當前位置:首頁 » 基礎知識 » 七年級上冊數學北師版知識點總結
擴展閱讀
四歲兒童沒有抗體怎麼辦 2024-11-05 18:26:55
如何讓遠程教育到實處 2024-11-05 18:18:48
0基礎考俄語b1要多久 2024-11-05 17:49:44

七年級上冊數學北師版知識點總結

發布時間: 2022-11-27 23:53:49

Ⅰ 北師大版初一數學知識點歸納

學習知識要善於思考,思考,再思考。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

初一下冊數學復習知識點

概念知識

1、單項式:數字與字母的積,叫做單項式。

2、多項式:幾個單項式的和,叫做多項式。

3、整式:單項式和多項式統稱整式。

4、單項式的次數:單項式中所有字母的指數的和叫單項式的次數。

5、多項式的次數:多項式中次數的項的次數,就是這個多項式的次數。

6、餘角:兩個角的和為90度,這兩個角叫做互為餘角。

7、補角:兩個角的和為180度,這兩個角叫做互為補角。

8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。

9、同位角:在「三線八角」中,位置相同的角,就是同位角。

10、內錯角:在「三線八角」中,夾在兩直線內,位置錯開的角,就是內錯角。

11、同旁內角:在「三線八角」中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。

12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。

13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。

14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。

17、三角形的高線:從一個三角形的一個頂點向它的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。

18、全等圖形:兩個能夠重合的圖形稱為全等圖形。

19、變數:變化的數量,就叫變數。

20、自變數:在變化的量中主動發生變化的,變叫自變數。

21、因變數:隨著自變數變化而被動發生變化的量,叫因變數。

22、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形

叫做軸對稱圖形。

23、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。

24、垂直平分線:線段是軸對稱圖形,它的一條對稱軸垂直於這條線段並且平分它,這樣的直線叫做這條線段的垂直平分線。(簡稱中垂線)

北師大版初一下冊數學知識點 總結

相交線

有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。

兩條直線相交,有2對對頂角。

對頂角相等。

兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的.垂線,它們的交點叫做垂足。

平行線及其判定

性質1:兩直線平行,同位角相等。

性質2:兩直線平行,內錯角相等。

性質3:兩直線平行,同旁內角互補。

平行線的性質

性質1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

性質2兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

性質3兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

平移

向左平移a個單位長度,可以得到對應點(x-a,y)

向上平移b個單位長度,可以得到對應點(x,y+b)

向下平移b個單位長度,可以得到對應點(x,y-b)

初一數學 復習方法

初一數學主要知識點:

代數初步知識

1. 代數式:用運算符號「+ - × ÷ …… 」連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式。

2. 幾個重要的代數式:(m、n表示整數)

(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;

(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;

(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;

(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .

有理數

凡能寫成q/p(p,q為整數且p≠0)形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0既不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數。

整式的加減

單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.

單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.

多項式:幾個單項式的和叫多項式.

多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.

整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.


北師大版初一數學知識點歸納相關 文章 :

★ 北師大版初一下冊數學知識點復習總結

★ 北師版初一數學期末知識點總結

★ 北師大版初一數學上冊知識點

★ 北師大版七年級數學上冊知識點

★ 一年級數學北師版知識點

★ 北師大版初中數學知識點提綱

★ 七年級數學上冊知識點北師大版

★ 北師大初中數學知識總結

★ 北師大初一數學知識點總結

★ 七年級數學上冊知識點總結北師大

Ⅱ 七年級數學單元知識點北師大版

數學是考試的重點考察科目,數學知識的積累和解題 方法 的掌握,需要科學有效的 復習方法 ,同時需要持之以恆的堅持。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

北師大版初一下冊數學知識點 總結

一、單項式

1、都是數字與字母的乘積的代數式叫做單項式。

2、單項式的數字因數叫做單項式的系數。

3、單項式中所有字母的指數和叫做單項式的次數。

4、單獨一個數或一個字母也是單項式。

5、只含有字母因式的單項式的系數是1或―1。

6、單獨的一個數字是單項式,它的系數是它本身。

7、單獨的一個非零常數的次數是0。

8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

9、單項式的系數包括它前面的符號。

10、單項式的系數是帶分數時,應化成假分數。

11、單項式的系數是1或―1時,通常省略數字「1」。

12、單項式的次數僅與字母有關,與單項式的系數無關。

二、多項式

1、幾個單項式的和叫做多項式。

2、多項式中的每一個單項式叫做多項式的項。

3、多項式中不含字母的項叫做常數項。

4、一個多項式有幾項,就叫做幾項式。

5、多項式的每一項都包括項前面的符號。

6、多項式沒有系數的概念,但有次數的概念。

7、多項式中次數的項的次數,叫做這個多項式的次數。

七年級數學知識點

一、知識網路結構

二、知識要點

1、在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。

2、在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。

3、兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是

鄰補角。鄰補角的性質:鄰補角互補。如圖1所示,與互為鄰補角,

與互為鄰補角。+=180°;+=180°;+=180°;

+=180°。

4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。如圖1所示,與互為對頂角。=;=。

5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,

其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。

垂線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

性質3:如圖2所示,當a⊥b時,====90°。

點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

6、同位角、內錯角、同旁內角基本特徵:

①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣

的兩個角叫同位角。圖3中,共有對同位角:與是同位角;

與是同位角;與是同位角;與是同位角。

②在兩條直線(被截線)之間,並且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。

③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。

七年級下冊數學期末復習計劃

復習目標(包括重點難點)

針對全班的學習程度,初步把復習目標定為盡力提高全班學生學習成績,提高優良率和平均分,提高學生運用基礎知識解決實際問題的能力。

復習重點難點:

第五章重點:復習.平面內兩條直線的相交和平行的位置關系,以及相交平行的綜合應用。難點:垂直、平行的性質和判定的綜合應用。第六章重點:在平面直角坐標糸中,由已知點的坐標確定這一點的位置,由已知點的位置確定這一點的坐標和平面直角坐標系的應用。難點:建立坐標平面內點與有序實數對之間的一一對應關系和由坐標變化探求圖形之間的變化。

第七章重點:平面直角坐標系,重點是理解平面直角坐標系的有關概念,會畫平面直角坐標系,能在平面直角坐標系中根據坐標找出點,由點找出坐標;加深對數形結合思想的體會。難點是平面直角坐標系的實際應用。

第八章重點:二元一次方程組及相關概念,消元思想和代入法、加減法解二元一次方程組,利用二元一次方程組解決實際問題。難點:以方程組為工具分析問題、解決含有多個未知數的問題。

第九章重點:一元一次不等式(組)的解法及應用。難點:一元一次不等式(組)的解集和應用一元一次不等式(組)解決實際問題。

第十章重點:收集、整理和描述數據。

難點:樣本的抽取,頻數分布直方圖的畫法。

復習策略( 措施 )

預設1.「先分後總」的復習策略,先按章復習,後匯總復習;

2.「邊學邊練」的策略,在復習知識的同時,緊緊抓住練這個環節;

3.「環節檢測」的策略,每復習一個環節,就檢測一次,發現問題及時解決;

3.「模擬模擬」的復習策略,在總復習中,進行幾次模擬測試,來發現問題,並及時解決問題,促進學生學習質量的提高。

4.及時「總結歸納」的策略,對於一個知識環節或相聯系的知識點,要及時進行歸納與總結,讓學生系統掌握知識,提高能力。


七年級數學單元知識點北師大版相關 文章 :

★ 七年級數學上冊知識點北師大版

★ 北師大版七年級數學上冊知識點

★ 七年級數學上冊知識點總結北師大

★ 北師版初一數學上冊知識點

★ 北師大版七年級下數學提綱

★ 北師大版七年級數學單元測試

★ 七年級學習方法指導

★ 七年級數學下北師大版知識點

★ 北師大版初一下冊數學知識點復習總結

★ 北師大初一數學知識點總結

Ⅲ 7年級上冊數學所有概念做總結

北師大版《數學》(七年級上冊)知識點總結
第一章 豐富的圖形世界
1、幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形.
立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形.
平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形.
2、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形.
線:面和面相交的地方是線,分為直線和曲線.
面:包圍著體的是面,分為平面和曲面.
體:幾何體也簡稱體.
(2)點動成線,線動成面,面動成體.
3、生活中的立體圖形
圓柱

生活中的立體圖形 球 稜柱:三稜柱、四稜柱(長方體、正方體)、五稜柱、……
(按名稱分) 錐 圓錐
棱錐
4、稜柱及其有關概念:
棱:在稜柱中,任何相鄰兩個面的交線,都叫做棱.
側棱:相鄰兩個側面的交線叫做側棱.
n稜柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點.
5、正方體的平面展開圖:11種

6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形.
7、三視圖
物體的三視圖指主視圖、俯視圖、左視圖.
主視圖:從正面看到的圖,叫做主視圖.
左視圖:從左面看到的圖,叫做左視圖.
俯視圖:從上面看到的圖,叫做俯視圖.
8、多邊形:由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形.
從一個n邊形的同一個頂點出發,分別連接這個頂點與其餘各頂點,可以把這個n邊形分割成(n-2)個三角形.
弧:圓上A、B兩點之間的部分叫做弧.
扇形:由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形.
第二章 有理數及其運算
1、有理數的分類
正有理數
有理數 零 有限小數和無限循環小數
負有理數
或 整數
有理數
分數
2、相反數:只有符號不同的兩個數叫做互為相反數,零的相反數是零
3、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可).任何一個有理數都可以用數軸上的一個點來表示.解題時要真正掌握數形結合的思想,並能靈活運用.
4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立.倒數等於本身的數是1和-1.零沒有倒數.
5、絕對值:在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值.(|a|≥0).零的絕對值時它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0.
6、有理數比較大小:正數大於零,負數小於零,正數大於一切負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小.
7、有理數的運算 :
(1)五種運算:加、減、乘、除、乘方
(2)有理數的運算順序
先算乘方,再算乘除,最後算加減,如果有括弧,就先算括弧裡面的.
(3)運算律
加法交換律
加法結合律
乘法交換律
乘法結合律
乘法對加法的分配律
第三章 字母表示數
1、代數式
用運算符號把數或表示數的字母連接而成的式子叫做代數式.單獨的一個數或一個字母也是代數式.
2、同類項
所有字母相同,並且相同字母的指數也分別相同的項叫做同類項.幾個常數項也是同類項.
3、合並同類項法則:把同類項的系數相加,字母和字母的指數不變.
4、去括弧法則
(1)括弧前是「+」,把括弧和它前面的「+」號去掉後,原括弧里各項的符號都不改變.
(2)括弧前是「-」,把括弧和它前面的「-」號去掉後,原括弧里各項的符號都要改變.
5、整式的運算:
整式的加減法:(1)去括弧;(2)合並同類項.
第四章 平面圖形及其位置關系
1、線段:綳緊的琴弦,人行橫道線都可以近似的看做線段.線段有兩個端點.
2、射線:將線段向一個方向無限延長就形成了射線.射線有一個端點.
3、直線:將線段向兩個方向無限延長就形成了直線.直線沒有端點.
4、點、直線、射線和線段的表示
在幾何里,我們常用字母表示圖形.
一個點可以用一個大寫字母表示.
一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示.
一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面).
一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示.
5、點和直線的位置關系有兩種:
①點在直線上,或者說直線經過這個點.
②點在直線外,或者說直線不經過這個點.
6、直線的性質
(1)直線公理:經過兩個點有且只有一條直線.
(2)過一點的直線有無數條.
(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小.
(4)直線上有無窮多個點.
(5)兩條不同的直線至多有一個公共點.
7、線段的性質
(1)線段公理:兩點之間的所有連線中,線段最短.
(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離.
(3)線段的中點到兩端點的距離相等.
(4)線段的大小關系和它們的長度的大小關系是一致的.
8、線段的中點:
點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點.
9、角:
有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊.
或:角也可以看成是一條射線繞著它的端點旋轉而成的.
10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角.終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角.
11、角的表示
角的表示方法有以下四種:
①用數字表示單獨的角,如∠1,∠2,∠3等.
②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等.
③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等.
④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等.
注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側.
12、角的度量
角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用「°」表示,1度記作「1°」,n度記作「n°」.
把1°的角60等分,每一份叫做1分的角,1分記作「1』」.
把1』 的角60等分,每一份叫做1秒的角,1秒記作「1」」.
1°=60』,1』=60」
13、角的性質
(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關.
(2)角的大小可以度量,可以比較
(3)角可以參與運算.
14、角的平分線
從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線.
15、平行線:
在同一個平面內,不相交的兩條直線叫做平行線.平行用符號「‖」表示,如「AB‖CD」,讀作「AB平行於CD」.
注意:
(1)平行線是無限延伸的,無論怎樣延伸也不相交.
(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行.
16、平行線公理及其推論
平行公理:經過直線外一點,有且只有一條直線與這條直線平行.
推論:如果兩條直線都和第三條直線平行,那麼這兩條直線也互相平行.
補充平行線的判定方法:
(1)平行於同一條直線的兩直線平行.
(2)在同一平面內,垂直於同一條直線的兩直線平行.
(3)平行線的定義.
17、垂直:
兩條直線相交成直角,就說這兩條直線互相垂直.其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足.
直線AB,CD互相垂直,記作「AB⊥CD」(或「CD⊥AB」),讀作「AB垂直於CD」(或「CD垂直於AB」).
18、垂線的性質:
性質1:平面內,過一點有且只有一條直線與已知直線垂直.
性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短.簡稱:垂線段最短.
19、點到直線的距離:過A點作l的垂線,垂足為B點,線段AB的長度叫做點A到直線l的距離.
20、同一平面內,兩條直線的位置關系:相交或平行.
第五章 一元一次方程
1、方程
含有未知數的等式叫做方程.
2、方程的解
能使方程左右兩邊相等的未知數的值叫做方程的解.
3、等式的性質
(1)等式的兩邊同時加上(或減去)同一個代數式,所得結果仍是等式.
(2)等式的兩邊同時乘以同一個數((或除以同一個不為0的數),所得結果仍是等式.
4、一元一次方程
只含有一個未知數,並且未知數的最高次數是1的整式方程叫做一元一次方程.
5、解一元一次方程的一般步驟:
(1)去分母(2)去括弧(3)移項(把方程中的某一項改變符號後,從方程的一邊移到另一邊,這種變形叫移項.)(4)合並同類項(5)將未知數的系數化為1
第六章 生活中的數據
1、科學記數法
一般地,一個大於10的數可以表示成 的形式,其中 ,n是正整數,這種記數方法叫做科學記數法.
2、扇形統計圖及其畫法:
扇形統計圖:利用圓與扇形來表示總體與部分的關系,即圓代表總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分佔總體的百分比的大小,這樣的統計圖叫做扇形統計圖.
畫法:
(1)計算不同部分佔總體的百分比(在扇形中,每部分佔總體的百分比等於該部分所對應的扇形圓心角的度數與360的比).
(2)計算各個扇形的圓心角(頂點在圓心的角叫做圓心角)的度數.
(3)在圓中畫出各個扇形,並標上百分比.
3、各種統計圖的優缺點
條形統計圖:能清楚地表示出每個項目的具體數目.
折線統計圖:能清楚地反映事物的變化情況.
扇形統計圖:能清楚地表示出各部分在總體中所佔的百分比.
第七章 可能性
1、確定事件和不確定事件
(1 )、確定事件
必然事件:生活中,有些事情我們事先能肯定它一定會發生,這些事情稱為必然事件.
不可能事件:有些事情我們事先能肯定它一定不會發生,這些事情稱為不可能事件.
(2)、不確定事件:
有些事情我們事先無法肯定它會不會發生,這些事情稱為不確定事件
(3)、
必然事件
確定事件
事件 不可能事件
不確定事件
2、不確定事件發生的可能性
一般地,不確定事件發生的可能性是有大小的.
必然事件發生的可能性是1
不可能事件發生的可能性是0
-

Ⅳ 北師大版七年級數學上冊知識點

北師大版初一數學定理知識點匯總[七年級上冊]
第一章 豐富的圖形世界

¤1.

¤2.

¤3. 球體:由球面圍成的(球面是曲面)
¤4. 幾何圖形是由點、線、面構成的。
①幾何體與外界的接觸面或我們能看到的外表就是幾何體的表面。幾何的表面有平面和曲面;
②面與面相交得到線;
③線與線相交得到點。
※5. 棱:在稜柱中,任何相鄰兩個面的交線都叫做棱。
※6. 側棱:相鄰兩個側面的交線叫做側棱,所有側棱長都相等。
¤7. 稜柱的上、下底面的形狀相同,側面的形狀都是長方形。
¤8. 根據底面圖形的邊數,人們將稜柱分為三稜柱、四稜柱、五稜柱、六稜柱……它們底面圖形的形狀分別為三邊形、四邊形、五邊形、六邊形……
¤9. 長方體和正方體都是四稜柱。
¤10. 圓柱的表面展開圖是由兩個相同的圓形和一個長方形連成。
¤11. 圓錐的表面展開圖是由一個圓形和一個扇形連成。
※12. 設一個多邊形的邊數為n(n≥3,且n為整數),從一個頂點出發的對角線有(n-3)條;可以把n邊形成(n-2)個三角形;這個n邊形共有 條對角線。
◎13. 圓上兩點之間的部分叫做弧,弧是一條曲線。
◎14. 扇形,由一條弧和經過這條弧的端點的兩條半徑所組成的圖形。
¤15. 凸多邊形和凹多邊形都屬於多邊形。有弧或不封閉圖形都不是多邊形。

第二章 有理數及其運算



※數軸的三要素:原點、正方向、單位長度(三者缺一不可)。
※任何一個有理數,都可以用數軸上的一個點來表示。(反過來,不能說數軸上所有的點都表示有理數)
※如果兩個數只有符號不同,那麼我們稱其中一個數為另一個數的相反數,也稱這兩個數互為相反數。(0的相反數是0)
※在數軸上,表示互為相反數的兩個點,位於原點的側,且到原點的距離相等。
¤數軸上兩點表示的數,右邊的總比左邊的大。正數在原點的右邊,負數在原點的左邊。
※絕對值的定義:一個數a的絕對值就是數軸上表示數a的點與原點的距離。數a的絕對值記作|a|。
※正數的絕對值是它本身;負數的絕對值是它的數;0的絕對值是0。
0
-1
-2
-3
1
2
3
越來越大

※絕對值的性質:除0外,絕對值為一正數的數有兩個,它們互為相反數;
互為相反數的兩數(除0外)的絕對值相等;
任何數的絕對值總是非負數,即|a|≥0
※比較兩個負數的大小,絕對值大的反而小。比較兩個負數的大小的步驟如下:
①先求出兩個數負數的絕對值;
②比較兩個絕對值的大小;
③根據「兩個負數,絕對值大的反而小」做出正確的判斷。
※絕對值的性質:
①對任何有理數a,都有|a|≥0
②若|a|=0,則|a|=0,反之亦然
③若|a|=b,則a=±b
④對任何有理數a,都有|a|=|-a|
※有理數加法法則: ①同號兩數相加,取相同符號,並把絕對值相加。
②異號兩數相加,絕對值相等時和為0;絕對值不等時取絕對值較大的數的符號,並用較大數的絕對值減去較小數的絕對值。
③一個數同0相加,仍得這個數。
※加法的交換律、結合律在有理數運算中同樣適用。
¤靈活運用運算律,使用運算簡化,通常有下列規律:①互為相反的兩個數,可以先相加;
②符號相同的數,可以先相加;
③分母相同的數,可以先相加;
④幾個數相加能得到整數,可以先相加。
※有理數減法法則: 減去一個數,等於加上這個數的相反數。
¤有理數減法運算時注意兩「變」:①改變運算符號;
②改變減數的性質符號(變為相反數)
有理數減法運算時注意一個「不變」:被減數與減數的位置不能變換,也就是說,減法沒有交換律。
¤有理數的加減法混合運算的步驟:
①寫成省略加號的代數和。在一個算式中,若有減法,應由有理數的減法法則轉化為加法,然後再省略加號和括弧;
②利用加法則,加法交換律、結合律簡化計算。
(注意:減去一個數等於加上這個數的相反數,當有減法統一成加法時,減數應變成它本身的相反數。)
※有理數乘法法則: ①兩數相乘,同號得正,異號得負,絕對值相乘。
②任何數與0相乘,積仍為0。
※如果兩個數互為倒數,則它們的乘積為1。(如:-2與 、 …等)
※乘法的交換律、結合律、分配律在有理數運算中同樣適用。
¤有理數乘法運算步驟:①先確定積的符號;
②求出各因數的絕對值的積。
¤乘積為1的兩個有理數互為倒數。注意:
①零沒有倒數
②求分數的倒數,就是把分數的分子分母顛倒位置。一個帶分數要先化成假分數。
③正數的倒數是正數,負數的倒數是負數。
※有理數除法法則: ①兩個有理數相除,同號得正,異號得負,並把絕對值相除。
②0除以任何非0的數都得0。0不可作為除數,否則無意義。
指數
底數

※有理數的乘方

※注意:①一個數可以看作是本身的一次方,如5=51;
②當底數是負數或分數時,要先用括弧將底數括上,再在右上角寫指數。
※乘方的運算性質:
①正數的任何次冪都是正數;
②負數的奇次冪是負數,負數的偶次冪是正數;
③任何數的偶數次冪都是非負數;
④1的任何次冪都得1,0的任何次冪都得0;
⑤-1的偶次冪得1;-1的奇次冪得-1;
⑥在運算過程中,首先要確定冪的符號,然後再計算冪的絕對值。
※有理數混合運演算法則:①先算乘方,再算乘除,最後算加減。
②如果有括弧,先算括弧裡面的。

第三章 字母表示數
※代數式的概念:
用運算符號(加、減、乘除、乘方、開方等)把數與表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。
注意:①代數式中除了含有數、字母和運算符號外,還可以有括弧;
②代數式中不含有「=、>、<、≠」等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;
③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。
※代數式的書寫格式:
①代數式中出現乘號,通常省略不寫,如vt;
②數字與字母相乘時,數字應寫在字母前面,如4a;
③帶分數與字母相乘時,應先把帶分數化成假分數後與字母相乘,如 應寫作 ;
④數字與數字相乘,一般仍用「×」號,即「×」號不省略;
⑤在代數式中出現除法運算時,一般按照分數的寫法來寫,如4÷(a-4)應寫作 ;注意:分數線具有「÷」號和括弧的雙重作用。
⑥在表示和(或)差的代差的代數式後有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的後面,如 平方米
※代數式的系數:
代數式中的數字中的數字因數叫做代數式的系數。如3x,4y的系數分別為3,4。
注意:①單個字母的系數是1,如a的系數是1;
②只含字母因數的代數式的系數是1或-1,如-ab的系數是-1。a3b的系數是1
※代數式的項:
代數式 表示6x2、-2x、-7的和,6x2、-2x、-7是它的項,其中把不含字母的項叫做常數項
注意:在交待某一項時,應與前面的符號一起交待。
※同類項:
所含字母相同,並且相同字母的指數也相同的項叫做同類項。
注意:①判斷幾個代數式是否是同類項有兩個條件:a.所含字母相同;b.相同字母的指數也相同。這兩個條件缺一不可;
②同類項與系數無關,與字母的排列順序無關;
③幾個常數項也是同類項。
※合差同類項:
把代數式中的同類項合並成一項,叫做合並同類項。
①合並同類項的理論根據是逆用乘法分配律;
②合並同類項的法則是把同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
注意:
①如果兩個同類項的系數互為相反數,合並同類項後結果為0;
②不是同類項的不能合並,不能合並的項,在每步運算中都要寫上;
③只要不再有同類項,就是最後結果,結果還是代數式。
※根據去括弧法則去括弧:
括弧前面是「+」號,把括弧和它前面的「+」號去掉,括弧里各項都不改變符號;括弧前面是「-」號去掉,括弧里各項都改變符號。
※根據分配律去括弧:
括弧前面是「+」號看成+1,括弧前面是「-」號看成-1,根據乘法的分配律用+1或-1去乘括弧里的每一項以達到去括弧的目的。
※注意:
①去括弧時,要連同括弧前面的符號一起去掉;
②去括弧時,首先要弄清楚括弧前是「+」號還是「-」號;
③改變符號時,各項都變號;不改變符號時,各項都不變號。
第四章 平面圖形及位置關系
一. 線段、射線、直線
※1. 正確理解直線、射線、線段的概念以及它們的區別:
名稱
圖形
表示方法
端點
長度
直線

直線AB(或BA)
直線l
無端點
無法度量
射線

射線OM
1個
無法度量
線段

線段AB(或BA)
線段l
2個
可度量長度
※2. 直線公理:經過兩點有且只有一條直線.
b
鵬翔教圖2
A
O
B
鵬翔教圖1
二.比較線段的長短
※1. 線段公理:兩點間線段最短;兩之間線段的長度叫做這兩點之間的距離.
※2. 比較線段長短的兩種方法:
①圓規截取比較法;
②刻度尺度量比較法.
β
鵬翔教圖4
※3. 用刻度尺可以畫出線段的中點,線段的和、差、倍、分;
1
鵬翔教圖3
用圓規可以畫出線段的和、差、倍.
三.角的度量與表示
※1. 角:有公共端點的兩條射線組成的圖形叫做角;
這個公共端點叫做角的頂點;
平角
鵬翔教圖6
終邊
始邊
鵬翔教圖5
這兩條射線叫做角的邊.
※2. 角的表示法:角的符號為「∠」
①用三個字母表示,如圖1所示∠AOB
②用一個字母表示,如圖2所示∠b
③用一個數字表示,如圖3所示∠1
鵬翔教圖8
C
A
B
O
④用希臘字母表示,如圖4所示∠β

周角
鵬翔教圖7

※經過兩點有且只有一條直線。
※兩點之間的所有連線中,線段最短。
※兩點之間線段的長度,叫做這兩點之間的距離。
1º=60』 1』=60」
※角也可以看成是由一條射線繞著它的端點旋轉而成的。如圖5所示:
※一條射線繞它的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。如圖6所示:
※終邊繼續旋轉,當它又和始邊重合時,所成的角叫做周角。如圖7所示:
※從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
※經過直線外一點,有且只有一條直線與這條直線平行。
※如果兩條直線都與第三條直線平行,那麼這兩條直線互相平行。
※互相垂直的兩條直線的交點叫做垂足。
※平面內,過一點有且只有一條直線與已知直線垂直。
※如圖8所示,過點C作直線AB的垂線,垂足為O點,線段CO的長度叫做點C到直線AB的距離。
第五章 一元一次方程
※在一個方程中,只含有一個未知數x(元),並且未知數的指數是1(次),這樣的方程叫做一元一次方程。
※等式兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。
※等式兩邊同時乘同一個數(或除以同一個不為0的數),所得結果仍是等式。
※解方程的步驟:解一元一次方程,一般要通過去分母、去括弧、移項、合並同類項、未知數的系數化為1等幾個步驟,把一個一元一次方程「轉化」成x=m的形式。
第六章 生活中的數據
※科學記數法:一般地,一個大於10的數可以表示成a×10n的形式,其中1≤a<10,n是正整數,這種記數方法叫做科學記數法。
※統計圖的特點:
折線統計圖:能夠清晰地反映同一事物在不同時期的變化情況。
條形統計圖:能夠清晰地反映每個項目的具體數目及之間的大小關系。
扇形統計圖:能夠清晰地表示各部分在總體中所佔的百分比及各部分之間的大小關系
統計圖對統計的作用:
(1)可以清晰有效地表達數據。
(2)可以對數據進行分析。
(3)可以獲得許多的信息。
(4)可以幫助人們作出合理的決策。
北師大版初一數學定理知識點匯總[七年級下冊]
第一章 整式的運算
一. 整式
※1. 單項式
①由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。
②單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,並非沒有系數.
③一個單項式中,所有字母的指數和叫做這個單項式的次數.
※2.多項式
①幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.其中,不含字母的項叫做常數項.一個多項式中,次數最高項的次數,叫做這個多項式的次數.
②單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數.多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數.多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數.
※3.整式單項式和多項式統稱為整式.

二. 整式的加減
¤1. 整式的加減實質上就是去括弧後,合並同類項,運算結果是一個多項式或是單項式.
¤2. 括弧前面是「-」號,去括弧時,括弧內各項要變號,一個數與多項式相乘時,這個數與括弧內各項都要相乘.
三. 同底數冪的乘法
※同底數冪的乘法法則: (m,n都是正數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
②指數是1時,不要誤以為沒有指數;
③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
④當三個或三個以上同底數冪相乘時,法則可推廣為 (其中m、n、p均為正數);
⑤公式還可以逆用: (m、n均為正整數)
四.冪的乘方與積的乘方
※1. 冪的乘方法則: (m,n都是正數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆.
※2. .
※3. 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3

※4.底數有時形式不同,但可以化成相同。
※5.要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數)。
※7.冪的乘方與積乘方法則均可逆向運用。
五. 同底數冪的除法
※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
※2. 在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,
④運算要注意運算順序.
六. 整式的乘法
※1. 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;
②相同字母相乘,運用同底數的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;
④單項式乘法法則對於三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式,結果仍是一個單項式。
※2.單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
②運算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※3.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;
②多項式相乘的結果應注意合並同類項;
③對含有同一個字母的一次項系數是1的兩個一次二項式相乘 ,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,
※即 。
¤其結構特徵是:
①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
八.完全平方公式
¤1. 完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,
¤即 ;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結構特徵:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。
九.整式的除法
¤1.單項式除法單項式
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。

第二章 平行線與相交線
一.檯球桌面上的角
※1.互為餘角和互為補角的有關概念與性質
如果兩個角的和為90°(或直角),那麼這兩個角互為餘角;
如果兩個角的和為180°(或平角),那麼這兩個角互為補角;
注意:這兩個概念都是對於兩個角而言的,而且兩個概念強調的是兩個角的數量關系,與兩個角的相互位置沒有關系。
它們的主要性質:同角或等角的餘角相等;
同角或等角的補角相等。
二.探索直線平行的條件
※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:
①同位角相等,兩直線平行;
②內錯角相等,兩直線平行;
③同旁內角互補,兩直線平行。
三.平行線的特徵
※平行線的特徵即平行線的性質定理,共有三條:
①兩直線平行,同位角相等;
②兩直線平行,內錯角相等;
③兩直線平行,同旁內角互補。
四.用尺規作線段和角
※1.關於尺規作圖
尺規作圖是指只用圓規和沒有刻度的直尺來作圖。
※2.關於尺規的功能
直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。
圓規的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。
第三章生活中的數據
※1.科學記數法:對任意一個正數可能寫成a×10n的形式,其中1≤a<10,n是整數,這種記數的方法稱為科學記數法。
¤2.利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位;對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。
¤3.統計工作包括:
①設定目標;②收集數據;③整理數據;④表達與描述數據;⑤分析結果。

第四章 概率
¤1.隨機事件發生與不發生的可能性不總是各佔一半,都為50%。
※2.現實生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學科。
※3.了解必然事件和不可能事件發生的概率。
必然事件發生的概率為1,即P(必然事件)=1;不可能事件發生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那麼0<P(A)<1

※4.了解幾何概率這類問題的計算方法
事件發生概率=
第五章 三角形
一.認識三角形
1.關於三角形的概念及其按角的分類
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
這里要注意兩點:
①組成三角形的三條線段要「不在同一直線上」;如果在同一直線上,三角形就不存在;
②三條線段「首尾是順次相接」,是指三條線段兩兩之間有一個公共端點,這個公共端點就是三角形的頂點。
三角形按內角的大小可以分為三類:銳角三角形、直角三角形、鈍角三角形。
2.關於三角形三條邊的關系
根據公理「連結兩點的線中,線段最短」可得三角形三邊關系的一個性質定理,即三角形任意兩邊之和大於第三邊。
三角形三邊關系的另一個性質:三角形任意兩邊之差小於第三邊。
對於這兩個性質,要全面理解,掌握其實質,應用時才不會出錯。
設三角形三邊的長分別為a、b、c則:
①一般地,對於三角形的某一條邊a來說,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三條線段才能構成三角形;
②特殊地,如果已知線段a最大,只要滿足b+c>a,那麼a、b、c三條線段就能構成三角形;如果已知線段a最小,只要滿足|b-c|<a,那麼這三條線段就能構成三角形。
3.關於三角形的內角和
三角形三個內角的和為180°
①直角三角形的兩個銳角互余;
②一個三角形中至多有一個直角或一個鈍角;
③一個三角中至少有兩個內角是銳角。
4.關於三角形的中線、高和中線
①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;
②任意一個三角形都有三條角平分線,三條中線和三條高;
③任意一個三角形的三條角平分線、三條中線都在三角形的內部。但三角形的高卻有不同的位置:銳角三角形的三條高都在三角形的內部,如圖1;直角三角形有一條高在三角形的內部,另兩條高恰好是它兩條邊,如圖2;鈍角三角形一條高在三角形的內部,另兩條高在三角形的外部,如圖3。
④一個三角形中,三條中線交於一點,三條角平分線交於一點,三條高所在的直線交於一點。
二.圖形的全等
¤能夠完全重合的圖形稱為全等形。全等圖形的形狀和大小都相同。只是形狀相同而大小不同,或者說只是滿足面積相同但形狀不同的兩個圖形都不是全等的圖形。
四.全等三角形
¤1.關於全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。互相重合的頂點叫做對應點,互相重合的邊叫做對應邊,互相重合的角叫做對應角
所謂「完全重合」,就是各條邊對應相等,各個角也對應相等。因此也可以這樣說,各條邊對應相等,各個角也對應相等的兩個三角形叫做全等三角形。
※2.全等三角形的對應邊相等,對應角相等。
¤3.全等三角形的性質經常用來證明兩條線段相等和兩個角相等。
五.探三角形全等的條件
※1.三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」
※2.有兩邊和它們的夾角對應相等的兩個三角形全等,簡寫成「邊角邊」或「SAS」
※3.兩角和它們的夾邊對應相等的兩個三角形全等,簡寫成「角邊角」或「ASA」
※4.兩角和其中一個角的對邊對應相等的兩個三角形全等,簡寫成「角角邊」或「AAS」
六.作三角形
1.已知兩個角及其夾邊,求作三角形,是利用三角形全等條件「角邊角」即(「ASA」)來作圖的。
2.已知兩條邊及其夾角,求作三角形,是利用三角形全等條件「邊角邊」即(「SAS」)來作圖的。
3.已知三條邊,求作三角形,是利用三角形全等條件「邊邊邊」即(「SSS」)來作圖的。
八.探索直三角形全等的條件
※1.斜邊和一條直角邊對應相等的兩個直角三角形全等。簡稱為「斜邊、直角邊」或「HL」。這只對直角三角形成立。
※2.直角三角形是三角形中的一類,它具有一般三角形的性質,因而也可用「SAS」、「ASA」、「AAS」、「SSS」來判定。
直角三角形的其他判定方法可以歸納如下:
①兩條直角邊對應相等的兩個直角三角形全等;
②有一個銳角和一條邊對應相等的兩個直角三角形全等。
③三條邊對應相等的兩個直角三角形全等。

第七章 生活中的軸對稱
※1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
※2.角平分線上的點到角兩邊距離相等。
※3.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
※4.角、線段和等腰三角形是軸對稱圖形。
※5.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
※6.軸對稱圖形上對應點所連的線段被對稱軸垂直平分。
※7.軸對稱圖形上對應線段相等、對應角相等。

(註:※表示重點部分;¤表示了解部分;◎表示僅供參閱部分;)

Ⅳ 北師大版初一數學上冊知識點

學習數學只依靠一些 學習 方法 還是難以說很完善的,如果對它沒有興趣不了解學習的意義還是很難靜下心來在這上面下功夫的。這次我給大家整理了北師大版初一數學上冊知識點,供大家閱讀參考。

目錄

北師大版初一數學上冊知識點

七年級數學上冊學習方法

初一上冊數學知識點總結

北師大版初一數學上冊知識點

一、:代數初步知識。

1.代數式:用運算符號「+-×÷……」連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)

2.列代數式的幾個注意事項:

(1)數與字母相乘,或字母與字母相乘通常使用「?」乘,或省略不寫;

(2)數與數相乘,仍應使用「×」乘,不用「?」乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;

(5)在代數式中出現除法運算時,一般用 分數線 將被除式和除式聯系,如3÷a寫成的形式;

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a.

二、:幾個重要的代數式(m、n表示整數)。

(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;

(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;

(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續整數是:n-1、n、n+1;

(4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是:a2,非正數是:-a2.

三、:有理數。

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)有理數的分類:①②

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:初一上冊知識點絕對值的問題經常分類討論;

(3) |a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

四、:有理數法則及運算規律。

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

2.有理數加法的運算律:

(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).

3.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

4.有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

5.有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.

6.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.

7.有理數乘方的法則:

(1)正數的任何次冪都是正數;

五、:乘方的定義。

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

(3) 據規律底數的小數點移動一位,平方數的小數點移動二位.

六、:整式的加減。

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。 或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.

2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)是常見的兩個二次三項式.

5.整式:單項式和多項式統稱為整式.

七、:整式分類為。

1.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項.

2.合並同類項法則:系數相加,字母與字母的指數不變.

3.去(添)括弧法則:去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號.

4.整式的加減:整式的加減,實際上是在去括弧的基礎上,把多項式的同類項合並.

5.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最後結果一般應該進行升冪(或降冪)排列.

八、:一元一次方程

1.等式與等量:用「=」號連接而成的式子叫等式.注意:「等量就能代入」!

2.等式的性質:

等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.

3.方程:含未知數的等式,叫方程.

4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:「方程的解就能代入」!

5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.

6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

7.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).

8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).

9.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解).

九、:列一元一次方程解應用題。

(1)讀題分析法:…………多用於「和,差,倍,分問題」

仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-----」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.

(2)畫圖分析法:…………多用於「行程問題」

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.

十、:.列方程解應用題的常用公式。

<<<

七年級數學 上冊學習方法

一、看書習慣

這是自學能力的基本功。根據美國和前蘇聯對幾十所名牌大學的調查表明,那些卓有成就的科學家有20%~25%的知識是來自學校,而75%~80%的知識是靠他們離校後通過工作、自學和科研來獲得的。根據心理規律,初中學生已經具備閱讀能力,但由於在小學受直觀模仿習慣的影響,使眾多學生誤把數學課本當作習題集。所以從初一開始就應重視糾正自己的錯誤學習習慣,樹立數學課本同樣需要閱讀的正確思想,並注意 總結 如何閱讀數學課本的方法。

1.每一節課前都務必養成預習的習慣,努力在預習中發現自己不懂的問題,以便能帶著問題聽講。

課堂上注意老師如何閱讀課文,從中培養自己掌握如何分析定義、定理中的關鍵字、詞、句以及與舊知識的聯系。

2.經常歸納總結學過的知識,培養復習習慣。

剛開始時,可跟著老師總結一節課或一個單元的內容,一個階段後可根據老師提出的復習提綱,自己帶著問題去鑽研課文,最後過渡到由自己歸納,促使自己反復閱讀課文,及時復習,溫故知新。

二、筆記習慣

「好記性不如爛筆頭」。中學數學內容豐富,課堂容量一般比較大,為系統學好數學,從初中時期就必須重視培養做課堂筆記的習慣,課上做筆記還可約束精力分散,提高聽課效率。一般,課堂筆記除記下講課綱目外,主要是記老師講課中交代的關鍵、思路、方法及內容概括。特別注意隨時記下聽課中的點滴體會及疑問。在「聽」與「記」兩個方面,聽是基礎,切莫只顧「記」而影響「聽」。

為了使課堂筆記逐步提高質量,同學間應進行適當的交流,相互取長補短。

三、動手實踐、合作交流習慣

「實踐出真知」。動手實踐能集中注意力,提高學習興趣,能加深對學習對象的印象和理解。在動手實踐中,能把書上的知識與實際事物聯系起來,能形成正確深刻的概念。在動手實踐中,能手腦並用,用實際活動逐步形成和發展自己的認知結構,能形成技能,發展能力。在動手實踐中養成「做前猜想-----動手實驗-----操作結果-----歸納總結」的習慣。

「三人同行,必有我師」。同學間相互交流學習結果,各抒己見,取長補短。能達到動腦、動口、動手、激發思維、活躍氣氛、調動積極性的作用。

四、作業習慣

數學作業是鞏固數學知識、激發學習興趣、訓練數學能力的重要環節。有些同學視作業為負擔,課後只憑著課堂上的印象匆忙作答,往往解法單一;有的還字跡潦草、馬虎粗心、格式不規范、甚至抄襲。這就錯失了訓練良機,嚴重地響了學習效果。應該正確認識做作業的目的性,培養良好的作業習慣。良好的作業習慣應包括:

1.要養成作業前看書的習慣。

做作業前要認真閱讀復習課文、觀察例題的解題格式、步驟和方法。這正是「磨刀不誤砍柴功」。

2.要養成審題的習慣。

讀題後,先弄清題目是什麼題型、它有什麼條件、有哪些特點等。

3.要養成獨立作業的習慣。

若有特殊情況,不能如期完成,可向老師說明情況:如遇到難題不會做時,可向老師或同學請教,弄懂以後獨立完成。切不可為了應付任務而去抄襲。

4.要養成對已做作業進行再思考的習慣。

不少同學不重視對已做作業進行再看、再思考,從而導致錯誤做法在頭腦中形成定勢。有的題目做錯,老師訂正過了,你還錯,就是這個原因。常此下去,在新知識和做新作業中會出現更大的錯誤,為了鞏固作業的成果,同學們在每次做新的作業之前,務必對前一天的作業進行反饋。反饋內容包括:(1)題目類型;(2)解題思路與方法;(3)出錯問題的原因;(4)訂正出錯問題;(5)收集出錯問題(就是將自己出錯的問題專門收集在一個地方,標注出以上四項內容,以便將來復習時糾錯)。

五、思維習慣

科學的思維方法和良好的思維習慣是開發智力、發展能力的鑰匙。心理學告訴我們,初一階段是學生從形象思維向 抽象思維 轉變的重要時期,所以這時候一定要重視良好的思維習慣的培養。根據初中數學內容的特點,良好的思維習慣包括邏輯性、周密性、發散性、收斂性、逆向性。

1.邏輯性。

這是要求學生「答必有據」切忌想當然。在推理演算過程中,能夠懂得其中每一步的依據,不懂之處就不寫,設法弄懂之後再繼續推理演算。

2.周密性。

這是要求學生全面的考慮問題。如:已知點C在直線AB上,線段AB=8cm,線段BC=3cm,求線段AC的長。全面考慮問題就要分點C在線段AB上和點C在線段AB的延長線上兩類進行討論:當點C在線段AB上時,AC=AB-BC=8-3=5cm;當點C在線段AB的延長線上時,AC=AB+BC=8+3=11cm。培養這種習慣,應特別注意老師在課堂上指出的「易出錯或想不全」的情形與原因。

3.發散性。

這是要求學生運用多種辦法解決一個問題。培養這個習慣,要特別注意老師在講一題多解時的思考方法、問題推廣延拓時的分析,在數學學習過程中努力養成尋求一題多解,一題多變的習慣。

4.收斂性。

這是在 發散思維 的基礎上進行歸納總結,以達到多題一解、舉一反三。發散與收斂兩種思維綜合運用可相得益彰。

5.逆向性。

這是要求學生把某些公式、法則、定理的順序顛倒過來考慮。如計算:

(-0.38)×4.58-0.62×4.58,可以逆向運用乘法分配律,就得到簡便計算的方法

<<<

初一上冊數學知識點總結

有理數及其運算板塊:

1、整數包含正整數和負整數,分數包含正分數和負分數。

正整數和正分數通稱為正數,負整數和負分數通稱為負數。

2、正整數、0、負整數、正分數、負分數這樣的數稱為有理數。

3、絕對值:數軸上一個數所對應的點與原點的距離叫做該數的絕對值,用「||」表示。

整式板塊:

1、單項式:由數與字母的乘積組成的式子叫做單項式。

2、單項式的次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數。

3、整式:單項式與多項式統稱整式。

4、同類項:字母相同,並且相同字母的指數也相同的項叫做同類項。

一元一次方程。

1、含有未知數的等式叫做方程,使方程左右兩邊的.值都相等的未知數的值叫做方程的解。

2、移項:把等式一邊的某項變號後移到另一邊,叫做移項等。

其實,七年級上冊數學知識點總結還包括很多,但是我想,萬變不離其宗。

大家平時要注意整理與積累。配合多加練習。一些知識要點及時記錄在 筆記本 上,一些錯題也要及時整理、復習。一個個知識點去通過。我相信只要做個有心人,就可以在數學考試中取得高分。

<<<


北師大版初一數學上冊知識點相關 文章 :

★ 七年級數學上冊知識點總結第四章

★ 北師大初一數學知識點總結

★ 北師版初一數學期末知識點總結

★ 初一數學知識點歸納梳理

★ 北師大初中數學知識總結

★ 北師大版初中數學教案

★ 七年級數學的知識點歸納總結

★ 北師大版七年級上冊數學目錄

★ 北師大版數學七年級上冊教案

★ 北師大七年級數學上冊目錄

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅵ 七年級數學上冊知識點總結北師大

「學」就是效仿,即從別人或書本環境媒體等處獲得知識增長智慧等;「習」的原義是小鳥頻頻起飛,下面給大家分享一些關於 七年級數學 上冊知識點 總結 北師大,希望對大家有所幫助。

第一章豐富的圖形世界

1、幾何圖形

從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

2、點、線、面、體

(1)幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和 面相 交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

(2)點動成線,線動成面,面動成體。

3、生活中的立體圖形

柱:稜柱:三稜柱、四稜柱(長方體、正方體)、五稜柱、……

第二章有理數及其運算

1.有理數

可表示為兩個整數之比形式的數。

正有理數 整數

有理數 零 有理數

負有理數 分數

2、相反數:只有符號不同的兩個數叫做互為相反數,0的相反數是0.

3、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。

4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和-1。零沒有倒數。

5、絕對值:在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值,|a|≥0。若|a|=a,則a≥0;若|a|=-a,則a≤0。

正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0。互為相反數的兩個數的絕對值相等。

6、有理數比較大小:正數大於0,負數小於0,正數大於負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。

7、有理數的運算

(1)五種運算:加、減、乘、除、乘方

多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為0,積就為0。

有理數加法法則:

同號兩數相加,取相同的符號,並把絕對值相加。

異號兩數相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。

一個數同0相加,仍得這個數。

互為相反數的兩個數相加和為0。

有理數減法法則:

減去一個數,等於加上這個數的相反數!

有理數乘法法則:

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積仍為0。

有理數除法法則:

兩個有理數相除,同號得正,異號得負,並把絕對值相除。

0除以任何非0的數都得0。

注意:0不能作除數。

有理數的乘方:求n個相同因數a的積的運算叫做乘方。

正數的任何次冪都是正數,負數的偶次冪是正數,負數的奇次冪是負數。

(2)有理數的運算順序

先算乘方,再算乘除,最後算加減,如果有括弧,先算括弧裡面的。

(3)運算律

加法交換律、 加法結合律、乘法交換律、乘法結合律、乘法對加法的分配律。

8、科學記數法

一般地,一個大於10的數可以表示成的形式,其中,n是正整數,這種記數 方法 叫做科學記數法。(n=整數位數-1)

第三章整式及其加減

1、代數式

用運算符號(加、減、乘、除、乘方、開方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。

注意:

①代數式中除了含有數、字母和運算符號外,還可以有括弧;

②代數式中不含有「=、>、<、≠」等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;

③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。

※代數式的書寫格式:

①代數式中出現乘號,通常省略不寫,如vt;

②數字與字母相乘時,數字應寫在字母前面,如4a;

③帶分數與字母相乘時,應先把帶分數化成假分數;

④數字與數字相乘,一般仍用「×」號,即「×」號不省略;

⑤在代數式中出現除法運算時,一般寫成分數的形式,如4÷(a-4)應寫作4/(a-4);注意: 分數線 具有「÷」號和括弧的雙重作用。

⑥在表示和(或)差的代數式後有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的後面,如平方米。

2、整式

單項式和多項式統稱為整式。

①單項式:都是數字和字母乘積的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個單項式的次數;數字因數叫做這個單項式的系數。

注意:

1.單獨的一個數或一個字母也是單項式;

2.單獨一個非零數的次數是0;

3.當單項式的系數為1或-1時,這個「1」應省略不寫,如-ab的系數是-1,a3b的系數是1。

②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。

3、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

注意:

①同類項有兩個條件:所含字母相同;相同字母的指數也相同。

②同類項與系數無關,與字母的排列順序無關;

③幾個常數項也是同類項。

4、合並同類項法則:把同類項的系數相加,字母和字母的指數不變。

5、去括弧法則

①根據去括弧法則去括弧:

括弧前面是「+」號,把括弧和它前面的「+」號去掉,括弧里各項都不改變符號;括弧前面是「-」號,把括弧和它前面的「-」號去掉,括弧里各項都改變符號。

②根據分配律去括弧:

括弧前面是「+」號看成+1,括弧前面是「-」號看成-1,根據乘法的分配律用+1或-1去乘括弧里的每一項以達到去括弧的目的。

6、添括弧法則

添「+」號和括弧,添到括弧里的各項符號都不改變;添「-」號和括弧,添到括弧里的各項符號都要改變。

7、整式的運算:

整式的加減法:(1)去括弧;(2)合並同類項。

第四章基本平面圖形

1、線段、射線、直線

2、直線的性質

(1)直線公理:經過兩個點有且只有一條直線。(兩點確定一條直線)

(2)過一點的直線有無數條。

(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

3、線段的性質

(1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短)

(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

(3)線段的大小關系和它們的長度的大小關系是一致的。

4、線段的中點:

點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。

5、角

有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉而成的。

6、角的表示

角的表示方法有以下四種:

①用數字表示單獨的角,如∠1,∠2,∠3等。

②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

7、角的度量

角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用「°」表示,1度記作「1°」,n度記作「n°」。

把1°的角60等分,每一份叫做1分的角,1分記作「1』」。

把1』的角60等分,每一份叫做1秒的角,1秒記作「1」」。

1°=60』,1』=60」。

8、角的平分線

從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

9、角的性質

(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

(2)角的大小可以度量,可以比較,角可以參與運算。

10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。

11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。

從一個n邊形的同一個頂點出發,分別連接這個頂點與其餘各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。

12、圓:平面上,一條線段繞著一個端點旋轉一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作「圓弧AB」或「弧AB」;由一條弧AB和經過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。

第五章一元一次方程

1、方程

含有未知數的等式叫做方程。

2、方程的解

能使方程左右兩邊相等的未知數的值叫做方程的解。

3、等式的性質

(1)等式的兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。

(2)等式的兩邊同時乘以同一個數(或除以同一個不為0的數),所得結果仍是等式。

4、一元一次方程

只含有一個未知數,並且未知數的最高次數是1的整式方程叫做一元一次方程。

5、移項:把方程中的某一項,改變符號後,從方程的一邊移到另一邊,這種變形叫做移項。

6、解一元一次方程的一般步驟:

(1)去分母;(2)去括弧;(3)移項(把方程中的某一項改變符號後,從方程的一邊移到另一邊,這種變形叫移項);(4)合並同類項;(5)將未知數的系數化為1。

第六章數據的收集與整理

1、普查與抽樣調查

為了特定目的對全部考察對象進行的全面調查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體抽取的一部分個體叫做總體的一個樣本。

2、扇形統計圖

扇形統計圖:利用圓與扇形來表示總體與部分的關系,扇形的大小反映部分佔總體的百分比的大小,這樣的統計圖叫做扇形統計圖。(各個扇形所佔的百分比之和為1)

圓心角度數=360°×該項所佔的百分比。(各個部分的圓心角度數之和為360°)

3、頻數直方圖

頻數直方圖是一種特殊的條形統計圖,它將統計對象的數據進行了分組畫在橫軸上,縱軸表示各組數據的頻數。

4、各種統計圖的特點

條形統計圖:能清楚地表示出每個項目的具體數目。

折線統計圖:能清楚地反映事物的變化情況。

扇形統計圖:能清楚地表示出各部分在總體中所佔的百分比。


七年級數學上冊知識點總結北師大相關 文章 :

★ 七年級數學上冊知識點北師大版

★ 北師大初中數學知識總結

★ 北師大初中數學知識點總結七年級下

★ 北師大初中數學知識點

★ 初一數學期末如何高效復習

★ 北師大初中數學知識點八年級上

★ 北師大版七年級數學單元測試

★ 學習方法大全

★ 北師大初二數學上冊知識點

★ 北師大初中數學知識點下冊

Ⅶ 新北師大版七年級數學知識點

只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

初一下冊數學重點知識點

重要考點

1、整式的乘除的公式運用(六條)及逆運用(數的計算)。

(1)an·am2)(am)n=(3)(ab)n = 4)am ÷ an

(5)a0 (a≠0) (6)a-p= =

2、單項式與單項式、多項式相乘的法則。

3、整式的乘法公式(兩條)。

平方差公式:(a+b)(a-b)=

完全平方公式:(a+b)2 (a-b)2

常用公式:(x+m)(x+n)=

5、單項式除以單項式,多項式除以單項式(轉換單項式除以單項式)。

6、互為餘角和互為補角和

7、兩直線平行的條件:(角的關系線的平行) ①相等,兩直線平行;

② 相等,兩直線平行;

③ 互補,兩直線平行.

8、平行線的性質:兩直線平行。(線的平行

9、能判別變數中的自變數和因變數,會列列關系式(因變數=自變數與常量的關系)

10、變數中的圖象法,注意:(1)橫、縱坐標的對象。(2)起點、終點不同表示什麼意義

(3)圖象交點表示什麼意義(4)會求平均值。

11、三角形(1)三邊關系:角的關系)

(2)內角關系:

(3)三角形的三條重要線段:

(重點)(4)三角形全等的判別方法:(注意:公共邊、邊的公共部分對頂角、公共角、角的公共部分)

(5)全等三角形的性質:

(重點)(6)等腰三角形:(a)知邊求邊、周長方法

(b)知角求角方法

(c)三線合一:

(7)等邊三角形:

12、會判軸對稱圖形,會根據畫對稱圖形,(或在方格中畫)

13、常見的軸對稱圖形有:14、(1)等腰三角形: 對稱軸, 性質

(2)線段 : 對稱軸 ,性質

(3)角 : 對稱軸 ,性質

15、尺規作圖:(1) 作一線段等已知線段 (2)作角已知角 (3)作線段垂直平分線

(4)作角的平分線 (5)作三角形

16、事件的分類:,會求各種事件的概率

(1)摸球:P(摸某種球)=

(2)摸牌: P(摸某種牌)=

(3)轉盤: P(指向某個區域)=

(4)拋骰子: P(拋出某個點數)=

(5)方格(面積): P(停留某個區域)=

17、必然事件不可能事件,不確定事件

18、方法歸納:(1)求邊相等可以利用

(2)求角相等可以利用 。

(3)計算簡便可以利用 。

19、注意復習:合並同類項的法則,科學記數法,解一元一次方程,絕對值。

七年級數學知識點

生活中的變數

一、變數、自變數與因變數

①兩個變數x與y,y隨x的改變而改變,那麼x是自變數(先變的量),y是因變數(後變的量)。

二、變數之間的表示方法:

①列表法

②關系式法:能精確地反映自變數與因變數之間數值的對應關系。

③圖象法:用水平方向的數軸(橫軸)上的點表示自變數,用堅直方向的數軸(縱軸)表示因變數。

第五章 生活中的軸對稱

一、軸對稱圖形與軸對稱

①一個圖形沿某一條直線對折,直線兩旁的部分能完成重合的圖形叫做軸對稱圖形。這條直線叫做對稱軸。

②兩個圖形沿某一條直線折疊,這兩個圖形能完全重合,就說這兩個圖形關於這條直線成軸對稱。這條直線叫做對稱軸。

③常見的軸對稱圖形:線段(兩條對稱軸),角,長方形,正方形,等腰三角形,等邊三角形,等腰梯形,圓,扇形

二、角平分線的性質:角平分線上的點到角兩邊的距離相等。

∵ ∠1=∠2 PB⊥OB PA⊥OA

∴ PB=PA

三、線段垂直平分線:

①概念:垂直且平分線段的直線叫做這條線段的垂直平分線。

②性質:線段垂直平分線上的點到線段兩個端點的距離相等。

∵ OA=OB CD⊥AB

∴ PA=PB

四、等腰三角形性質: (有兩條邊相等的三角形叫做等腰三角形)

①等腰三角形是軸對稱圖形; (一條對稱軸)

②等腰三角形底邊上中線,底邊上的高,頂角的平分線重合; (三線合一)

③等腰三角形的兩個底角相等。 (簡稱:等邊對等角)

七年級下冊數學輔導復習資料

1.幾何圖形:點、線、面、體這些可幫助人們有效的刻畫錯綜復雜的世界,它們都稱為幾何圖形。從實物中抽象出的各種圖形統稱為幾何圖形。有些幾何圖形的各部分不在同一平面內,叫做立體圖形。有些幾何圖形的各部分都在同一平面內,叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯系的。

2.幾何圖形的分類:幾何圖形一般分為立體圖形和平面圖形。

3.直線:幾何學基本概念,是點在空間內沿相同或相反方向運動的軌跡。從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交於一點。常用直線與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對於X軸)的傾斜程度。

4.射線:在歐幾里德幾何學中,直線上的一點和它一旁的部分所組成的圖形稱為射線或半直線。

5.線段:指一個或一個以上不同線素組成一段連續的或不連續的圖線,如實線的線段或由「長劃、短間隔、點、短間隔、點、短間隔」組成的雙點長劃線的線段。

線段有如下性質:兩點之間線段最短。

6. 兩點間的距離:連接兩點間線段的長度叫做這兩點間的距離。

7. 端點:直線上兩個點和它們之間的部分叫做線段,這兩個點叫做線段的端點。

線段用表示它兩個端點的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段AB或線段BA,線段a。其中AB表示直線上的任意兩點。

8.直線、射線、線段區別:直線沒有距離。射線也沒有距離。因為直線沒有端點,射線只有一個端點,可以無限延長。

9.角:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊。

10.角的靜態定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。


新北師大版七年級數學知識點相關 文章 :

★ 北師大版七年級數學上冊知識點

★ 北師大版七年級數學上知識點

★ 七年級數學上冊知識點北師大版

★ 北師大版七年級數學上冊總復習要點

★ 七年級數學北師大版的知識點

★ 北師大版初一下冊數學知識點復習總結

★ 初一數學北師大版上冊知識點

★ 七年級數學上冊知識點總結北師大

★ 七年級數學下北師大版知識點

★ 北師大版七年級數學下冊知識點

Ⅷ 北師版初一數學知識點總結

對世界上的一切學問與知識的掌握也並非難事,只要持之以恆地學習,努力掌握規律,達到熟悉的境地,就能融會貫通,運用自如。學習需要持之以恆。下面是我給大家整理的一些初一數學知識點,希望對大家有所幫助。

七年級數學 知識點

生活中的軸對稱

1、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠完全重合,那麼這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2、軸對稱:對於兩個圖形,如果沿一條直線對折後,它們能互相重合,那麼稱這兩個圖形成軸對稱,這條直線就是對稱軸。可以說成:這兩個圖形關於某條直線對稱。

3、軸對稱圖形與軸對稱的區別:軸對稱圖形是一個圖形,軸對稱是兩個圖形的關系。

聯系:它們都是圖形沿某直線折疊可以相互重合。

2、成軸對稱的兩個圖形一定全等。

3、全等的兩個圖形不一定成軸對稱。

4、對稱軸是直線。

5、角平分線的性質

1、角平分線所在的直線是該角的對稱軸。

2、性質:角平分線上的點到這個角的兩邊的距離相等。

6、線段的垂直平分線

1、垂直於一條線段並且平分這條線段的直線叫做這條線段的垂直平分線,又叫線段的中垂線。

2、性質:線段垂直平分線上的點到這條線段兩端點的距離相等。

7、軸對稱圖形有:

等腰三角形(1條或3條)、等腰梯形(1條)、長方形(2條)、菱形(2條)、正方形(4條)、圓(無數條)、線段(1條)、角(1條)、正五角星。

8、等腰三角形性質:

①兩個底角相等。②兩個條邊相等。③「三線合一」。④底邊上的高、中線、頂角的平分線所在直線是它的對稱軸。

9、①「等角對等邊」∵∠B=∠C∴AB=AC

②「等邊對等角」∵AB=AC∴∠B=∠C

10、角平分線性質:

角平分線上的點到角兩邊的距離相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分線性質:垂直平分線上的點到線段兩端點的距離相等。

∵OC垂直平分AB∴AC=BC

12、軸對稱的性質

1、兩個圖形沿一條直線對折後,能夠重合的點稱為對應點(對稱點),能夠重合的線段稱為對應線段,能夠重合的角稱為對應角。2、關於某條直線對稱的兩個圖形是全等圖形。

2、如果兩個圖形關於某條直線對稱,那麼對應點所連的線段被對稱軸垂直平分。

3、如果兩個圖形關於某條直線對稱,那麼對應線段、對應角都相等。

13、鏡面對稱

1.當物體正對鏡面擺放時,鏡面會改變它的左右方向;

2.當垂直於鏡面擺放時,鏡面會改變它的上下方向;

3.如果是軸對稱圖形,當對稱軸與鏡面平行時,其鏡子中影像與原圖一樣;

學生通過討論,可能會找出以下解決物體與像之間相互轉化問題的辦法:

(1)利用鏡子照(注意鏡子的位置擺放);(2)利用軸對稱性質;

(3)可以把數字左右顛倒,或做簡單的軸對稱圖形;

(4)可以看像的背面;(5)根據前面的結論在頭腦中想像。

初一數學下冊知識點 總結

篇一:直線、射線、線段

(1)直線、射線、線段的表示 方法

①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.

②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.

③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。

(2)點與直線的位置關系:

①點經過直線,說明點在直線上;

②點不經過直線,說明點在直線外。

篇二:兩點間的距離

(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。

(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最後的兩個字「長度」,也就是說,它是一個量,有大小,區別於線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離。

篇三:正方體

(1)對於此類問題一般方法是用紙按圖的樣子折疊後可以解決,或是在對展開圖理解的基礎上直接想像.

(2)從實物出發,結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵.

(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況後再認真確定哪兩個面的對面.

篇四:一元一次方程的解

定義:使一元一次方程左右兩邊相等的未知數的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右兩邊相等。

13、解一元一次方程:

1.解一元一次方程的一般步驟

去分母、去括弧、移項、合並同類項、系數化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉化。

2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括弧,且括弧外的項在乘括弧內各項後能消去分母,就先去括弧。

3.在解類似於「ax+bx=c」的方程時,將方程左邊,按合並同類項的方法並為一項即(a+b)x=c。

使方程逐漸轉化為ax=b的最簡形式體現化歸思想。

將ax=b系數化為1時,要准確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數時;二要准確判斷符號,a、b同號x為正,a、b異號x為負。

七年級上冊數學知識點

有理數

★有理數的分類

1.如果按定義分,有理數可以分為整數(正整數;負整數;0)和分數(正分數,負分數)。

如果按正、負分,有理數可以分為正有理數(正整數;正分數)、0、負有理數(負整數;負分數)。

2.所有的有理數都可以用分數表示,π不是有理數。

數軸

★1.數軸的定義:規定了原點、正方向、單位長度的直線叫做數軸。

相反數

1.只有符號不同的兩個數叫做互為相反數。(0的相反數是0)

絕對值

1.數軸上一點a到原點的距離表示a的絕對值。

★2.絕對值的性質:非負性。

3.正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0。

有理數的大小

1.正數大於0,負數小於0,正數大於負數。

2.兩個負數,絕對值大的反而小。

有理數的加法

1.同號兩數相加,取相同的符號,並把絕對值相加。

2.絕對值不相等的異號兩數相加,取絕對值較大的加數符號,並用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0。一個數同0相加,仍得這個數。

3.在有理數的加法中,

加法交換率:兩個數相加,交換加數的位置,和不變。

加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

有理數的減法

減去一個數,等於加這個數的相反數。

★有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數與0相乘後得0。

倒數:乘積是1的兩個數互為倒數。

乘法交換律:乘法交換律兩個數相乘,交換因數的位置,積不變。

乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,積不變。

乘法分配律:一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。

北師版初一數學知識點總結相關 文章 :

★ 北師大版初一下冊數學知識點復習總結

★ 北師版初一數學期末知識點總結

★ 北師大初中數學知識總結

★ 北師大版七年級數學上冊知識點

★ 七年級數學上冊知識點總結北師大

★ 北師大初一數學知識點總結

★ 北師大初中數學知識點總結七年級下

★ 七年級數學上冊知識點北師大版

★ 北師大版初中數學知識點提綱

★ 北師大版初一數學下冊知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅸ 北師大初一數學知識點總結

學得越多,懂得越多,想得越多,領悟得就越多,就像滴水一樣,一滴水或許很快就會被太陽蒸發,但如果滴水不停的滴,就會變成一個水溝,越來越多,越來越多……本篇 文章 是無憂考網為您整理的《初一下冊數學知識點 總結 北師大版》,供大家借鑒。


北師大初一數學知識點總結

多項式除以單項式

一、單項式

1、都是數字與字母的乘積的代數式叫做單項式。

2、單項式的數字因數叫做單項式的系數。

3、單項式中所有字母的指數和叫做單項式的次數。

4、單獨一個數或一個字母也是單項式。

5、只含有字母因式的單項式的系數是1或―1。

6、單獨的一個數字是單項式,它的系數是它本身。

7、單獨的一個非零常數的次數是0。

8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

9、單項式的系數包括它前面的符號。

10、單項式的系數是帶分數時,應化成假分數。

11、單項式的系數是1或―1時,通常省略數字「1」。

12、單項式的次數僅與字母有關,與單項式的系數無關。

二、多項式

1、幾個單項式的和叫做多項式。

2、多項式中的每一個單項式叫做多項式的項。

3、多項式中不含字母的項叫做常數項。

4、一個多項式有幾項,就叫做幾項式。

5、多項式的每一項都包括項前面的符號。

6、多項式沒有系數的概念,但有次數的概念。

7、多項式中次數的項的次數,叫做這個多項式的次數。

三、整式

1、單項式和多項式統稱為整式。

2、單項式或多項式都是整式。

3、整式不一定是單項式。

4、整式不一定是多項式。

5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。

四、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

2、幾個整式相加減,關鍵是正確地運用去括弧法則,然後准確合並同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡。

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

五、同底數冪的乘法

1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an的結果叫做冪。

2、底數相同的冪叫做同底數冪。

3、同底數冪乘法的運演算法則:同底數冪相乘,底數不變,指數相加。即:am﹒an=am+n。

4、此法則也可以逆用,即:am+n=am﹒an。

5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。

六、冪的乘方

1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。

2、冪的乘方運演算法則:冪的乘方,底數不變,指數相乘。(am)n=amn。

3、此法則也可以逆用,即:amn=(am)n=(an)m。

七、積的乘方

1、積的乘方是指底數是乘積形式的乘方。

2、積的乘方運演算法則:積的乘方,等於把積中的每個因式分別乘方,然後把所得的冪相乘。即(ab)n=anbn。

3、此法則也可以逆用,即:anbn=(ab)n。

八、三種「冪的運演算法則」異同點

1、共同點:

(1)法則中的底數不變,只對指數做運算。

(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。

(3)對於含有3個或3個以上的運算,法則仍然成立。

2、不同點:

(1)同底數冪相乘是指數相加。

(2)冪的乘方是指數相乘。

(3)積的乘方是每個因式分別乘方,再將結果相乘。

九、同底數冪的除法

1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n(a≠0)。

2、此法則也可以逆用,即:am-n=am÷an(a≠0)。

十、零指數冪

1、零指數冪的意義:任何不等於0的數的0次冪都等於1,即:a0=1(a≠0)。

十一、負指數冪

1、任何不等於零的數的―p次冪,等於這個數的p次冪的倒數,即:

註:在同底數冪的除法、零指數冪、負指數冪中底數不為0。

十二、整式的乘法

(一)單項式與單項式相乘

1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其餘字母連同它的指數不變,作為積的因式。

2、系數相乘時,注意符號。

3、相同字母的冪相乘時,底數不變,指數相加。

4、對於只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。

5、單項式乘以單項式的結果仍是單項式。

6、單項式的乘法法則對於三個或三個以上的單項式相乘同樣適用。

(二)單項式與多項式相乘

1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。

2、運算時注意積的符號,多項式的每一項都包括它前面的符號。

3、積是一個多項式,其項數與多項式的項數相同。

4、混合運算中,注意運算順序,結果有同類項時要合並同類項,從而得到最簡結果。

(三)多項式與多項式相乘

1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合並同類項之前,積的項數等於兩個多項式項數的積。

3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用「同號得正,異號得負」。

4、運算結果中有同類項的要合並同類項。

5、對於含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。

十三、平方差公式

1、(a+b)(a-b)=a2-b2,即:兩數和與這兩數差的積,等於它們的平方之差。

2、平方差公式中的a、b可以是單項式,也可以是多項式。

3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

4、平方差公式還能簡化兩數之積的運算,解這類題,首先看兩個數能否轉化成

(a+b)?(a-b)的形式,然後看a2與b2是否容易計算。

北師大初一數學知識點總結

一、同底數冪的乘法

(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:

a)法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;

b)指數是1時,不要誤以為沒有指數;

c)不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;

二、冪的乘方與積的乘方

三、同底數冪的除法

(1)運用法則的前提是底數相同,只有底數相同,才能用此法則

(2)底數可以是具體的數,也可以是單項式或多項式

(3)指數相減指的是被除式的指數減去除式的指數,要求差不為負

四、整式的乘法

1、單項式的概念:由數與字母的乘積構成的代數式叫做單項式。單獨的一個數或一個字母也是單項式。單項式的數字因數叫做單項式的系數,所有字母指數和叫單項式的次數。

如:bca22-的系數為2-,次數為4,單獨的一個非零數的次數是0。

2、多項式:幾個單項式的和叫做多項式。多項式中每個單項式叫多項式的項,次數項的次數叫多項式的次數。

五、平方差公式

表達式:(a+b)(a-b)=a^2-b^2,兩個數的和與這兩個數差的積,等於這兩個數的平方差,這個公式就叫做乘法的平方差公式

公式運用

可用於某些分母含有根號的分式:

1/(3-4倍根號2)化簡:

六、完全平方公式

完全平方公式中常見錯誤有:

①漏下了一次項

②混淆公式

③運算結果中符號錯誤

④變式應用難於掌握。

七、整式的除法

1、單項式的除法法則

單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式。

注意:首先確定結果的系數(即系數相除),然後同底數冪相除,如果只在被除式里含有的字母,則連同它的指數作為商的一個因式。

北師大初一數學知識點總結

1.1正數與負數

在以前學過的0以外的數前面加上負號「-」的數叫負數(negativenumber)。

與負數具有相反意義,即以前學過的0以外的數叫做正數(positivenumber)(根據需要,有時在正數前面也加上「+」)。

1.2有理數

正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。

整數和分數統稱有理數(rationalnumber)。

通常用一條直線上的點表示數,這條直線叫數軸(numberaxis)。

數軸三要素:原點、正方向、單位長度。

在直線上任取一個點表示數0,這個點叫做原點(origin)。

只有符號不同的兩個數叫做互為相反數(oppositenumber)。(例:2的相反數是-2;0的相反數是0)

數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue),記作|a|。

一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3有理數的加減法

有理數加法法則:

1.同號兩數相加,取相同的符號,並把絕對值相加。

2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

3.一個數同0相加,仍得這個數。

有理數減法法則:減去一個數,等於加這個數的相反數。

1.4有理數的乘除法

有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

乘積是1的兩個數互為倒數。

有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。mì

求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(basenumber),n叫做指數(exponent)。

負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。

把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。

從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significantdigit)。


北師大初一數學知識點總結相關文章:

★ 北師大版初一下冊數學知識點復習總結

★ 七年級數學上冊知識點總結北師大

★ 北師大初中數學知識總結

★ 北師大版七年級數學上冊知識點

★ 初一數學上冊知識點

★ 北師大初中數學知識點總結七年級下

★ 七年級數學上冊知識點北師大版

★ 初一數學學習方法指導與學習方法總結

★ 整式的加減知識點歸納

★ 北師大初中數學知識點下冊