當前位置:首頁 » 基礎知識 » 安徽數學重要知識點
擴展閱讀
基礎層什麼時候開盤 2024-11-02 20:12:59
磚混結構一般選什麼基礎 2024-11-02 20:12:56
兒童血沉96是怎麼回事 2024-11-02 20:02:57

安徽數學重要知識點

發布時間: 2022-11-22 13:44:33

⑴ 高考+2011年安徽省高考數學重點知識點和題型

函數、數列、立體幾何、圓錐曲線(橢圓拋物線雙曲線)是大題的組成部分:題型是選擇、填空、計算;選擇大概60分,填空25左右,剩下都是大題

⑵ 初中數學基礎知識點總結

初中數學只要內容是函數的學習,其中重點是二次函數的解法。二次函數在數學中佔有一定地位,甚至以後的數學學習中都會遇到二次函數問題,因此牢牢掌握二次函數的解法對於大家以後數學學習十分有幫助。現在將初中數學重要知識點整理如下,供大家學習。

目錄

有理數

代數式

分式的運算

方程與方程組

有理數

1、數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。

2、絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

3、有理數的運算:

加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

減法:減去一個數,等於加上這個數的相反數。

乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。

除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。

乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。

平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

4、實數:

①實數分有理數和無理數。

②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

③每一個實數都可以在數軸上的一個點來表示。


代數式

1、合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。

2、整式與分式,整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

3、整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。冪的運算:AM+AN=A(M+N)(A/B)N=AN/BN 除法一樣。

整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

公式兩條:平方差公式/完全平方公式

整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

方法 :提公因式法、運用公式法、分組分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。


分式的運算

1、乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

2、除法:除以一個分式等於乘以這個分式的倒數。

3、加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。

4、分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。

方程與不等式


方程與方程組

1、一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

2、解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。

3、二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。

4、二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程

5、一元二次方程的二次函數的關系

關於二次函數的解法公式其實很簡單,關鍵是我們如何應用這些公式來解答實際問題,這有待於大家在以後學習過程中勤加練習, 總結 經驗 了。


相關 文章 :

1. 初中數學基礎知識點總結

2. 初中數學知識點整理:

3. 初一數學基礎知識有哪些?

4. 初中數學的常考知識點20條

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑶ 高中數學知識點全總結最全版

高中數學知識點全 總結 最全版有哪些?高中數學小題一般是信息量少、運算量小,易於把握,不要輕易放過,應爭取在大題之前盡快解決,一起來看看高中數學知識點全總結最全版,歡迎查閱!

目錄

高中數學重點知識點

高考數學常考知識點

高中數學重點知識點講解

高中數學重點知識點

1.有理數:

(1)凡能寫成形式的數,都是有理數,整數和分數統稱有理數.

注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;?不是有理數;

(2)有理數的分類:①②

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

(4)自然數?0和正整數;a>0?a是正數;a<0?a是負數;

a≥0?a是正數或0?a是非負數;a≤0?a是負數或0?a是非正數.

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

(3)相反數的和為0?a+b=0?a、b互為相反數.

(4)相反數的商為-1.

(5)相反數的絕對值相等

4.絕對值:

(1)正數的絕對值等於它本身,0的絕對值是0,負數的絕對值等於它的相反數;

注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:或;

(3);;

(4)|a|是重要的非負數,即|a|≥0;

5.有理數比大小:

(1)正數永遠比0大,負數永遠比0小;

(2)正數大於一切負數;

(3)兩個負數比較,絕對值大的反而小;

(4)數軸上的兩個數,右邊的數總比左邊的數大;

(5)-1,-2,+1,+4,-0.5,以上數據表示與標准質量的差,絕對值越小,越接近標准。

6.倒數:乘積為1的兩個數互為倒數;

注意:0沒有倒數;若ab=1?a、b互為倒數;若ab=-1?a、b互為負倒數.

等於本身的數匯總:

相反數等於本身的數:0

倒數等於本身的數:1,-1

絕對值等於本身的數:正數和0

平方等於本身的數:0,1

立方等於本身的數:0,1,-1.

7.有理數加法法則:

(1)同號兩數相加,取相同的`符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大加數的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10有理數乘法法則:(1)兩數相乘,同號得正,異號得負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個因式都不為零,積的符號由負因式的個數決定.奇數個負數為負,偶數個負數為正。

11有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.(簡便運算)

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.

13.有理數乘方的法則:(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;

14.乘方的定義:(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

(3)a2是重要的非負數,即a2≥0;若a2+|b|=0?a=0,b=0;

(4)據規律底數的小數點移動一位,平方數的小數點移動二位.

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.混合運演算法則:先乘方,後乘除,最後加減;注意:不省過程,不跳步驟。

18.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種 方法 ,但不能用於證明.常用於填空,選擇。

<<<

高考數學常考知識點

一、三角函數

1.周期函數:一般地,對於函數f(x),如果存在一個不為0的常數T使得當x取定義域內的每一個值時,都有f(x+T)=f(x),那麼函數f(x)就叫做周期函數,非零常數T叫做這個函數的周期,把所有周期中存在的最小正數,叫做最小正周期三角函數屬於高中數學中的重點內容,在高考理科數學中更是占據很重要的位置。

2.三角函數的圖像:可以利用三角函數線用幾何法作出,在精確度要求不高的情況下,常用五點法作圖,要特別注意「五點」的取法。

3.三角函數的定義域:三角函數的定義域是研究其他一切性質的前提,求三角函數的定義域實際上就是解最簡單的三角不等式,通常可用三角函數的圖像或三角函數線來求解,注意數形結合思想的應用。

二、反三角函數主要是三個:

y=arcsin(x),定義域[-1,1] ,值域[-π/2,π/2]圖象用紅色線條;

y=arccos(x),定義域[-1,1] , 值域[0,π],圖象用藍色線條;

y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;

sin(arcsin x)=x,定義域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx

三、三角函數其他公式

arcsin(-x)=-arcsinx

arccos(-x)=π-arccosx

arctan(-x)=-arctanx

arccot(-x)=π-arccotx

arcsinx+arccosx=π/2=arctanx+arccotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

當x∈[—π/2,π/2]時,有arcsin(sinx)=x

當x∈[0,π],arccos(cosx)=x

x∈(—π/2,π/2),arctan(tanx)=x

x∈(0,π),arccot(cotx)=x

x〉0,arctanx=π/2-arctan1/x,arccotx類似

若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)

四、三角函數與平面向量的綜合問題

(1)巧妙「轉化」--把以「向量的數量積、平面向量共線、平面向量垂直」「向量的線性運算」形式出現的條件還其本來面目,轉化為「對應坐標乘積之間的關系」;

(2)巧挖「條件」--利用隱含條件」正弦函數、餘弦函數、的有界性「,把不等式的恆成立問題轉化為含參數ψ的方程,求出參數ψ的值,從而可求函數的解析式;

(3)活用」性質「--活用正弦函數與餘弦函數的單調性、對稱性、周期性、奇偶性,以及整體換元思想,即可求其對稱軸與單調區間。

五、見三角函數「對稱」問題,啟用圖象特徵代數關系:(A≠0)

1.函數y=Asin(wx+φ)和函數y=Acos(wx+φ)的圖象,關於過最值點且平行於y軸的`直線分別成軸對稱;

2.函數y=Asin(wx+φ)和函數y=Acos(wx+φ)的圖象,關於其中間零點分別成中心對稱;

3.同樣,利用圖象也可以得到函數y=Atan(wx+φ)和函數y=Acot(wx+φ)的對稱性質。

<<<

高中數學重點知識點講解

直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

高中數學重點知識點講解:直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。在高中數學里直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

②過兩點的直線的斜率公式:

注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後高中數學涉及到求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

高中數學重點知識點講解:直線方程

①點斜式:

直線斜率k,且過點

注意:高中數學在關於直線方程解法中,當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:

其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行於x軸的直線:

(b為常數);平行於y軸的直線:

(a為常數);

<<<


高中數學知識點全總結最全版相關 文章 :

★ 高中數學知識點全總結最全版

★ 高中數學學習方法:知識點總結最全版

★ 高中數學知識點總結及公式大全

★ 高中數學必考知識點歸納整理

★ 高中數學知識點總結及公式大全(4)

★ 高中數學知識點總結及公式大全(3)

★ 高三數學學習方法和技巧大全

★ 高一數學基礎知識學習方法歸納

★ 2020高一數學學習方法總結大全

★ 高一數學學習方法總結大全

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑷ 初二數學必備知識點

學習的三個必要條件是:多觀察、多吃苦、多研究。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。

初二上學期數學知識點歸納

一、勾股定理

1、勾股定理

直角三角形兩直角邊a,b的平方和等於斜邊c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果三角形的三邊長a,b,c有這種關系,那麼這個三角形是直角三角形。

3、勾股數

滿足的三個正整數,稱為勾股數。

常見的勾股數組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)。

二、證明

1、對事情作出判斷的 句子 ,就叫做命題。即:命題是判斷一件事情的句子。

2、三角形內角和定理:三角形三個內角的和等於180度。

(1)證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。

(2)三角形的外角與它相鄰的內角是互為補角。

3、三角形的外角與它不相鄰的內角關系

(1)三角形的一個外角等於和它不相鄰的兩個內角的和。

(2)三角形的一個外角大於任何一個和它不相鄰的內角。

4、證明一個命題是真命題的基本步驟

(1)根據題意,畫出圖形。

(2)根據條件、結論,結合圖形,寫出已知、求證。

(3)經過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據。如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。

八年級 下冊數學復習資料

【零指數冪與負整指數冪】

重點:冪的性質(指數為全體整數)並會用於計算以及用科學記數法表示一些絕對值較小的數

難點:理解和應用整數指數冪的性質。

一、復習練習:

1、;=;=,=,=。

2、不用計算器計算:÷(—2)2—2-1+

二、指數的范圍擴大到了全體整數.

1、探索

現在,我們已經引進了零指數冪和負整數冪,指數的范圍已經擴大到了全體整數.那麼,在「冪的運算」中所學的冪的性質是否還成立呢?與同學們討論並交流一下,判斷下列式子是否成立.

(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2

2、概括:指數的范圍已經擴大到了全體整數後,冪的運演算法則仍然成立。

3、例1計算(2mn2)-3(mn-2)-5並且把結果化為只含有正整數指數冪的形式。

解:原式=2-3m-3n-6×m-5n10=m-8n4=

4練習:計算下列各式,並且把結果化為只含有正整數指數冪的形式:

(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.

三、科學記數法

1、回憶:在之前的學習中,我們曾用科學記數法表示一些絕對值較大的數,即利用10的正整數次冪,把一個絕對值大於10的數表示成a×10n的形式,其中n是正整數,1≤∣a∣<10.例如,864000可以寫成8.64×105.

2、類似地,我們可以利用10的負整數次冪,用科學記數法表示一些絕對值較小的數,即將它們表示成a×10-n的形式,其中n是正整數,1≤∣a∣<10.

3、探索:

10-1=0.1

10-2=

10-3=

10-4=

10-5=

歸納:10-n=

例如,上面例2(2)中的0.000021可以表示成2.1×10-5.

4、例2、一個納米粒子的直徑是35納米,它等於多少米?請用科學記數法表示.

分析我們知道:1納米=米.由=10-9可知,1納米=10-9米.

所以35納米=35×10-9米.

而35×10-9=(3.5×10)×10-9

=35×101+(-9)=3.5×10-8,

所以這個納米粒子的直徑為3.5×10-8米.

5、練習

①用科學記數法表示:

(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.

②用科學記數法填空:

(1)1秒是1微秒的1000000倍,則1微秒=_________秒;

(2)1毫克=_________千克;

(3)1微米=_________米;(4)1納米=_________微米;

(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.

初二數學復習提綱方法

一、克服心理疲勞

第一,要有明確的學習目的。學習就像從河裡抽水,動力越足,水流量越大。動力來源於目的,只有樹立正確的學習目的,才會產生強大的學習動力;第二,要培養濃厚的學習興趣。興趣的形成與大腦皮層的興奮中心相聯系,並伴有愉快、喜悅、積極的情緒體驗。而心理疲勞的產生正是大腦皮層抵制的消極情緒引起的。因此,培養自己的學習興趣,是克服心理疲勞的關鍵所在。有了興趣,學習才會有積極性、自覺性、主動性,才能使心理處於一種良好的競技狀態;第三,要注意學習的多樣化,書本學習本身就是枯燥單調的,如果多次重復學習某門課程或章節內容,易使大腦皮層產生抑制,出現心理飽和,產生厭倦情緒。所以考生不妨將各門課程交替起來進行復習。

二、戰勝高原現象

復習中的高原現象,是指在復習到一定時期時,往往停滯不前,不僅復習不見進步,反而有退步的現象。在高原期內,並非學習毫無進步,而是某部分進步,另外一些部分則退步,兩者相抵,致使復習成效未從根本上發生變化,因而使人灰心失望。當考生在復習迎考過程中遭遇高原期時,切忌急躁或喪失信心,應找出學習方法、學習積極性等方面的原因。及時調整復習進度,在科學用腦、提高復習效率上多下功夫。

三、重視復習「錯誤」

如果在復習中不善於從錯誤中走出來,缺陷和漏洞就會越來越多,任其下去,最終就會蟻穴潰堤。在備考期間,要想降低錯誤率,除了及時訂正、全面扎實復習之外,非常關鍵的問題就是找出原因,不斷復習錯誤。即定期翻閱錯題,回想錯誤的原因,並對各種錯題及錯誤原因進行分類整理。對其中那些反復錯誤的問題還可考慮再做一遍,以絕「後患」。錯誤原因大致有:概念理解上的問題、粗心大意帶來的問題以及書寫潦草凌亂給自己帶來的錯覺問題等,從而有效地避免在考試時再犯同一類型的錯誤。

四、把握心理特點搞好考前復習

實踐證明,一個人在氣質、性格、心理穩定程度等因素也會影響考前復習。考生在復習迎考過程中,應根據自己的心理特點來制訂復習迎考計劃,根據自己的心態來調整復習的進度,選擇與運用的復習方式方法,使自己的考前復習達到預期的效果。

1、課本不容忽視

對於初二的學生來說,都在學習新課,課本是大家都容易忽視的一個重要的復習資料。平時在學校的課堂上大家都會隨堂記筆記,課本基本不會翻看,建議同學們在翻看筆記的同時,對照課本,把學過的知識點反復閱讀、理解,並對照課後練習里的習題進行反復思考、琢磨、融會貫通,加深對知識點的理解。對於課本上的重點內容、重點例題也要著重記憶。

2、錯題本

相信學習習慣好的學生都應該有一本錯題本,把每次習題、作業、測試中的錯題抄錄下來,明確答案,找到錯誤原因,發現自己知識和能力上的薄弱點,經常拿出來翻看,遇到反復做錯的題目,要主動和同學商量,向老師請教,徹底把題目弄懂、弄透,以免再犯同類錯誤。


初二數學必備知識點相關 文章 :

★ 初二數學重要知識點

★ 初二數學基礎知識點歸納

★ 初二數學知識點歸納梳理

★ 初二數學知識點歸納整理

★ 初二數學知識點整理

★ 初二數學知識點復習整理

★ 初二數學知識點整理歸納

★ 初二數學知識點歸納上冊人教版

★ 初二數學知識點歸納

★ 初二數學課文知識點

⑸ 初一數學知識點(安徽版)

1.ax=b的解的情況下①a=0,b=0時有無數解②a=0,b≠0時無解③a≠0有唯一解x=b/a
做做下面的題有用的,我們老師讓我們做過的:
2.如果關於x的方程m(x-1)=2001-n(x-2)有無數多個解。求m2001的次方+n2001的次方的值。
3.在a的取值范圍中,當A為何整數時,不等式2ax+x>2a+1的解為x<1?
4.鐵路旁的一條平行小路上有一行人與一騎車人同時向東行進,行人速度為3.6千米/小時,騎車人速度為10.8千米/小時,如果一列火車從他們背後開過來,它通過行人用了22秒,通過騎車人用了26秒,求火車的本身長為多少米?還有幾何很重要,不如燕尾型經常考,翻折問題之類的

⑹ 高考數學必考知識點2022

數學是一切科學的基礎,一不小心就容易出錯,在高考上出錯可就不好了.接下來是我為大家整理的高考數學必考知識點2022,希望大家喜歡!

目錄

高考數學必考知識點一

高考數學必考知識點二

高考數學必考知識點三

高考數學必考知識點四

高考數學必考知識點一

一、集合、簡易邏輯(14課時,8個)

1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函數(30課時,12個)

1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。

三、數列(12課時,5個)

1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

四、三角函數(46課時,17個)

1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)

1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

六、不等式(22課時,5個)

1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程。

八、圓錐曲線(18課時,7個)

1.橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質。

九、直線、平面、簡單何體(36課時,28個)

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球。

十、排列、組合、二項式定理(18課時,8個)

1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。

十一、概率(12課時,5個)

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗。

選修Ⅱ(24個)

十二、概率與統計(14課時,6個)

1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣 方法 ;4.總體分布的估計;5.正態分布;6.線性回歸。

十三、極限(12課時,6個)

1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。

十四、導數(18課時,8個)

1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的值和最小值。

十五、復數(4課時,4個)

1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二項方程的解法。

〈〈〈

高考數學必考知識點二

1、圓的定義:

平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(1)標准方程,圓心,半徑為r;

(2)一般方程

當時,方程表示圓,此時圓心為,半徑為

當時,表示一個點;當時,方程不表示任何圖形。

(3)求圓方程的方法:

一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。

3、直線與圓的位置關系:

直線與圓的位置關系有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有

(2)過圓外一點的切線:

①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關系:

通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

設圓,

兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

當時兩圓外離,此時有公切線四條;

當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當時,兩圓內切,連心線經過切點,只有一條公切線;

當時,兩圓內含;當時,為同心圓。

注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點

〈〈〈

高考數學必考知識點三

一、隨機事件

主要掌握好(三四五)

(1)事件的三種運算:並(和)、交(積)、差;注意差A-B可以表示成A與B的逆的積。

(2)四種運算律:交換律、結合律、分配律、德莫根律。

(3)事件的五種關系:包含、相等、互斥(互不相容)、對立、相互獨立。

二、概率定義

(1)統計定義:頻率穩定在一個數附近,這個數稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現的可能性相等,則事件A所含基本事件個數與樣本空間所含基本事件個數的比稱為事件的古典概率;

(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;

(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

三、概率性質與公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含於A,則P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一個事件B可以在多種情形(原因)A1,A2,....,An下發生,則用全概率公式求B發生的概率;如果事件B已經發生,要求它是由Aj引起的概率,則用貝葉斯公式.

(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發生,各次試驗結果相互獨立)時,要考慮二項概率公式.

〈〈〈

高考數學必考知識點四

分層抽樣

先將總體中的所有單位按照某種特徵或標志(性別、年齡等)劃分成若干類型或層次,然後再在各個類型或層次中採用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最後,將這些子樣本合起來構成總體的樣本。

兩種方法

1.先以分層變數將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

2.先以分層變數將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最後用系統抽樣的方法抽取樣本。

3.分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。

分層標准

(1)以調查所要分析和研究的主要變數或相關的變數作為分層的標准。

(2)以保證各層內部同質性強、各層之間異質性強、突出總體內在結構的變數作為分層變數。

(3)以那些有明顯分層區分的變數作為分層變數。

分層的比例問題

(1)按比例分層抽樣:根據各種類型或層次中的單位數目占總體單位數目的比重來抽取子樣本的方法。

(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時採用該方法,主要是便於對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數據資料進行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實際的比例結構。

〈〈〈


高考數學必考知識點2022相關 文章 :

★ 高三數學二輪復習策略2022

★ 高三上冊數學教學總結2022最新

★ 2022年期末考試反思總結十篇

★ 高三數學期末知識點

★ 2022年安徽高考時間最新

★ 2022湖北高考時間安排

★ 2022高中數學教學工作計劃精選10篇

★ 高三數學教學工作計劃範本2022

★ 2022年天津高考具體時間

★ 湖南高考時間2022具體時間

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑺ 安徽省高考數學重點考哪些知識點

2次函數,方程,幾何,代數式,這是重中之重。

⑻ 初中三年數學重點知識點總結

初中三年數學重點知識點總結如下:

1、正數和負數的有關概念:(1)正數:0的數叫做正數;負數:0的數叫做負數;0既不是正數,也不是負數;(2)正數和負數表相反意義的量。

2、有理數的概念及分類。

6、有理數加法:

(1)符號相同的兩數相加:和的符號與兩個加數的符號⼀致,和的絕對值等於兩個加數絕對值之和;(2)符號相反的兩數相加:當兩個加數絕對值不等時,和的符號與絕對值較⼤的加數的符號相同,和的絕對值等於加數中較⼤的絕對值減去較⼩的絕對值;當兩個加數絕對值相等時,兩個加數互為相反數,和為零;(3)⼀個數同零相加,仍得這個數。加法的交換律:a+b=b+a;加法的結合律:(a+b)+c=a+(b+c)。

7、有理數減法:減去⼀個數,等於加上這個數的相反數。

⑼ 初中數學重點知識歸納總結

初中數學的重要知識點有有理數、實數、一元一次方程、一元二次方程等,接下來分享具體的知識點內容。

初中數學重點知識總結

(一)有理數

(1)定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

(2)數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。

(3)相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

(4)絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(5)有理數的加減法

同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。

(6)有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0.例:0×1=0

(7)有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除

以任何一個不為0的數,都得0。

(8)有理數的乘方

求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當a?看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

(二)實數

(1)平方根

平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算術平方根。一個正數有兩個實平方根,它們互為相反數,負數沒有平方根。

(2)立方根

如果一個數的立方等於a,那麼這個數叫a的立方根,也稱為三次方根。

立方根性質

①在實數范圍內,任何實數的立方根只有一個

②在實數范圍內,負數不能開平方,但可以開立方。

③0的立方根是0

(3)實數

實數,是有理數和無理數的總稱。實數具有封閉性、有序性、傳遞性、稠密性、完備性等。

(三)一元一次方程

1.一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式。

2.判斷一元一次方程的條件

(1)首先必須是方程。

(2)其次必須含有一個未知數。

(3)分母中不含有未知數。

3.解

使方程式左右兩邊值相等的未知數的值叫做方程的解。

檢驗方程的解的辦法:把未知數分別代入方程的左、右兩邊計算他們的值是否相等。

4.解方程式的步驟

解一元一次方程的步驟:去分母、去括弧、移項、合並同類項、未知數系數化為1。

(四)一元二次方程

1.只含有一個未知數(一元),並且未知數項的最高次數是2(二次)的整式方程叫做一元二次方程。可化成一般形式aX²+bX+c=0(a≠0)。

2.一元二次方程的解法

(1)開平方法

(2)配方法

(3)求根公式法

3.一元二次方程的求根公式

把方程化成一般形式aX²+bX+c=0,

求出判別式△=b²-4ac的值

當Δ=>0時,x=[-b±(b²-4ac)^(1/2)]/2a,方程有兩個不相等的實數根;

當Δ=0時,方程有兩個相等的實數根;

當Δ<0時,方程無實數根,但有2個共軛復根。