有關的問題。教學中不應忽視這種作用。
注意把握教學難度。
與以往的教材相比,二次根式已降低了要求。如運用二次根式的性質將二次根式化簡,只要求簡單的,不要出現過於復雜的式子,並且明確根號內不含字母。對二次根式的四則運算,也僅局限於簡單的,根號內不含字母,教學中不需補充超出課本題目要求的問題。當然對不同層次的學生,應該體現一定的彈性。課本第15頁的作業題中的第7,8題,還可以藉助於計算器進行計算。
充分運用類比的方法。
二次根式的運算以整式的運算為基礎,其法則、公式都與整式的類似,特別是二次根式的加減,課本沒有提出同類二次根式的概念,完全參照合並同類項的方法;二次根式的乘除、乘方運算類似於整式的乘除、乘方運算。因此對於二次根式的四則運算的教學應充分運用類比的方法,讓學生理解其算理和演算法,提高運算能力。
第2章 一元二次方程
一、教科書內容和課程學習目標
(一)教科書內容
本章包括三節:
2.1 一元二次方程;
2.2一元二次方程的解法;
2.3一元二次方程的應用。
其中2.1節是全章的基礎部分,2.2節是全章的重點內容,2.3節是知識應用和引申的內容。另外,閱讀材料介紹了一元二次方程的發展,讓學生了解數學的發展史。
(二)本章的知識結構
(三)課程目標
(1)了解一元二次方程的概念,會用直接開平方法解形如(b≥0)的方程;
(2)理解配方法,會用配方法解數字系數的一元二次方程;掌握一元二次方程求根公式的推導,會用求根公式解一元二次方程;會用因式分解法解一元二次方程,使學生能夠根據方程的特徵,靈活運用一元二次方程的各種解法求方程的根。
(3)體驗用觀察法、畫圖或計算器等手段估計方程的解的過程。
(4)能夠根據具體問題中的數量關系,能夠列出一元二程方程解應用題,能夠發現、提出日常生活、生產或其他學科中可利用一元二次方程來解決的實際問題,並正確地用語言表達問題及解決過程。體會方程是刻畫現實世界的一個有效的數學模型。
(5)結合教學內容進一步培養學生邏輯思維能力,對學生進行辯證唯物主義觀點的教育,通過一元二次方程的教學,使學生進一步獲得對事物可以轉化的認識。
(四)課時安排
2.1 一元二次方程…………………………………………………………2課時
其中:一元二次方程的概念……………………1課時
因式分解法解一元二次方程……………1課時
2.2一元二次方程的解法………………………………………………4課時
其中:開方法、配方法………………………2課時
公式法…………………………………2課時
2.3一元二次方程的應用………………………………………………2課時
小結、目標與評定………………………………………………………2課時
二、編寫指導思想與特點
方程教學在中學數學教學中佔有很大的比例,一元二次方程在初中代數中佔有重要地位。一方面,一元二次方程可以看成是前面所學過的有關知識的綜合運用,如有理數、實數的概念和整式、分式、開平方等的運算,一元一次方程、一元一次方程組解法等知識,在本章都有應用。從數學角度看,這一章的學習有一定難度,如果前面某個環節薄弱或知識點有問題,就會給本章的學習帶來困難,因此,這一章的教學是對以前所學的有關知識的檢驗,又是一次復習與鞏固。當然,一元二次方程知識也是前面所學知識的繼續和發展,尤其是方程方面知識的深入和發展。
本章的主要內容是一元二次方程的解法和應用,課本首先引入一元二次方程的概念,從實數的性質,將分解成為兩個一次因式相乘積為零的一元二次方程轉化為兩個一元一次方程入手,介紹了利用因式分解法解一元二次方程的方法,體現了數學的轉化思想。接著課本首先從數的開平方的知識出發,直接講開平方法,然後依次介紹了配方法和公式法。在講述公式法的同時,課本特別給出了利用計算器解一元二次方程的解法示例,以揭示技術發展給數學學習帶來的影響,這也是一種新的嘗試。同時,以建立數學模型為主要著力點介紹了一元二次方程的應用,並在例題的設置上充分考慮了圖表、立體圖形、物體運動和經濟活動中的問題背景,力圖使學生在現實的環境中學習數學。
這一章是全書乃至整個初中代數的一個重點內容。因為這一部分內容既是對以前所學內容的總結、鞏固和提高,又是以後學習的知識基礎。因此這一章可以說是起到了承上啟下的作用。高中階段的指數方程、對數方程及三角方程,無非就是指數、對數、三角函數的有關知識與一元一次方程、一元二次方程的綜合而已。初中代數中的不少主要技能、解題方法以及一些常用的數學思想方法,在本章都有所體現。例如,換元法、因式分解法、配方法等。另外,從具體到抽象的概括能力、邏輯推理能力等等在本章也有體現。可以說,無論從基礎知識還是基本技能看,這一章都佔有重要的地位。在本章的內容中,應以一元二次方程的解法,特別是公式法作為重點。
三、教材體現的數學思想方法
本章從內容上看是初中代數的重點,從數學思想方法方面來看,也是初中數學中比較全面體現的一章。
1.方程的思想
方程本身就提供了一種重要的數學思想方法,這一點在一元二次方程中體現的更為充分。學習方程不僅為進一步學習其他知識打下基礎,不僅可用於解決一些實際問題,而且在更廣泛的意義上講,通過方程可以溝通已知與未知之間的聯系,從而由解方程就可以使問題得以解決,通常稱之為方程思想。方程思想作為一種數學思想,在數學發展史上有重要作用,對求解數學問題來說也有重要的意義。
2.公式解法
一元二次方程的公式解法在數學思想方法上有重要意義。首先,公式法是人們所知的多次方程的第一種公式(根式)解,它為以後進行公式解的研究開辟了道路,並且是引起近似代數的起源問題之一,在數學的學習中也有重要意義;其次,公式法解體現了數學中的運算元的思想,將數學問題進行抽象化、符號化、程序化,這是數學發展的重要的途徑。
3.分類討論的數學思想
一元二次方程求根公式中,涉及開方問題,即對要實施開平方,而前面已經學過負數沒有平方根。因此的狀態就決定了一元二次方程根的狀態。必須對的符號進行討論。分類討論的數學思想是一種極為重要的數學思想方法,教材中對Δ=的三種分類討論隱含在課堂教學之中,通過「想一想」讓學生自然地得到結論,降低由於數學思想上的要求所帶來的學習上的難度,這是一種合理的處理方法。實際上,判別式的討論是不解方程而對方程的根進行定性研究的重要指標。在研究二次函數的圖象和性質等方面有重要意義,在研究二次曲線的問題時有重要地位。判別式實質上是利用方程的系數研究方程的性質,是一種以局部研究探求具體性質的方法。找一種關鍵性的數量關系去定性地研究一類對象,也是一種常見的數學思想方法。
4.轉化(化歸)的數學思想
在本章中更突出地表示出「轉化」的思想方法。如利用因式分解法解一元二次方程就是將一元二次方程轉化為兩個一元一次方程。嚴格地說,轉化的思想是數學中認識和掌握新知識的重要途徑,掌握這種方法,可以提高學生的數學能力,拓展學生數學知識。如換元法就是一種很重要的轉化思想,這在本章也有不少的體現。
四、教材處理
關於教材處理,按教材內容的安排及課程標準的要求,分三部分進行分析:
1.一元二次方程
本節包括一元二次方程的概念、因式分解法解一元二次方程,這一單元是本章的基礎,教材兩個問題中引入了一元二次方程的概念,一個問題是學生所熟悉的正方形和長方形的面積,另一個問題是從報紙上公布的統計數據,教學的重點是對方程的一般形式的認識和對方程解的理解,在此基礎上,引入用因式分解法求一元二次方程解的方法,將這種解安排在此處,其目的是為了加強學生對學習方程目的的理解,並為後續通過轉化求方程解奠定思想基礎。
2.一元二次方程的解法
本節是本章的核心內容,主要是一元二次方程的各種解法。其中的一元二次方程的配方法和應用一元二次方程知識理解應用問題是重點,而這兩個重點又是教學過程中的難點。一元二次方程的解法,尤其是公式法是學好本章的關鍵。因此,本節又是全章的重點,是學好本章的基礎。
一元二次方程的解法,課本介紹了四種,即直接開平方法、配方法、公式法及因式分解法。
直接開平方法適用於(b≥0)模式的方程。實際上,給出的一般方程只要存在實根,就可以用配方法轉化為的形式。例如,課本中將方程轉化為,因此配方法是直接開方法的延伸,而直接開平方法是配方法的基礎。
在配方法解一元二次方程的基礎上,很自然地推出一元二次方程的求根公式,實際上就是對一般形式(a≠0)的一元二次方程實施配方法的結果。
對於三種解法,公式法可以是一種「萬能」方法,只要△=≥0,將系數a,b,c代入公式即可求解。在教學中注意一元二次方程中的a≠0的條件。在配方時應強調方程兩邊同時加上「一次項系數之半的平方」或在左端加上「一次項系數之半的平方」再減去「一次項系數之半的平方」,實質上是方程的一種同解變形,這是必須反復訓練方可達到學生熟練進行配方的目的,它也是推導求根公式的基礎。
對△=的討論,首先要滲透分類討論的思想,另外,對△==0的情況,一定要強調有兩個相等的實根:這與方程根的理論一致,學生開始會認識只有一根,要反復強調,以糾正這種不正確的或說是不嚴密的結論。對△=<0的情況,不能說成方程無解,而應強調方程無實數根或在實數范圍內無解,強調數域是為今後在高中討論有復根的情況埋下伏筆。理論上的證明見教師用書。
關於一元二次方程根與系數的關系,實際上,求根公式就體現了根與系數的關系,由於課程標准中沒有涉及,但這部分內容對於今後的學習是很重要的,在教學中可以作為探索性學習的內容,讓學生自己進行探索並得出結論。
3.一元二次方程的應用
列方程解應用問題,前面一元一次方程的應用已學習過相關的知識,但是列一元二次方程解應用題仍然是難點,其原因是數量關系比較復雜且隱蔽;應用題所反映的實際背景比較復雜而學生又不太熟悉;所列方程也逐步復雜。主觀上學生一開始受算術解法思維的定勢影響,缺乏廣泛的社會經濟生產和生活以及相關學科方面的知識,理解文字語言和數學語言等方面的能力較差。
對於求解應用題,若從思想方法角度來看,列方程解應用題屬於數學模型法,其中方程應用題求解,大體上都是這樣六個步驟:①審題,理解題意,明確題中涉及幾個量,有幾個是已知量,有幾個是未知量,它們之間有什麼關系等等;②設元,根據題目要求,選擇合適的未知數,又分為直接設元法、間接設元法。同時還要考慮設幾個未知數為宜;③列式,分析題目中量與量的關系,關鍵是找出題目中的相等關系,這時,要注意挖掘題目中的那些隱蔽的相等關系,有時,又要輔之使用圖示法、列表法等一些直觀手段;④求解;⑤檢驗,既要檢驗得到的解是否符合原方程或原方程組,又要檢驗所得的解對實際問題是否有意義;⑥作答,寫出正確合理的答案。在教學中可以結合問題解決的策略,讓學生主動參與,自主建構和合作學習,體會數學建模的基本思想與方法。
(金克勤)
第3章 頻數及其分布
統計學是搜集數據、分析數據,並根據它獲得總體信息的科學.本套教材在七年級上冊安排了 「數據與圖表」,著重介紹了數據的收集、整理的初步方法;在八年級上冊安排了「樣本與數據分析初步」,通過對數據集中程度和離散程度的統計量的計算,初步了解了如何對數據的基本狀態進行分析.為了進一步分析、處理數據,供決策時參考,有時我們還要了解數據的分布情況,找出新的特徵數.「頻數及其分布」這一章就是解決了這一問題.「頻數及其分布」這部分內容在原總指浙江版義務教材中也有,但只是作為概率統計初步中的一小節.考慮到頻數、頻率、頻數直方圖、頻數折線圖與日常生活、自然、社會和科學技術領域的密切聯系,《數學課程標准》增加了這塊內容的份量.本套教材將這塊內容獨立設章的目的,一方面可用足夠的篇幅來更清楚、更詳細闡述,也是為每冊循序漸進地學習概率與統計知識所作的精心安排.
本章教學時間約需7課時 ,具體安排如下:
3.1 頻數和頻率 1課時
3.2 頻數分布 1課時
3.3 頻數的應用 3課時
復習、評估1課時,機動使用1課時,合計7課時.
一、教科書內容和課程教學目標
(1)本章知識結構框圖如下:
(2)本章教學目標如下:
目標類別
目標層次
知識點及相關技能 知識技能目標 過程性目標
了解 理解 掌握 靈活運用 經歷(感受) 體驗(體會) 探索
頻
數
及
其
分
布 極差 √ √
頻數的概念 √ √
頻數分布表 √ √
頻率的概念 √ √
頻數分布的意義和作用 √ √
頻數分布直方圖 √ √
頻數分布折線圖 √ √
根據頻數分布直方圖估計平均數 √ √
(3)本章教學要求
① 通過實例,理解頻數、頻率的概念,了解頻數分布的意義和作用.
② 會計算極差,會對數據合理分組,並求出每一組的頻數、頻率,列出頻數分布表.
③ 會畫頻數分布直方圖和頻數分布折線圖,能根據頻數分布直方圖估計平均數,能根據數據處理的結果,作出合理的判斷和預測,並在這一過程中體會統計對決策的作用.
④ 通過畫直方圖、折線圖養成學生耐心細致的工作作風,實事求是的工作態度,善於觀察、分析問題的能力.
二、本章編寫特點
以《數學課程標准》為本,刪繁就簡、突出重要內容
畫頻數分布直方圖不採用傳統按部就班的逐步介紹的方法,步驟多、方法繁將會影響這個年齡段的學生學習興趣.事實上,如3.1節做一做,「下面給出以0.4 kg為組距,取2.75~3.15、3.15~3.55……為端點」;對連續型、離散型數據的不同處理等,裡面還有許多道理.不在繁瑣的具體枝節上糾纏,突出重要概念,讓學生體驗頻數、頻率的真實含義,理解頻數、頻率分布的意義和作用才是教學的真正目的,也是本章教材編寫的特點之一.
精心選擇實例,貼近學生生活,引起學生興趣
頻數、頻率本身就是處理實際問題,從實際中來,在解決實際問題的過程中引入概念.教材精心挑選、引入大量學生熟悉的例子,創設學生熟悉的情境,引起學生興趣,使學生能產生解決它的慾望.掃除一定程度上因為敘述事例的冗長而引起學生反感.如血型分布、運動鞋鞋號的選擇、學科成績、午餐等候時間、礦泉水質量等等都是學生身邊的事,學生熟悉且親切.同時也培養了學生從統計的角度思考與數據信息有關的問題,通過收集、分析數據的過程能初步作出合理的決策,提高學生處理問題、決策問題的能力.
重實踐操作,設計一定量的數學活動,在交流中增強數學應用意識
本章內容安排了一定量的實習操作性的活動,如「八年級男生、女生身高和所穿運動鞋的分布」「八年級學生跳繩次數的頻數分布」「八年級男生、女生體重數據的分布」「商場不同價格的彩電銷售情況」等,這些活動都需要學生分小組合作,事前精心設計策劃,調查廣泛接觸不太熟悉的人和事,希望學生通過這些活動認識現實世界中蘊含的大量的數學信息,數學與現實世界有著緊密聯系,增強學生的數學應用意識,也培養學生實際工作能力,從中獲得克服困難經歷或者體會獲得成功的喜悅.
三、教學建議
(1) 畫頻數分布直方圖的一般步驟是:①計算極差;②決定組數與組距.一般當數據在100個以內時,按照數據多少,常分為5~12組;組距是指每個小組的兩個端點之間的「距離」 , = 組距;③決定分點,為了避免有些數據本身落在分點上,常常將分點多取一位小數;④列表、劃記;⑤畫頻數分布直方圖.教師根據實際情況在講解中靈活應用,但不要完全在黑板上重復以上步驟,這樣違背了教材編寫的初衷.
(2) 利用頻數分布表、頻數直方圖、頻數折線圖來分析數據的一些特徵是教學的重點之一,教學中應該充分發揮學生的積極性,讓學生仔細地觀察、大膽地推測、合理地驗證.「統一訂購運動服、運動鞋,應注意哪些問題?」「校方安排學生多長的午餐時間為宜?」「估計魚塘中有多少條魚」「分析男生、女生游泳項目成績差異」等等,不像原來數學題有唯一標准答案,應鼓勵學生各抒已見,最後在充分討論的基礎上形成比較一致的意見.這是與人交流、勇於探索、比較清晰表達自己觀點的重要方式,也是新課程數學教學的一個重要方面,教師可視具體情況在本章教學中盡量體現.
(3)計算繁瑣,聯系實際緊密是本章的主要特點.除了課本提供的範例外,教學中教師可根據實際情況進行適當補充.同時教師還應該充分利用多媒體預先製作好一些教具,不要使課堂上寶貴的時間浪費在抄寫、繪圖上面.
四、本章教學中應注意的問題
(1)數據有「連續型」與「離散型」兩種,對離散型數據,如課本第51頁的血型分組一般比較容易,對離散型數據分組不唯一,僅是根據經驗,不同的分組一般得到的結論也有所差別,但只要合理均認為正確.
(2)進行實踐活動時,要注意有些問題可能涉及學生的個人隱私,如較胖的女同學不願意論及自己的體重,她認為公開自己的體重是侵犯了個人隱私權;一分鍾跳繩次數比較少的同學也可能覺得沒面子而出現一些不愉快事情.針對這些情況任課教師應有充分的思想准備,採取迴避或選擇一些合適的同學或選擇另外適當的數據作調查對象等辦法.我們的目的是通過一些實踐活動在交流中培養互相合作的精神,與人合作中體會愉快,用數學知識解決實際問題中,增強應用數學的自信心.不要因為個別特殊原因干擾整個教學計劃.
(3)直方圖的縱坐標與橫坐標一般來說有不同的單位,每個單位的具體長度應在比較中進行選擇.最終的要求是畫出來的圖形比較美觀,能清楚反映分布情況、及變化趨勢.課本所採用畫折線 的辦法就是避免圖形畫在極端的位置.在不影響整個圖形所反映基本特徵的情況下,使頻數直方圖或頻數折線圖更加美觀.也可以採用將學生所畫的圖比較展覽的辦法,讓學生在交流中取長補短,互相吸收別人好的經驗,來完善自己畫圖技能.
(王利明)
命題與證明
3. 八年級下北師大版數學知識點
正好我今年教八年級數學。沒有時間自己整理,從網上下載的,我看不錯,你借鑒一下。
北師大版初中數學定理知識點匯總
八年級(下冊)
第一章 一元一次不等式和一元一次不等式組
一. 不等關系
※1. 一般地,用符號「<」(或「≤」), 「>」(或「≥」)連接的式子叫做不等式.
¤2. 要區別方程與不等式: 方程表示的是相等的關系;不等式表示的是不相等的關系.
※3. 准確「翻譯」不等式,正確理解「非負數」、「不小於」等數學術語.
非負數 <===> 大於等於0(≥0) <===> 0和正數 <===> 不小於0
非正數 <===> 小於等於0(≤0) <===> 0和負數 <===> 不大於0
二. 不等式的基本性質
※1. 掌握不等式的基本性質,並會靈活運用:
(1) 不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c, a-c>b-c.
(2) 不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc, .
(3) 不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac<bc,
※2. 比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a<b,那麼a-b是負數;反過來,如果a-b是正數,那麼a<b;
即:
a>b <===> a-b>0
a=b <===> a-b=0
a<b <===> a-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
三. 不等式的解集:
※1. 能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.
※2. 不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.
¤3. 不等式的解集在數軸上的表示:
用數軸表示不等式的解集時,要確定邊界和方向:
①邊界:有等號的是實心圓圈,無等號的是空心圓圈;
②方向:大向右,小向左
四. 一元一次不等式:
※1. 只含有一個未知數,且含未知數的式子是整式,未知數的次數是1. 像這樣的不等式叫做一元一次不等式.
※2. 解一元一次不等式的過程與解一元一次方程類似,特別要注意,當不等式兩邊都乘以一個負數時,不等號要改變方向.
※3. 解一元一次不等式的步驟:
①去分母;
②去括弧;
③移項;
④合並同類項;
⑤系數化為1(不等號的改變問題)
※4. 一元一次不等式基本情形為ax>b(或ax<b)
①當a>0時,解為 ;
②當a=0時,且b<0,則x取一切實數;
當a=0時,且b≥0,則無解;
③當a<0時, 解為 ;
¤5. 不等式應用的探索(利用不等式解決實際問題)
列不等式解應用題基本步驟與列方程解應用題相類似,即:
①審: 認真審題,找出題中的不等關系,要抓住題中的關鍵字眼,如「大於」、「小於」、「不大於」、「不小於」等含義;
②設: 設出適當的未知數;
③列: 根據題中的不等關系,列出不等式;
④解: 解出所列的不等式的解集;
⑤答: 寫出答案,並檢驗答案是否符合題意.
五. 一元一次不等式與一次函數
六. 一元一次不等式組
※1. 定義: 由含有一個相同未知數的幾個一元一次不等式組成的不等式組,叫做一元一次不等式組.
※2. 一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集.如果這些不等式的解集無公共部分,就說這個不等式組無解.
幾個不等式解集的公共部分,通常是利用數軸來確定.
※3. 解一元一次不等式組的步驟:
(1)分別求出不等式組中各個不等式的解集;
(2)利用數軸求出這些解集的公共部分,即這個不等式組的解集.
兩個一元一次不等式組的解集的四種情況(a、b為實數,且a<b)
一元一次不等式 解集 圖示 敘述語言表達
x>b 兩大取較大
x>a 兩小取小
a<x<b 大小交叉中間找
無解 在大小分離沒有解
(是空集)
第二章 分解因式
一. 分解因式
※1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
※2. 因式分解與整式乘法是互逆關系.
因式分解與整式乘法的區別和聯系:
(1)整式乘法是把幾個整式相乘,化為一個多項式;
(2)因式分解是把一個多項式化為幾個因式相乘.
二. 提公共因式法
※1. 如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.
如:
※2. 概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即:
※3. 易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.
三. 運用公式法
※1. 如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.
※2. 主要公式:
(1)平方差公式:
(2)完全平方公式:
¤3. 易錯點點評:
因式分解要分解到底.如 就沒有分解到底.
※4. 運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號.
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍.
※5. 因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
四. 分組分解法:
※1. 分組分解法:利用分組來分解因式的方法叫做分組分解法.
如:
※2. 概念內涵:
分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式.
※3. 注意: 分組時要注意符號的變化.
五. 十字相乘法:
※1.對於二次三項式 ,將a和c分別分解成兩個因數的乘積, , , 且滿足 ,往往寫成 的形式,將二次三項式進行分解.
如:
※2. 二次三項式 的分解:
※3. 規律內涵:
(1)理解:把 分解因式時,如果常數項q是正數,那麼把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同.
(2)如果常數項q是負數,那麼把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對於分解的兩個因數,還要看它們的和是不是等於一次項系數p.
※4. 易錯點點評:
(1)十字相乘法在對系數分解時易出錯;
(2)分解的結果與原式不等,這時通常採用多項式乘法還原後檢驗分解的是否正確.
第三章 分式
一. 分式
※1. 兩個整數不能整除時,出現了分數;類似地,當兩個整式不能整除時,就出現了分式.
整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那麼稱 為分式,對於任意一個分式,分母都不能為零.
※2. 整式和分式統稱為有理式,即有:
※3. 進行分數的化簡與運算時,常要進行約分和通分,其主要依據是分數的基本性質:
分式的分子與分母都乘以(或除以)同一個不等於零的整式,分式的值不變.
※4. 一個分式的分子、分母有公因式時,可以運用分式的基本性質,把這個分式的分子、分母同時除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.
二. 分式的乘除法
※1. 分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以以分式,把除式的分子、分母顛倒位置後,與被除式相乘.
即: ,
※2. 分式乘方,把分子、分母分別乘方.
即:
逆向運用 ,當n為整數時,仍然有 成立.
※3. 分子與分母沒有公因式的分式,叫做最簡分式.
三. 分式的加減法
※1. 分式與分數類似,也可以通分.根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
※2. 分式的加減法:
分式的加減法與分數的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.
(1)同分母的分式相加減,分母不變,把分子相加減;
上述法則用式子表示是:
(2)異號分母的分式相加減,先通分,變為同分母的分式,然後再加減;
上述法則用式子表示是:
※3. 概念內涵:
通分的關鍵是確定最簡分母,其方法如下:最簡公分母的系數,取各分母系數的最小公倍數;最簡公分母的字母,取各分母所有字母的最高次冪的積,如果分母是多項式,則首先對多項式進行因式分解.
四. 分式方程
※1. 解分式方程的一般步驟:
①在方程的兩邊都乘最簡公分母,約去分母,化成整式方程;
②解這個整式方程;
③把整式方程的根代入最簡公分母,看結果是不是零,使最簡公母為零的根是原方程的增根,必須捨去.
※2. 列分式方程解應用題的一般步驟:
①審清題意;
②設未知數;
③根據題意找相等關系,列出(分式)方程;
④解方程,並驗根;
⑤寫出答案.
第四章 相似圖形
一. 線段的比
※1. 如果選用同一個長度單位量得兩條線段AB, CD的長度分別是m、n,那麼就說這兩條線段的比AB:CD=m:n ,或寫成 .
※2. 四條線段a、b、c、d中,如果a與b的比等於c與d的比,即 ,那麼這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.
※3. 注意點:
①a:b=k,說明a是b的k倍;
②由於線段 a、b的長度都是正數,所以k是正數;
③比與所選線段的長度單位無關,求出時兩條線段的長度單位要一致;
④除了a=b之外,a:b≠b:a, 與 互為倒數;
⑤比例的基本性質:若 , 則ad=bc; 若ad=bc, 則
二. 黃金分割
※1. 如圖1,點C把線段AB分成兩條線段AC和BC,如果 ,那麼稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.
※2.黃金分割點是最優美、最令人賞心悅目的點.
四. 相似多邊形
¤1. 一般地,形狀相同的圖形稱為相似圖形.
※2. 對應角相等、對應邊成比例的兩個多邊形叫做相似多邊形.相似多邊形對應邊的比叫做相似比.
五. 相似三角形
※1. 在相似多邊形中,最為簡簡單的就是相似三角形.
※2. 對應角相等、對應邊成比例的三角形叫做相似三角形.相似三角形對應邊的比叫做相似比.
※3. 全等三角形是相似三角的特例,這時相似比等於1. 注意:證兩個相似三角形,與證兩個全等三角形一樣,應把表示對應頂點的字母寫在對應的位置上.
※4. 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比.
※5. 相似三角形周長的比等於相似比.
※6. 相似三角形面積的比等於相似比的平方.
六.探索三角形相似的條件
※1. 相似三角形的判定方法:
一般三角形 直角三角形
基本定理:平行於三角形的一邊且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形與原三角形相似.
①兩角對應相等;
②兩邊對應成比例,且夾角相等;
③三邊對應成比例. ①一個銳角對應相等;
②兩條邊對應成比例:
a. 兩直角邊對應成比例;
b. 斜邊和一直角邊對應成比例.
※2. 平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.
如圖2, l1 // l2 // l3,則 .
※3. 平行於三角形一邊的直線與其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似.
八. 相似的多邊形的性質
※相似多邊形的周長等於相似比;面積比等於相似比的平方.
九. 圖形的放大與縮小
※1. 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一點,那麼這樣的兩個圖形叫做位似圖形; 這個點叫做位似中心; 這時的相似比又稱為位似比.
※2. 位似圖形上任意一對對應點到位似中心的距離之比等於位似比.
◎3. 位似變換:
①變換後的圖形,不僅與原圖相似,而且對應頂點的連線相交於一點,並且對應點到這一交點的距離成比例.像這種特殊的相似變換叫做位似變換.這個交點叫做位似中心.
②一個圖形經過位似變換後得到另一個圖形,這兩個圖形就叫做位似形.
③利用位似的方法,可以把一個圖形放大或縮小.
第五章 數據的收集與處理
一. 每周幹家務活的時間
※1. 所要考察的對象的全體叫做總體;
把組成總體的每一個考察對象叫做個體;
從總體中取出的一部分個體叫做這個總體的一個樣本.
※2. 為一特定目的而對所有考察對象作的全面調查叫做普查;
為一特定目的而對部分考察對象作的調查叫做抽樣調查.
二. 數據的收集
※1. 抽樣調查的特點: 調查的范圍小、節省時間和人力物力優點.但不如普查得到的調查結果精確,它得到的只是估計值.
而估計值是否接近實際情況還取決於樣本選得是否有代表性.
第六章 證明(一)
二. 定義與命題
※1. 一般地,能明確指出概念含義或特徵的句子,稱為定義.
定義必須是嚴密的.一般避免使用含糊不清的術語,例如「一些」、「大概」、「差不多」等不能在定義中出現.
※2. 可以判斷它是正確的或是錯誤的句子叫做命題.
正確的命題稱為真命題,錯誤的命題稱為假命題.
※3. 數學中有些命題的正確性是人們在長期實踐中總結出來的,並且把它們作為判斷其他命題真假的原始依據,這樣的真命題叫做公理.
※4. 有些命題可以從公理或其他真命題出發,用邏輯推理的方法判斷它們是正確的,並且可以進一步作為判斷其他命題真假的依據,這樣的真命題叫做定理.
¤5. 根據題設、定義以及公理、定理等,經過邏輯推理,來判斷一個命題是否正確,這樣的推理過程叫做證明.
三. 為什麼它們平行
※1. 平行判定公理: 同位角相等,兩直線平行.(並由此得到平行的判定定理)
※2. 平行判定定理: 同旁內互補,兩直線平行.
※3. 平行判定定理: 同錯角相等,兩直線平行.
四. 如果兩條直線平行
※1. 兩條直線平行的性質公理: 兩直線平行,同位角相等;
※2. 兩條直線平行的性質定理: 兩直線平行,內錯角相等;
※3. 兩條直線平行的性質定理: 兩直線平行,同旁內角互補.
五. 三角形和定理的證明
※1. 三角形內角和定理: 三角形三個內角的和等於180°
¤2. 一個三角形中至多隻有一個直角
¤3. 一個三角形中至多隻有一個鈍角
¤4. 一個三角形中至少有兩個銳角
六. 關注三角形的外角
※1. 三角形內角和定理的兩個推論:
推論1: 三角形的一個外角等於和它不相鄰的兩個內角的和;
推論2: 三角形的一個外角大於任何一個和它不相鄰的內角.
(註:※表示重點部分;¤表示了解部分;◎表示僅供參閱部分;)
4. 八年級數學下冊知識點整理
學習知識要善於思考,思考,再思考。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
數學八年級知識點歸納下冊
公式與性質:
(1)三角形的內角和:三角形的內角和為180°
(2)三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
(3)多邊形內角和公式:邊形的內角和等於?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
位置與坐標
1、確定位置
在平面內,確定一個物體的位置一般需要兩個數據。
2、平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。
⑤在直角坐標系中,對於平面上任意一點,都有的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上的一點與它對應。
八年級數學知識點滬科版
分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
初二下冊數學知識點歸納北師大版
第一章一元一次不等式和一元一次不等式組
一、不等關系
1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式.
2、要區別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系.
3、准確"翻譯"不等式,正確理解"非負數"、"不小於"等數學術語.
非負數<===>大於等於0(≥0)<===>0和正數<===>不小於0
非正數<===>小於等於0(≤0)<===>0和負數<===>不大於0
二、不等式的基本性質
1、掌握不等式的基本性質,並會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c,a-c>b-c.
(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc,.
(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac
2、比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a
即:
a>b<===>a-b>0
a=b<===>a-b=0
aa-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
八年級數學下冊知識點整理相關 文章 :
★ 八年級下冊數學知識點整理
★ 初二數學下冊知識點歸納與數學學習方法
★ 八年級下冊數學知識點歸納
★ 八年級下冊數學知識點總結歸納
★ 八年級下冊數學知識點匯總
★ 八年級下冊數學知識點梳理
★ 八年級下冊數學知識點總復習
★ 人教版八年級下冊數學知識點總結
★ 八年級下冊數學知識點總結
★ 初二數學下冊重點知識總結
5. 八年級下學期數學知識點
八年級下學期數學知識點
在日常的學習中,很多人都經常追著老師們要知識點吧,知識點是指某個模塊知識的重點、核心內容、關鍵部分。還在為沒有系統的知識點而發愁嗎?下面是我為大家整理的八年級下學期數學知識點,希望能夠幫助到大家。
一元一次不等式和一元一次不等式組
一、一般地,用符號(或),(或)連接的式子叫做不等式。
能使不等式成立的未知數的值,叫做不等式的解。不等式的解不,把所有滿足不等式的解集合在一起,構成不等式的解集。求不等式解集的過程叫解不等式。
由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集:一元一次不等式組各個不等式的解集的公共部分。
等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式。
基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式。
二、不等式的基本性質
性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變。(註:移項要變號,但不等號不變。)
性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。
性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。
三、解不等式的步驟
1、去分母;
2、去括弧;
3、移項合並同類項;
4、系數化為1。
四、解不等式組的步驟
1、解出不等式的解集
2、在同一數軸表示不等式的解集。
五、列一元一次不等式組解實際問題的一般步驟:
(1)審題;
(2)設未知數,找(不等量)關系式;
(3)設元,(根據不等量)關系式列不等式(組)
(4)解不等式組;檢驗並作答。
六、常考題型:
1、求4x—6 7x—12的非負數解。
2、已知3(x—a)=x—a+1r的解適合2(x—5)8a,求a的范圍。
3、當m取何值時,3x+m—2(m+2)=3m+x的解在—5和5之間。
函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
數學的學習方法
1、養成良好的學習數學習慣。建立良好的學習數學習慣,會使自己學習感到有序而輕松。數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的.數學思想和方法,學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。
3、逐步形成「以我為主」的學習模式數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神。
4、記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
如何建立數學思維方式
到了初中,數學出現了很多新的知識點,也是重點考點和關鍵難點,比如系統性的開始學習幾何知識,首次引入函數的概念並求解一般的線性函數問題,這些對於初中生來說既是全新的,又是有一定難度的。這就需要學生創新數學思維方式,緊跟教材進度和課堂進度,訓練自己的數學思維尤其的幾何圖形的感覺,以及對函數的深刻理解。
;6. 初二數學下冊知識點
學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為主科之一,和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些初二數學下冊的知識點,希望對大家有所幫助。
初二下冊數學知識點歸納北師大版
第一章分式
1、分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2、分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3、整數指數冪的加減乘除法
4、分式方程及其解法
第二章反比例函數
1、反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2、反比例函數在實際問題中的應用
第三章勾股定理
1、勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方
2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。
初二下冊數學知識點
1、平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等於斜邊的一半。
(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章數據的分析
加權平均數、中位數、眾數、極差、方差
初二數學三角形知識點歸納
【直角三角形】
◆備考兵法
1.正確區分勾股定理與其逆定理,掌握常用的勾股數.
2.在解決直角三角形的有關問題時,應注意以勾股定理為橋梁建立方程(組)來解決問題,實現幾何問題代數化.
3.在解決直角三角形的相關問題時,要注意題中是否含有特殊角(30°,45°,60°).若有,則應運用一些相關的特殊性質解題.
4.在解決許多非直角三角形的計算與證明問題時,常常通過作高轉化為直角三角形來解決.
5.折疊問題是新中考 熱點 之一,在處理折疊問題時,動手操作,認真觀察,充分發揮空間 想像力 ,注意折疊過程中,線段,角發生的變化,尋找破題思路.
【三角形的重心】
已知:△ABC中,D為BC中點,E為AC中點,AD與BE交於O,CO延長線交AB於F。求證:F為AB中點。
證明:根據燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應用燕尾定理即得AF=BF,命題得證。
重心的幾條性質:
1.重心和三角形3個頂點組成的3個三角形面積相等。
2.重心到三角形3個頂點距離的平方和最小。
3.在平面直角坐標系中,重心的坐標是頂點坐標的算術平均,即其坐標為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標系——橫坐標:(X1+X2+X3)/3縱坐標:(Y1+Y2+Y3)/3豎坐標:(Z1+Z2+Z3)/3
4重心到頂點的距離與重心到對邊中點的距離之比為2:1。
5.重心是三角形內到三邊距離之積的點。
如果用塞瓦定理證,則極易證三條中線交於一點。
初二數學下冊知識點相關 文章 :
★ 初二數學下冊知識點歸納與數學學習方法
★ 八年級下冊數學知識點整理
★ 初二數學下冊知識點人教版
★ 初二數學下冊重點知識總結
★ 初二下冊數學重點知識點歸納
★ 八年級下冊數學知識點歸納
★ 八年級下冊數學知識點總結歸納
★ 初二下冊數學知識點
★ 初二下數學知識點
★ 八年級下冊的數學知識點
7. 華師大版八年級數學知識點歸納
天才就是勤奮曾經有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
八年級數學知識點 總結
函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的 方法 叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
初二下冊數學知識點總結
【解一元一次方程】
1.等式與等量:用"="號連接而成的式子叫等式.注意:"等量就能代入"!
2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.
3.方程:含未知數的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:"方程的解就能代入"!
5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.
6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.
7.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).
8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).
9.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解).
10.列一元一次方程解應用題:
(1)讀題分析法:…………多用於"和,差,倍,分問題"
仔細讀題,找出表示相等關系的關鍵字,例如:"大,小,多,少,是,共,合,為,完成,增加,減少,配套-----",利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法:…………多用於"行程問題"
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
初二數學 學習 經驗 心得
學好初中數學課前要預習
初中生想要學好數學,那麼就要利用課前的時間將課上老師要講的內容預習一下。初中數學課前的預習是要明白老師在課上大致所講的內容,這樣有利於和方便初中生整理知識結構。
初中生 課前預習 數學還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現溜號和走神的情況。同時課前預習還可以將知識點形成體系,可以幫助初中生建立完整的知識結構。
學習初中數學課上是關鍵
初中生想要學好學生,在課上就是一個字:跟。上初中數學課時跟住老師,老師講到哪裡一定要跟上,仔細看老師的板書,隨時知道老師講的是哪裡,涉及到的知識點是什麼。有的初中生喜歡記筆記,在這里提醒大家,初中數學課上的時候盡量不要記筆記。
你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課後完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。
課後可以適當做一些初中數學基礎題
在每學完一課後,初中生可以在課後做一些初中數學的基礎題型,在做這樣的題時,建議大家是,不要出現錯誤的情況,做完題後要學會思考和整理。當你的初中數學基礎題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據解析看題。
但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數學的學習有幫助的,但是如果將重點放在這上面,沒有什麼好處。同時要學會整理,將自己錯題歸納並總結,
數學是由簡單明了的事項一步一步地發展而來,所以,只要學習數學的人老老實實地、一步一步地去理解,並同時記住其要點,以備以後之需用,就一定能理解其全部內容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復地做同一件事,故不管誰都應該會做.
華師大版八年級數學知識點歸納相關 文章 :
★ 初二數學華師大版知識點
★ 華師大八年級下數學教學總結
★ 八年級上冊華師版數學思維導圖
★ 八年級數學學習方法指導
★ 八年級下冊數學教案華師大範文3篇
★ 八年級上冊數學教案華東師大版
★ 八年級華師大上冊第十一章數學教案(2)
★ 八年級學習方法指導
★ 八年級華師大上冊第十一章數學教案
★ 八年級數學期末考試質量分析
8. 華師大版 初二數學下冊知識點歸納 急 【不要題】
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.
2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
① 列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。
9. 北師大版初二數學下冊知識點歸納
學會整合知識點。把需要學習的信息、掌握的知識分類,做成 思維導圖 或知識點卡片,會讓你的大腦、思維條理清醒,方便記憶、溫習、掌握。這里給大家整理了一些有關北師大版初二數學下冊知識點歸納,希望對大家有所幫助.
北師大版初二數學下冊知識點歸納1
第一章分式
1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3整數指數冪的加減乘除法
4分式方程及其解法
第二章反比例函數
1反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2反比例函數在實際問題中的應用
第三章勾股定理
1勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方
2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。
第四章四邊形
1平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等於斜邊的一半。
(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
北師大版初二數學下冊知識點歸納2
第一章一元一次不等式和一元一次不等式組
一、一般地,用符號(或),(或)連接的式子叫做不等式.
能使不等式成立的未知數的值,叫做不等式的解.不等式的解不,把所有滿足不等式的解集合在一起,構成不等式的解集.求不等式解集的過程叫解不等式.
由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集:一元一次不等式組各個不等式的解集的公共部分.
等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式.基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式.
二、不等式的基本性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變.(註:移項要變號,但不等號不變.)性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變.不等式的基本性質1、若ab,則a+cb+c;2、若ab,c0則acbc若c0,則ac不等式的其他性質:反射性:若ab,則bb,且bc,則ac
三、解不等式的步驟:1、去分母;2、去括弧;3、移項合並同類項;4、系數化為1.四、解不等式組的步驟:1、解出不等式的解集2、在同一數軸表示不等式的解集.五、列一元一次不等式組解實際問題的一般步驟:(1)審題;(2)設未知數,找(不等量)關系式;(3)設元,(根據不等量)關系式列不等式(組)(4)解不等式組;檢驗並作答.
六、常考題型:1、求4x-67x-12的非負數解.2、已知3(x-a)=x-a+1r的解適合2(x-5)8a,求a的范圍.
3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間.
第二章分解因式
一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.1、把幾個整式的積化成一個多項式的形式,是乘法運算.2、把一個多項式化成幾個整式的積的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解與整式乘法是相反方向的變形.
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式.找公因式的一般步驟:(1)若各項系數是整系數,取系數的公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.
四、分解因式的一般步驟為:(1)若有-先提取-,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止.
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.分解因式的 方法 :1、提公因式法.2、運用公式法.
第三章分式
註:1對於任意一個分式,分母都不能為零.
2分式與整式不同的是:分式的分母中含有字母,整式的分母中不含字母.
3分式的值為零含兩層意思:分母不等於零;分子等於零.(中B0時,分式有意義;分式中,當B=0分式無意義;當A=0且B0時,分式的值為零.)
常考知識點:1、分式的意義,分式的化簡.2、分式的加減乘除運算.3、分式方程的解法及其利用分式方程解應用題.
第四章相似圖形
一、定義表示兩個比相等的式子叫比例.如果a與b的比值和c與d的比值相等,那麼或a∶b=c∶d,這時組成比例的四個數a,b,c,d叫做比例的項,兩端的兩項叫做外項,中間的兩項叫做內項.即a、d為外項,c、b為內項.如果選用同一個長度單位量得兩條線段AB、CD的長度分別是m、n,那麼就說這兩條線段的比(ratio)AB∶CD=m∶n,或寫成=,其中,線段AB、CD分別叫做這兩個線段比的前項和後項.如果把表示成比值k,則=k或AB=kCD.四條線段a,b,c,d中,如果a與b的比等於c與d的比,即,那麼這四條線段a,b,c,d叫做成比例線段,簡稱比例線段.黃金分割的定義:在線段AB上,點C把線段AB分成兩條線段AC和BC,如果,那麼稱線段AB被點C黃金分割(goldensection),點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.其中0.618.引理:平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例.相似多邊形:對應角相等,對應邊成比例的兩個多邊形叫做相似多邊形.相似多邊形:各角對應相等、各邊對應成比例的兩個多邊形叫做相似多邊形.相似比:相似多邊形對應邊的比叫做相似比.
二、比例的基本性質:1、若ad=bc(a,b,c,d都不等於0),那麼.如果(b,d都不為0),那麼ad=bc.2、合比性質:如果,那麼.3、等比性質:如果==(b+d++n0),那麼.4、更比性質:若那麼.5、反比性質:若那麼
三、求兩條線段的比時要注意的問題:(1)兩條線段的長度必須用同一長度單位表示,如果單位長度不同,應先化成同一單位,再求它們的比;(2)兩條線段的比,沒有長度單位,它與所採用的長度單位無關;(3)兩條線段的長度都是正數,所以兩條線段的比值總是正數.
四、相似三角形(多邊形)的性質:相似三角形對應角相等,對應邊成比例,相似三角形對應高的比、對應角平分線的比和對應中線的比都等於相似比.相似多邊形的周長比等於相似比,面積比等於相似比的平方.
五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL
六、相似三角形的判定方法,判斷方法有:1.三邊對應成比例的兩個三角形相似;2.兩角對應相等的兩個三角形相似;3.兩邊對應成比例且夾角相等;4.定義法:對應角相等,對應邊成比例的兩個三角形相似.5、定理:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似.在特殊的三角形中,有的相似,有的不相似.1、兩個全等三角形一定相似.2、兩個等腰直角三角形一定相似.3、兩個等邊三角形一定相似.4、兩個直角三角形和兩個等腰三角形不一定相似.
七、位似圖形上任意一對對應點到位似中心的距離之比等於位似比.如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一個點,那麼這樣的兩個圖形叫做位似圖形,這個點叫位似中心,這時的相似比又稱為位似比.
八、常考知識點:1、比例的基本性質,黃金分割比,位似圖形的性質.2、相似三角形的性質及判定.相似多邊形的性質.
第五章數據的收集與處理
(1)普查的定義:這種為了一定目的而對考察對象進行的全面調查,稱為普查.(2)總體:其中所要考察對象的全體稱為總體.(3)個體:組成總體的每個考察對象稱為個體(4)抽樣調查:(samplinginvestigation):從總體中抽取部分個體進行調查,這種調查稱為抽樣調查.(5)樣本(sample):其中從總體中抽取的一部分個體叫做總體的一個樣本.(6)當總體中的個體數目較多時,為了節省時間、人力、物力,可採用抽樣調查.為了獲得較為准確的調查結果,抽樣時要注意樣本的代表性和廣泛性.還要注意關注樣本的大小.(7)我們稱每個對象出現的次數為頻數.而每個對象出現的次數與總次數的比值為頻率.
數據波動的統計量:極差:指一組數據中數據與最小數據的差.方差:是各個數據與平均數之差的平方的平均數.標准差:方差的算術平方根.識記其計算公式.一組數據的極差,方差或標准差越小,這組數據就越穩定.還要知平均數,眾數,中位數的定義.
刻畫平均水平用:平均數,眾數,中位數.刻畫離散程度用:極差,方差,標准差.
常考知識點:1、作頻數分布表,作頻數分布直方圖.2、利用方差比較數據的穩定性.3、平均數,中位數,眾數,極差,方差,標准差的求法.3、頻率,樣本的定義
第六章證明
一、對事情作出判斷的 句子 ,就叫做命題.即:命題是判斷一件事情的句子.一般情況下:疑問句不是命題.圖形的作法不是命題.每個命題都有條件(condition)和結論(conclusion)兩部分組成.條件是已知的事項,結論是由已知事項推斷出的事項.一般地,命題都可以寫成如果,那麼的形式.其中如果引出的部分是條件,那麼引出的部分是結論.要說明一個命題是一個假命題,通常可以舉出一個例子,使它具備命題的條件,而不具有命題的結論.這種例子稱為反例.
二、三角形內角和定理:三角形三個內角的和等於180度.1、證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角.一般需要作輔助線.既可以作平行線,也可以作一個角等於三角形中的一個角.2、三角形的外角與它相鄰的內角是互為補角.
三、三角形的外角與它不相鄰的內角關系是:(1)三角形的一個外角等於和它不相鄰的兩個內角的和.(2)三角形的一個外角大於任何一個和它不相鄰的內角.
四、證明一個命題是真命題的基本步驟是:(1)根據題意,畫出圖形.(2)根據條件、結論,結合圖形,寫出已知、求證.(3)經過分析,找出由已知推出求證的途徑,寫出證明過程.在證明時需注意:(1)在一般情況下,分析的過程不要求寫出來.(2)證明中的每一步推理都要有根據.如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行.30.所對的直角邊是斜邊的一半.斜邊上的高是斜邊的一半.
常考知識點:1、三角形的內角和定理,及三角形外角定理.2兩直線平行的性質及判定.命題及其條件和結論,真假命題的定義.
北師大版初二數學下冊知識點歸納3
一次函數
一、正比例函數與一次函數的概念:
一般地,形如y=kx(k為常數,且k≠0)的函數叫做正比例函數.其中k叫做比例系數。
一般地,形如y=kx+b(k,b為常數,且k≠0)的函數叫做一次函數.
當b=0時,y=kx+b即為y=kx,所以正比例函數,是一次函數的特例.
二、正比例函數的圖象與性質:
(1)圖象:正比例函數y=kx(k是常數,k≠0))的圖象是經過原點的一條直線,我們稱它為直線y=kx。
(2)性質:當k>0時,直線y=kx經過第三,一象限,從左向右上升,即隨著x的增大y也增大;當k0,b>0圖像經過一、二、三象限;
(2)k>0,b<0圖像經過一、三、四象限;
(3)k>0,b=0圖像經過一、三象限;
(4)k<0,b>0圖像經過一、二、四象限;
(5)k<0,b<0圖像經過二、三、四象限;
(6)k<0,b=0圖像經過二、四象限。
一次函數表達式的確定
求一次函數y=kx+b(k、b是常數,k≠0)時,需要由兩個點來確定;求正比例函數y=kx(k≠0)時,只需一個點即可.
5.一次函數與二元一次方程組:
解方程組
從「數」的角度看,自變數(x)為何值時兩個函數的值相等.並
求出這個函數值
解方程組從「形」的角度看,確定兩直線交點的坐標.
數據的分析
數據的代表:平均數、眾數、中位數、極差、方差
北師大版初二數學下冊知識點歸納相關 文章 :
★ 數學八年級下北師大版復習題
★ 《生活中的數》知識點整合
★ 北師大版八年級下數學教學計劃
★ 北師大八年級數學下冊教學計劃
★ 北師大版八年級下數學教學計劃(2)
★ 北師大版七年級數學下冊目錄
★ 八年級數學北師大下教學工作計劃
★ 北師大版八年級數學教學計劃
★ 小學數學知識點歸納
★ 初二數學手抄報北師大
10. 八年級下冊數學知識點總結
八年級下冊數學知識點總結北師大版
數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果.就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果.下面是我整理的關於數學知識點總結北師大版,歡迎大家參考!
第一章 一元一次不等式和一元一次不等式組
一、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式。
能使不等式成立的未知數的值,叫做不等式的解. 不等式的解不唯一,把所有滿足不等式的解集合在一起,構成不等式的解集. 求不等式解集的過程叫解不等式.
由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集 :一元一次不等式組各個不等式的解集的公共部分。
等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式. 基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式.
二、不等式的基本性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變. (註:移項要變號,但不等號不變。)性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變.不等式的基本性質<1>、 若a>b, 則a+c>b+c;<2>、若a>b, c>0 則ac>bc若c<0, 則ac
不等式的其他性質:反射性:若a>b,則bb,且b>c,則a>c
三、解不等式的步驟:1、去分母; 2、去括弧; 3、移項合並同類項; 4、系數化為1。 四、解不等式組的步驟:1、解出不等式的解集2、在同一數軸表示不等式的解集。 五、列一元一次不等式組解實際問題的`一般步驟:(1) 審題;(2)設未知數,找(不等量)關系式;(3)設元,(根據不等量)關系式列不等式(組)(4)解不等式組;檢驗並作答。
六、常考題型:
1、 求4x-6 7x-12的非負數解.
2、已知3(x-a)=x-a+1r的解適合2(x-5) 8a,求a 的范圍.
3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間。
第二章 分解因式
一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2 二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。
1、把幾個整式的積化成一個多項式的形式,是乘法運算.
2、把一個多項式化成幾個整式的積的形式,是因式分解.
3、ma+mb+mc=m(a+b+c)
4、因式分解與整式乘法是相反方向的變形。
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.
提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式. 找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.
四、分解因式的一般步驟為:
(1)若有"-"先提取"-",若多項式各項有公因式,則再提取公因式.
(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.
(3)每一個多項式都要分解到不能再分解為止.
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式. 分解因式的方法:1、提公因式法。2、運用公式法。
;