1. 高考文科數學知識點總結歸納
對於文科生來說,數學是一門比較特別的學科,高考要想數學分數高,必須掌握必考知識點。下面是我為大家整理的高考文科數學知識點,希望對大家有所幫助。
高考文科數學知識點
第一,函數與導數
主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。
第二,平面向量與三角函數、三角變換及其應用
這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。
第三,數列及其應用
這部分是高考的重點而且是難點,主要出一些綜合題。
第四,不等式
主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
第五,概率和統計
這部分和我們的生活聯系比較大,屬應用題。
第六,空間位置關系的定性與定量分析
主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
第七,解析幾何
高考的難點,運算量大,一般含參數。
文科數學高頻必考考點
第一部分:選擇與填空
1.集合的基本運算(含新定集合中的運算,強調集合中元素的互異性);
2.常用邏輯用語(充要條件,全稱量詞與存在量詞的判定);
3.函數的概念與性質(奇偶性、對稱性、單調性、周期性、值域最大值最小值);
4.冪、指、對函數式運算及圖像和性質
5.函數的零點、函數與方程的遷移變化(通常用反客為主法及數形結合思想);
6.空間體的三視圖及其還原圖的表面積和體積;
7.空間中點、線、面之間的位置關系、空間角的計算、球與多面體外接或內切相關問題;
8.直線的斜率、傾斜角的確定;直線與圓的位置關系,點線距離公式的應用;
9.演算法初步(認知框圖及其功能,根據所給信息,幾何數列相關知識處理問題);
10.古典概型,幾何概型理科:排列與組合、二項式定理、正態分布、統計案例、回歸直線方程、獨立性檢驗;文科:總體估計、莖葉圖、頻率分布直方圖;
11.三角恆等變形(切化弦、升降冪、輔助角公式);三角求值、三角函數圖像與性質;
12.向量數量積、坐標運算、向量的幾何意義的應用;
13.正餘弦定理應用及解三角形;
14.等差、等比數列的性質應用、能應用簡單的地推公式求其通項、求項數、求和;
15.線性規劃的應用;會求目標函數;
16.圓錐曲線的性質應用(特別是會求離心率);
17.導數的幾何意義及運算、定積分簡單求法
18.復數的概念、四則運算及幾何意義;
19.抽象函數的識別與應用;
第二部分:解答題
第17題:向量與三角交匯問題,解三角形,正餘弦定理的實際應用;
第18題:(文)概率與統計(概率與統計相結合型)
(理)離散型隨機變數的概率分布列及其數字特徵;
第19題:立體幾何
①證線面平行垂直;面與面平行垂直
②求空間中角(理科特別是二面角的求法)
③求距離(理科:動態性)空間體體積;
第20題:解析幾何(注重思維能力與技巧,減少計算量)
①求曲線軌跡方程(用定義或待定系數法)
②直線與圓錐曲線的關系(靈活運用點差法和弦長公式)
③求定點、定值、最值,求參數取值的問題;
第21題:函數與導數的綜合應用
這是一道典型應用知識網路的交匯點設計的試題,是考查考生解題能力和文科數學素質為目標的壓軸題。
主要考查:分類討論思想;化歸、轉化、遷移思想;整體代換、分與合思想
一般設計三問:
①求待定系數,利用求導討論確定函數的單調性;
②求參變數取值或函數的最值;
③探究性問題或證不等式恆成立問題。
第22題:三選一:
(1)幾何證明主要考查三角形相似,圓的切割線定理,證明成比例,求角度,求長度;利用射影定理解決圓中計算和證明問題是歷年高考題的 熱點 ;
(2)坐標系與參數方程,主要抓兩點:參數方程、極坐標方程互化為普通方程;有參數、極坐標方程求解曲線的基本量。這類題,思路清晰,難度不大,抓基礎,不做難題。
(3)不等式選講:絕對值不等式與函數結合型。設計上為:①解含有參變數關於x的不等式;②求解不等式恆成立時參變數的取值;③證明不等式(利用均值定理、放縮法等)。
2018高考文科數學知識點:高中數學知識點 總結
必修一:1、集合與函數的概念(這部分知識抽象,較難理解)2、基本的初等函數(指數函數、對數函數)3、函數的性質及應用(比較抽象,較難理解)
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角
這部分知識是高一學生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學生的立體意識較強。這部分知識高考佔22---27分
2、直線方程:高考時不單獨命題,易和圓錐曲線結合命題
3、圓方程:
必修三:1、演算法初步:高考必考內容,5分(選擇或填空)2、統計:3、概率:高考必考內容,09年理科佔到15分,文科數學佔到5分
必修四:1、三角函數:(圖像、性質、高中重難點,)必考大題:15---20分,並且經常和其他函數混合起來考查
2、平面向量:高考不單獨命題,易和三角函數、圓錐曲線結合命題。09年理科佔到5分,文科佔到13分
必修五:1、解三角形:(正、餘弦定理、三角恆等變換)高考中理科佔到22分左右,數學佔到13分左右2、數列:高考必考,17---22分3、不等式:(線性規劃,聽課時易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。
高考文科數學知識點總結
乘法與因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根與系數的關系
X1+X2=-b/aX1__X2=c/a注:韋達定理
判別式
b2-4a=0注:方程有相等的兩實根
b2-4ac>0注:方程有一個實根
b2-4ac<0注:方程有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圓半徑
餘弦定理:b2=a2+c2-2accosB
注:角B是邊a和邊c的夾角
高考文科數學知識點總結相關 文章 :
★ 2022北京卷高考文科數學試題及答案解析
★ 2022全國新高考Ⅰ卷文科數學試題及答案解析
★ 2022年全國新高考1卷數學試題及答案解析
★ 2022全國新高考Ⅱ卷文科數學試題及答案解析
★ 高中導數知識點總結大全
★ 山東2022高考文科數學試題及答案解析
★ 湖北2022高考文科數學試題及答案解析
★ 2022河北高考文科數學試題及答案解析
★ 高中文科數學復習指導與注意事項
★ 2017高考數學三角函數知識點總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();2. 高中數學必修幾是高考重點
高中數學重點有什麼?該怎樣攻克?
高中數學重點內容還有很多.這些重點都是保持多年來的經驗,他們分析過高考數學的題型,高中數學重點分為以下幾個部分.
向量講解
其實高中數學重點就是在必修的裡面.必修是每個高中生都必須學習的,不管是分不分文理科,他們都是會學習的.很多重點都是在必修裡面,然而在選秀當中就是講一些統計之類的問題,這都是我們在生活當中就會學到的,所以這些都不是重點,重中之重就是在必修的課本當中.
3. 文科數學高考必考的知識點有哪些
選擇:集合、面積體積、三角系列、概率、函數、向量、不等式、圓錐曲線、復數
大題:概率、三角函數、數列、幾何、圓錐曲線、極限、導數、直線與圓、不等式。
范圍都在必修12345和選修1-1、1-2、4-4.內
考點也就那幾個
集合、
復數、
概率、
橢圓、
雙曲線、
拋物線、
命題、
等差、
等比、
框圖、
三角函數、
解三角、
三視圖、
求體積、求面積、
解不等式、
向量、
線性、
樹狀圖、
方差、
解析幾何、
求導、
坐標系、
對數、指數、
圓。
4. 關於高考!!數學需要掌握那些重點知識(文科)
高中數學重點有什麼?該怎樣攻克?
高中數學重點內容還有很多.這些重點都是保持多年來的經驗,他們分析過高考數學的題型,高中數學重點分為以下幾個部分.
向量講解
其實高中數學重點就是在必修的裡面.必修是每個高中生都必須學習的,不管是分不分文理科,他們都是會學習的.很多重點都是在必修裡面,然而在選秀當中就是講一些統計之類的問題,這都是我們在生活當中就會學到的,所以這些都不是重點,重中之重就是在必修的課本當中.
5. 高三文科要怎麼整理數學必修一二三四五的知識點
個人建議,整理的目的在於記憶與應用,也就是考試能拿到分數,漂亮不漂亮的意義實在不大。
重點還是函數(基本函數,不等式,數列,三角函數,復數,解析幾何,這些都算一個大范疇)、立體幾何、排列組合與概率。
以這樣的大框架來整理,同時重點記住解題的方法,不要在意整理出來的那幾張紙。
6. 高二數學文科重點知識點總結
因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。我高二頻道為你整理了《 高二數學 重點知識歸納》,助你金榜題名!
高二數學文科重點知識點 總結
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定 方法 有:定義法(作差比較和作商比較)
導數法(適用於多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關於原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。
判別方法:定義法,圖像法,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區間上的函數解析式。
高二數學文科重點知識點總結
1.數列的定義
按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項
(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那麼它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列
(2)在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….
(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當於f(n),而項數是指這個數在數列中的位置序號,它是自變數的值,相當於f(n)中的n
(5)次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合
2.數列的分類
(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.
(2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.
3.數列的通項公式
數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,
這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,
由公式寫出的後續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.
再強調對於數列通項公式的理解注意以下幾點:
(1)數列的通項公式實際上是一個以正整數集N或它的有限子集{1,2,…,n}為定義域的函數的表達式.
(2)如果知道了數列的通項公式,那麼依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.
(3)如所有的函數關系不一定都有解析式一樣,並不是所有的數列都有通項公式.
如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.
(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:
(5)有些數列,只給出它的前幾項,並沒有給出它的構成規律,那麼僅由前面幾項歸納出的數列通項公式並不.
4.數列的圖象
對於數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:
這就是說,上面可以看成是一個序號集合到另一個數的集合的映射.因此,從映射、函數的觀點看,數列可以看作是一個定義域為正整集N(或它的有限子集{1,2,3,…,n})的函數,當自變數從小到大依次取值時,對應的一列函數值.這里的函數是一種特殊的函數,它的自變數只能取正整數.
由於數列的項是函數值,序號是自變數,數列的通項公式也就是相應函數和解析式.
數列是一種特殊的函數,數列是可以用圖象直觀地表示的.
數列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數列的圖象表示可以直觀地看出數列的變化情況,但不精確.
把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續正整數組成的集合,其圖象是無限個或有限個孤立的點.
高二數學文科重點知識點總結
1.求函數的單調性:
利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恆f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恆f(x)0,則函數yf(x)在區間(a,b)上為常數函數。
利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。
反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,
(1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);
(2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);
(3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恆成立。
2.求函數的極值:
設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。
可導函數的極值,可通過研究函數的單調性求得,基本步驟是:
(1)確定函數f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區間,並列表:x變化時,f(x)和f(x)值的變化情況:
(4)檢查f(x)的符號並由表格判斷極值。
3.求函數的值與最小值:
如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是的。
求函數f(x)在區間[a,b]上的值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;
(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的值與最小值。
4.解決不等式的有關問題:
(1)不等式恆成立問題(絕對不等式問題)可考慮值域。
f(x)(xA)的值域是[a,b]時,
不等式f(x)0恆成立的充要條件是f(x)max0,即b0;
不等式f(x)0恆成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時,
不等式f(x)0恆成立的充要條件是b0;不等式f(x)0恆成立的充要條件是a0。
(2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。
5.導數在實際生活中的應用:
實際生活求解(小)值問題,通常都可轉化為函數的最值.在利用導數來求函數最值時,一定要注意,極值點的單峰函數,極值點就是最值點,在解題時要加以說明。
高二數學文科重點知識點總結相關 文章 :
★ 高二文科數學知識點總結
★ 高二文科數學知識點匯總
★ 高二文科數學知識點匯總(2)
★ 高二文科數學導數公式知識點歸納
★ 文科高二數學導數知識點總結
★ 高二文科數學基礎知識點
★ 高二文科數學復習知識點記憶口訣
★ 高二文科數學知識點記憶口訣
★ 高二數學整體知識總結
★ 高中文科數學知識考點解析大全集錦
7. 高三數學文科知識點總結
高中 學習 方法 其實很簡單,但是這個方法要一直保持下去,才能在最終考試時看到成效,如果對某一科目感興趣或者有天賦異稟,那麼學習成績會有明顯提高,分數也會大幅度上漲。以下是我給大家整理的 高三數學 文科知識點 總結 ,希望能幫助到你!
高三數學文科知識點總結1
隨機抽樣
簡介
(抽簽法、隨機樣數表法)常常用於總體個數較少時,它的主要特徵是從總體中逐個抽取;
優點:操作簡便易行
缺點:總體過大不易實行
方法
(1)抽簽法
一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻後,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。
(抽簽法簡單易行,適用於總體中的個數不多時。當總體中的個體數較多時,將總體「攪拌均勻」就比較困難,用抽簽法產生的樣本代表性差的可能性很大)
(2)隨機數法
隨機抽樣中,另一個經常被採用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣。
分層抽樣
簡介
分層抽樣主要特徵分層按比例抽樣,主要使用於總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等N/M。
定義
一般地,在抽樣時,將總體分成互不交叉的層,然後按照一定的比例,從各層獨立地抽取一定數量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣。
整群抽樣
定義
什麼是整群抽樣
整群抽樣又稱聚類抽樣。是將總體中各單位歸並成若干個互不交叉、互不重復的集合,稱之為群;然後以群為抽樣單位抽取樣本的一種抽樣方式。
應用整群抽樣時,要求各群有較好的代表性,即群內各單位的差異要大,群間差異要小。
優缺點
整群抽樣的優點是實施方便、節省經費;
整群抽樣的缺點是往往由於不同群之間的差異較大,由此而引起的抽樣誤差往往大於簡單隨機抽樣。
實施步驟
先將總體分為i個群,然後從i個群鍾隨即抽取若干個群,對這些群內所有個體或單元均進行調查。抽樣過程可分為以下幾個步驟:
一、確定分群的標注
二、總體(N)分成若干個互不重疊的部分,每個部分為一群。
三、據各樣本量,確定應該抽取的群數。
四、採用簡單隨機抽樣或系統抽樣方法,從i群中抽取確定的群數。
例如,調查中學生患近視眼的情況,抽某一個班做統計;進行產品檢驗;每隔8h抽1h生產的全部產品進行檢驗等。
與分層抽樣的區別
整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。
分層抽樣要求各層之間的差異很大,層內個體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內個體或單元差異大;
分層抽樣的樣本是從每個層內抽取若干單元或個體構成,而整群抽樣則是要麼整群抽取,要麼整群不被抽取。
系統抽樣
定義
當總體中的個體數較多時,採用簡單隨機抽樣顯得較為費事。這時,可將總體分成均衡的幾個部分,然後按照預先定出的規則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統抽樣。
步驟
一般地,假設要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進行系統抽樣:
(1)先將總體的N個個體編號。有時可直接利用個體自身所帶的號碼,如學號、准考證號、門牌號等;
(2)確定分段間隔k,對編號進行分段。當N/n(n是樣本容量)是整數時,取k=N/n;
(3)在第一段用簡單隨機抽樣確定第一個個體編號l(l≤k);
(4)按照一定的規則抽取樣本。通常是將l加上間隔k得到第2個個體編號(l+k),再加k得到第3個個體編號(l+2k),依次進行下去,直到獲取整個樣本。
高三數學文科知識點總結2
(1)先看「充分條件和必要條件」
當命題「若p則q」為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。
但為什麼說q是p的必要條件呢?
事實上,與「p=>q」等價的逆否命題是「非q=>非p」。它的意思是:若q不成立,則p一定不成立。這就是說,q對於p是必不可少的,因而是必要的。
(2)再看「充要條件」
若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q
回憶一下初中學過的「等價於」這一概念;如果從命題A成立可以推出命題B成立,反過來,從命題B成立也可以推出命題A成立,那麼稱A等價於B,記作A<=>B。「充要條件」的含義,實際上與「等價於」的含義完全相同。也就是說,如果命題A等價於命題B,那麼我們說命題A成立的充要條件是命題B成立;同時有命題B成立的充要條件是命題A成立。
(3)定義與充要條件
數學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如「兩組對邊分別平行的四邊形叫做平行四邊形」這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
顯然,一個定理如果有逆定理,那麼定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。
「充要條件」有時還可以改用「當且僅當」來表示,其中「當」表示「充分」。「僅當」表示「必要」。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的「結論」都可作為必要條件。
高三數學文科知識點總結3
1.不等式的定義
在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.
2.比較兩個實數的大小
兩個實數的大小是用實數的運算性質來定義的,
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,則有>1?;=1?;<1?.
概括為:作差法,作商法,中間量法等.
3.不等式的性質
(1)對稱性:a>b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可開方:a>b>0?(n∈N,n≥2).
復習指導
1.「一個技巧」作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.
2.「一種方法」待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最後利用不等式的性質求出目標式的范圍.
3.「兩條常用性質」
(1)倒數性質:①a>b,ab>0?<;②a<0
③a>b>0,0;④0
(2)若a>b>0,m>0,則
①真分數的性質:<;>(b-m>0);
②假分數的性質:>;<(b-m>0).
高三數學文科知識點總結相關 文章 :
★ 高三文科數學知識要點總結
★ 高三文科數學常考知識點歸納整理
★ 高三文科數學常考知識點整理歸納
★ 2016高三文科數學知識點
★ 高考文科數學知識點總結
★ 高三文科數學常考知識點歸納
★ 高三數學知識點考點總結大全
★ 高考文科數學知識點歸納
★ 高三數學必考知識點復習總結
★ 2020高考文科數學知識點總結
8. 高考時文科的數學主要都考哪些內容
高考時文科的數學主要考試內容如下:
1.函數或方程或不等式的題目,先直接思考後建立三者的聯系。首先考慮定義域,其次是函數圖象。
2.面對含有參數的初等函數來說,在研究的時候應該抓住參數有沒有影響到函數的不變的性質。如所過的定點,二次函數的對稱軸或是„„; 如果產生了影響,應考慮分類討論。
3.填空中出現不等式的題目(求最值、范圍、比較大小等),優選特殊值法;
4.求參數的取值范圍,應該建立關於參數的等式或是不等式,用函數的定義域或是值域或是解不等式完成,在對式子變形的過程中,優先選擇分離參數的方法;
5.恆成立問題或是它的反面,可以轉化為最值問題,注意二次函數的應用,靈活使用閉區間上的最值,分類討論的思想,分類討論應該不重復不遺漏;
6.圓錐曲線的題目優先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式問題;
7.求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數法,如果不知道
第3/4頁
曲線的形狀,則所用的步驟為建系、設點、列式、化簡(注意去掉不符合條件的特殊點);
8.求橢圓或是雙曲線的離心率,建立關於a、b、c之間的關系等式即可(多觀察圖形,注意圖形中的垂直、中點等隱含條件);個別題目考慮圓錐曲線的第二定義。
9.三角函數求周期、單調區間或是最值,優先考慮化為一次同角弦函數,然後使用輔助角公式解答;解三角形的題目,重視內角和定理的使用;與向量聯系的題目,注意向量角的范圍;
10、向量問題兩條主線:轉化為基底和建系,當題目中有明顯的對稱、垂直關系時,優先選擇建系。
11.數列的題目與和有關,優選和通公式,優選作差的方法;注意歸納、猜想之後證明;猜想的方向是兩種特殊數列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想;
12.導數的題目常規的一般不難,但要注意解題的層次與步驟,如果要用構造函數證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,注意點是否在曲線上;
12.遇到復雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知(即有平方關系),可使用三角換元來完成;
13.絕對值問題優先選擇去絕對值,去絕對值優先選擇使用定義;
14.與圖象平移有關的,注意口訣「左加右減,上加下減」只用於函數
15.關於中心對稱問題,只需使用中點坐標公式就可以,關於軸對稱問題,注意兩個等式的運用:一是垂直,二是中點在對稱軸上。
9. 高三文科數學常考知識點整理歸納
數學已成為許多國家及地區的 教育 范疇中的一部分。它應用於不同領域中,包括科學、工程、醫學、經濟學和金融學等。這次我給大家整理了高三文科數學常考知識點,供大家閱讀參考。
高三文科數學常考知識點
一、導數的應用
1.用導數研究函數的最值
確定函數在其確定的定義域內可導(通常為開區間),求出導函數在定義域內的零點,研究在零點左、右的函數的單調性,若左增,右減,則在該零點處,函數去極大值;若左邊減少,右邊增加,則該零點處函數取極小值。學習了如何用導數研究函數的最值之後,可以做一個有關導數和函數的綜合題來檢驗下學習成果。
2.生活中常見的函數優化問題
1)費用、成本最省問題
2)利潤、收益問題
3)面積、體積最(大)問題
二、推理與證明
1.歸納推理:歸納推理是 高二數學 的一個重點內容,其難點就是有部分結論得到一般結論,破解的 方法 是充分考慮部分結論提供的信息,從中發現一般規律;類比推理的難點是發現兩類對象的相似特徵,由其中一類對象的特徵得出另一類對象的特徵,破解的方法是利用已經掌握的數學知識,分析兩類對象之間的關系,通過兩類對象已知的相似特徵得出所需要的相似特徵。
2.類比推理:由兩類對象具有某些類似特徵和其中一類對象的某些已知特徵,推出另一類對象也具有這些特徵的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。
三、不等式
對於含有參數的一元二次不等式解的討論
1)二次項系數:如果二次項系數含有字母,要分二次項系數是正數、零和負數三種情況進行討論。
2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過因式分解的方法求出來,則根據這兩個根的大小進行分類討論,這時,兩個根的大小關系就是分類標准,如果一元二次不等式對應的方程根不能通過因式分解的方法求出來,則根據方程的判別式進行分類討論。通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中 總結 出來。
高三文科數學知識點
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
高三數學 知識點
一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件.
二、函數(30課時,12個)1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例.
三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.
四、三角函數(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式』7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16餘弦定理;17斜三角形解法舉例.
五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移.
六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.
七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程.
八、圓錐曲線(18課時,7個)1橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質.九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項式定理(18課時,8個)1.分類計數原理與分步計數原理.2.排列;3.排列數公式』4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質.
十一、概率(12課時,5個)1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗.選修Ⅱ(24個)
十二、概率與統計(14課時,6個)1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態分布;6.線性回歸.
十三、極限(12課時,6個)1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性.
十四、導數(18課時,8個)1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8函數的值和最小值.
十五、復數(4課時,4個)1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法答案補充高中數學有130個知識點,從前一份試卷要考查90個知識點,覆蓋率達70%左右,而且把這一項作為衡量試捲成功與否的標准之一.這一傳統近年被打破,取而代之的是關注思維,突出能力,重視思想方法和思維能力的考查.現在的我們學數學比前人幸福啊!!相信對你的學習會有幫助的,祝你成功!答案補充一試全國高中數學聯賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數學競賽大綱所確定的所有內容。補充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點,重心。三角形內到三邊距離之積的點,重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積。在周長一定的簡單閉曲線的集合中,圓的面積。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運動:反射、平移、旋轉。復數方法、向量方法。平面凸集、凸包及應用。答案補充第二數學歸納法。遞歸,一階、二階遞歸,特徵方程法。函數迭代,求n次迭代,簡單的函數方程。n個變元的平均不等式,柯西不等式,排序不等式及應用。復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。圓排列,有重復的排列與組合,簡單的組合恆等式。一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函數,費馬小定理,歐拉函數,孫子定理,格點及其性質。3、立體幾何多面角,多面角的性質。三面角、直三面角的基本性質。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標方程,直線束及其應用。二元一次不等式表示的區域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。
高三數學常考知識點
導數:導數的意義-導數公式-導數應用(極值最值問題、曲線切線問題)
1、導數的定義:在點處的導數記作.
2.導數的幾何物理意義:曲線在點處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數的導數公式:①;②;③;
⑤;⑥;⑦;⑧。
4.導數的四則運演算法則:
5.導數的應用:
(1)利用導數判斷函數的單調性:設函數在某個區間內可導,如果,那麼為增函數;如果,那麼為減函數;
注意:如果已知為減函數求字母取值范圍,那麼不等式恆成立。
(2)求極值的步驟:
①求導數;
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負,那麼函數在這個根處取得極大值;如果左負右正,那麼函數在這個根處取得極小值;
(3)求可導函數值與最小值的步驟:
ⅰ求的根;ⅱ把根與區間端點函數值比較,的為值,最小的是最小值。
數學的 學習方法
1、養成良好的學習數學習慣。 建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的數學思想和方法,學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。
3、逐步形成 「以我為主」的學習模式 數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神。
4、記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
高三文科數學常考知識點整理歸納相關 文章 :
★ 高三文科數學重點公式
★ 高三數學必考知識點
★ 高三文科數學公式總結
★ 高三年級文科數學學習方法總結
★ 高三文科數學方法
★ 高考數學必考重點知識大全
★ 高三數學復數知識點整理
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();