⑴ 初中數學常見的重點知識點歸納
進入初三後最重要的就是提高成績,下面我就為大家來整理一下,初中數學常見的重點知識點歸納僅供參考。
常考的數學知識點
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形 兩邊的和大於第三邊
常用的數學公式
乘法與因式分解 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a
-b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a
X1*X2=c/a 註:韋達定理
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R
註:其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB
註:角B是邊a和邊c的夾角
中數學中考知識重難點分析
1.函數(一次函數、反比例函數、二次函數)中考占總分的15%左右。
特別是 二次函數 是中考的重點,也是中考的難點,在填空、選擇、解答題中均會出現,且知識點多,題型多變。
2.應用題,中考中占總分的30%左右
包括方程(組)應用,一元一次不等式(組)應用,函數應用,解三角形應用,概率與統計應用幾種題型。
一般會出現二至三道解答題(30分左右)及2—3道選擇、填空題(10分—15分),佔中考總分的30%左右。
以上就是我為大家整理的初中數學常見的重點知識點歸納。
⑵ 初一數學重點難點總結 人教版知識點歸納
初中數學 是一個很重要的階段,下面我就大家整理一下初一數學重點難點總結。
人教版初一數學重要知識點
1.有理數:
(1)凡能寫成形式的數,都是有理數正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數注意: 0即不是正數,也不是負數;-a不一定是負數, +a也不一定是正數;p不是有理數;
(2)有理數的分類:①②2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
2.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反 數;0的相反數還是0;
(2)相反數的和為0?a+ b=0?a、b互為相反數.
3.絕對值:
(1)正數的絕對值是其本身, 0的絕對值是0 ,負數的絕對值是它的相反數;注意:絕對值的意義是數軸.上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經常分類討論;
4.有理數比大小:
(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小:(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小(5)數軸上的兩個數,右邊的數總比左邊的數大:(6)大數-小數0 ,小數-大數0.
5.互為倒數:
乘積為1的兩個數互為倒數;注意: 0沒有倒數;若a0 ,那麼的倒數是;若ab=1?a、b互為倒數;若ab=- 1?a、b互為負倒數.
初一數學必備知識一、乘方
求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數,當an看作a的n次方的結果時,也可以讀作a的n次冪。
負數的奇次冪是負數,負數的偶次冪是正數。
正數的任何次冪都是正數,0的任何正整數次冪都是0。
有理數混合運算的運算順序:
⑴先乘方,再乘除,最後加減;
⑵同極運算,從左到右進行;
⑶如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行
二、科學記數法
把一個大於10的數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學記數法。
用科學記數法表示一個n位整數,其中10的指數是n-1。
三、近似數和有效數字
接近實際數目,但與實際數目還有差別的數叫做近似數。
精確度:一個近似數四捨五入到哪一位,就說精確到哪一位。
從一個數的左邊第一個非0 數字起,到末位數字止,所有數字都是這個數的有效數字。
對於用科學記數法表示的數a×10n,規定它的有效數字就是a中的有效數字。
初中數學中考知識重難點分析1.函數(一次函數、反比例函數、二次函數)中考占總分的15%左右。
特別是二次函數是中考的重點,也是中考的難點,在填空、選擇、解答題中均會出現,且知識點多,題型多變。
而且一道解答題一般會在試卷最後兩題中出現,一般二次函數的應用和二次函數的圖像、性質及三角形、四邊形綜合題難度較大。有一定難度。
如果在這一環節掌握不好,將會直接影響代數的基礎,會對中考的分數會造成很大的影響。
2.整式、分式、二次根式的化簡運算
整式的運算、因式分解、二次根式、科學計數法及分式化簡等都是初中學習的重點,它貫穿於整個初中數學的知識,是我們進行數學運算的基礎,其中因式分解及理解因式分解和整式乘法運算的關系、分式的運算是難點。
中考一般以選擇、填空形式出現,但卻是解答題完整解答的基礎。運算能力的熟練程度和答題的正確率有直接的關系,掌握不好,答題正確率就不會很高,進而後面的的方程、不等式、函數也無法學好。
3.應用題,中考中占總分的30%左右
包括方程(組)應用,一元一次不等式(組)應用,函數應用,解三角形應用,概率與統計應用幾種題型。
一般會出現二至三道解答題(30分左右)及2—3道選擇、填空題(10分—15分),佔中考總分的30%左右。
⑶ 小學數學各年級知識點重點難點整理
不同的年級考點不一樣,知識點難易程度也不一樣。下面是我為大家整理的關於小學數學各年級知識點重點難點整理,希望對您有所幫助。歡迎大家閱讀參考學習!
一年級的知識重點
1數與計算
(1)20以內數的認識,加法和減法。
數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合式題
(2)100以內數的認識。
加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。
兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。
2量與計量
鍾面的認識(整時)。人民幣的認識和簡單計算。
3幾何初步知識
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
4應用題
比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力)
5實踐活動
選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。
二年級的知識重點
1數與計算
(1)兩位數加、減兩位數。兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。
(2)表內乘法和表內除法。乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。
(3)萬以內數的讀法和寫法。數數。百位、千位、萬位。數的讀法、寫法和大小比較。
(4)加法和減法。加法,減法。連加法。加法驗算,用加法驗算減法。
(5)混合運算。先乘除後加減。兩步計算式題。小括弧。
2量與計量
時、分、秒的認識。
米、分米、厘米的認識和簡單計算。
千克(公斤)的認識。
3幾何初步知識
直線和線段的初步認識。角的初步認識。直角。
4應用題
加法和減法一步計算的應用題。乘法和除法一步計算的應用題。比較容易的兩步計算的應用題。
5實踐活動
與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。
三年級的知識重點
1數與計算
(1)一位數的乘、除法。
一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。
(2)兩位數的乘、除法。
一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。
(3)四則混合運算。
兩步計算的式題。小括弧的使用。
(4)分數的初步認識。
分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。
2量與計量
千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。
3幾何初步知識
長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。
4應用題常見的數量關系。
解答兩步計算的應用題。
5實踐活動
聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。
四年級的知識重點
1數與計算
(1)億以內數的讀法和寫法。
計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。
(2)加法和減法。
加法,減法。
接近整十、整百數的加、減法的簡便演算法。
加、減法算式中各部分之間的關系。求未知數x。
(3)乘、除數是三位數的乘、除法。
乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。
乘、除計算的簡單估算。
乘數接近整十、整百的簡便演算法。
乘、除法算式中各部分之間的關系。求未知數x。
(4)四則混合運算。
中括弧。三步計算的式題。
(5)整數及其四則運算的關系和運算定律。
自然數與整數。十進制計數法。讀法和寫法。
四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。
運算定律。簡便運算。
(6)小數的意義、性質,加法和減法。
小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值加法和減法。加法運算定律推廣到小數。
2量與計量
年、月、日。平年、閏年。世紀。24時計時法。
角的度量。
面積單位。
3幾何初步知識
直線的測定。測量距離(工具測、步測、目測)。
射線。直角、銳角、鈍角、平角、_周角。垂線。畫垂線。平行線。畫平行線。
三角形的特徵。
三角形的內角和。
4統計初步知識
簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。
5應用題列綜合算式
解答比較容易的三步計算的應用題。
五年級的知識重點
1計算
小數乘法,小數除法,簡易方程,觀察物體,多邊形的面積,統計與可能性,數學廣角和數學綜合運用等。
在前面學習整數四則運算和小數加、減法的基礎上,繼續培養學生小數的四則運算能力。
2方程
用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的 抽象思維 能力,提高解決問題的能力。
3空間與物體
在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和 經驗 的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置。
4圖形的轉換
探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想 方法 ,促進學生空間觀念的進一步發展。
5統計與概率
教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性。
6平均數
理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。
7實際應用
通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。
六年級的知識重點
1數與計算
(1)分數的乘法和除法,分數乘法的意義,分數乘法,乘法的運算定律推廣到分數,倒數,分數除法的意義,分數除法。
(2)分數四則混合運算,分數四則混合運算。
(3)百分數,百分數的意義和寫法,百分數和分數、小數的互化。
2比和比例
比的意義和性質,比例的意義和基本性質,解比例,成正比例的量和成反比例的量。
3幾何初步知識
圓的認識,圓周率,畫圓,圓的周長和面積,扇形的認識,軸對稱圖形的初步認識,圓柱的認識,圓柱的表面積和體積,圓錐的認識,圓錐的體積,球和球的半徑、直徑的初步認識。
4統計初步知識
統計表,條形統計圖,折線統計圖,扇形統計圖。
5應用題
分數四則應用題(包括工程問題),百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算),比例尺,按比例分配。
6實踐活動
聯系學生所接觸到的社會情況組織活動,例如就家中的卧室,畫一個平面圖。
相關 文章 :
1. 小學六年級數學知識點、難點及學習方法
2. 小學六年級的數學難點解答
3. 六年級數學學習方法和重點難點
4. 小學三年級數學學習內容重點知識匯總
5. 六年級上冊數學知識點整理歸納
⑷ 初二數學難點在哪三角形那章應該注意什麼
其實初二下的數學很明顯就比初一提升了至少一個level,至少在知識量和計算量兩個方面。內容增多了,難度也增大了。
真正要說難點,幾何方面就是三角形和平行四邊形(每個版本不一樣,北師大版中平行四邊形屬於初三的內容,但是絕大部分的學校都會在初二學期末的時候將這個部分講完了)。
在三角形中,除了要熟練掌握之前所學的三角形全等的方法以及勾股定理之外,要熟練掌握的就是等腰三角形的性質與判定,特殊直角三角形的一些結論以及中垂線和角平分線性質與判定。說起來三角形的部分就只有這些,但是這個部分考試時是全部結合起來的,因此需要熟練掌握。
三角形全等的判定是需要掌握的,在之前的基礎上,又增加了直角三角形判定的方法(HL):
三角形的性質及判定(這個是重難點) ,其中「 三線合一」 的表述要能夠理解並進行熟練運用,很多題目中都會用到,另外還有等邊三角形的性質以及判定:
直角三角形的性質,在此前所學的勾股定理及其逆定理之外,又新增了其它的一些性質,尤其是 特殊三角形的性質 ,在做題時要熟練使用,可以使問題簡化很多:
這是一般直角三角形所具有的性質:
45度角和30度角的特殊直角三角形的性質 ,這個完全沒什麼可說的,要熟練到看到相關的數字就會條件反射一樣的想到它們:
垂直平分線(中垂線)的性質及角平分線的性質:
注意在這個地方會有尺規作圖,即作出線段的垂直平分線和一個角的角平分線。同時還有一個延伸的知識點,即三角形三條邊的中垂線的交點到三角頂點的距離都相等,這個交點叫做三角形的外心,是三角形外接圓的圓心,三角形三個角的角平分線的交點到三邊的距離都相等,這個交點叫做三角形的內心,是三角形內切圓的圓心。
上面就是三角形的部分,要說注意的地方,這些知識點都是注意的地方,很多題目的考點都是其中幾個知識點的結合,單獨考查某一個知識點的比較少。
而至於代數的部分,就是一元一次不等式和分式的乘除了。在一元一次不等式中,解法不是難點,只要會解一元一次方程,基本都不會有太大問題,重點在於解集的理解。
這一部分的重難點落在了分式的乘除部分,綜合起來就是分式的化簡了。這裡面的因式分解是一個重難點,另外一個重點難就是分式的計算,中間涉及到因式分解,二次根式,約分通分,冪的運算,同時計算量比較大,要求計算能力過關,同時還需要細心和耐心,還要掌握一些常規的解題方法。
其實沒必要糾結什麼重難點,你要學得要,自然哪個部分都不怕,要是學得不好,整本書都是重難點。所以你只需要腳踏實地地做好每天的學習任務就好了。如果目前成績不如意,那就自己再努點力就好,不要好高騖遠。
初二數學相比初一,內容增多了,難度也增大不少。幾何方面會重點學習三角形、全等三角形,等腰三角形,等邊三角形,下冊還會學習勾股定理,平行四邊形的知識;代數方面會學習整式的乘法與因式分解,分式,二次根式,一次函數等知識。每一部分都是知識點眾多,可以說占據了初中數學的半壁江山,學好初二數學的重要性由此可見一斑。
難點主要有這么幾塊,幾何部分:1用全等的思想證明線段和角相等,一次不行兩次全等;2全等條件判定的靈活使用,要善於發現題中隱含條件;3等腰三角形的性質(等邊對等角,三線合一)與判定的結合全等三角形的幾何題;4兩條重要線(角平分線和垂直平分線)的性質與判定在幾何題中的運用;5平行四邊形及特殊平行四邊形(矩形,菱形,正方形)性質與判定的綜合運用;6直角三角形有關重要定理(30 角所對直角邊等於斜邊一半;斜邊中線等於斜邊一半,勾股定理及逆定理)的運用。
代數部分:1整式的乘法公式較多,包括(同底數冪的乘法、冪的乘方、積的乘方,平方差公式、完全平方公式)的准確識別與熟練運用;2對因式分解的准確理解與使用最佳方法進行因式分解;3分式的約分、通分以及分式加減乘除混合運算與化簡是難點;4零指數冪和負指數冪的理解和運算;5分式方程的解法及最後檢驗以及正確列分式方程解應用題;6對最簡二次根式的理解與化簡;7對函數概念的理解以及一次函數圖像與性質的准確記憶和待定系數法求一次函數解析式8從實際問題中抽象出一次函數模型並用相關知識解決問題。
以上就是我總結出來的初二數學重難點知識,望同學們重點掌握。
三角形那章只要理解三角形三邊關系,角平分線,中線,高的定義,內角、外角定理,直角三角形兩銳角互余,多邊形內角和公式即可,內容簡單。
希望我的回答對你有幫助。
歡迎來到初中數學樂園!
這個問題有些籠統,因為現在的版本不同,學的內容不同,自然重難點也就不同。現以八年級華師版來說一下,一共學10章內容:數的開方、整式的乘除、全等三角形、勾股定理、數據的收集和整理、分式、函數及其圖像(一次函數反比例函數)、平行四邊形、數據的整理和初步處理。
在這些內容中就是一次函數和反比例函數有些難,平行四邊形的幾何證明有難的。其他都是基礎性的內容,記憶、理解、應用做題就是了。
對於三角形哪章,就是三角形的全等,四種判定方法,直角三角形有一種特殊的判定方法,從一開始按照課本的要求和進度,一種一種的學習,一種一種的練習,基礎問題,記憶--理解---練習,就完全沒有問題,在全等的證明中注意兩個三角形的對應情況,要寫在對應的位置,否則會不對應,就搞亂了。
總之,這樣說一句兩句也說不清楚,在具體的內容中才可以,詳細的說明注意事項的。
一點拙見,歡迎批評指正。
#教育#
初二數學相比初一,知識內容有明顯增加,在學生漸漸適應初中的學習基本模式上,代數部分的數學符號語言更多、內容更抽象。幾何部分的邏輯推理證明要求更高、內容更廣更多。概括地說初二學習的難點主要有兩個:其一,數學知識的記憶儲存,如何形成大腦中的知識體系?大凡覺得初二數學難的學生,都有一個共同點『對所學過的知識,剛學完的印象清楚,之前學完的章節模模糊糊,在數學測驗中一些評估雙基的試題都覺得解答不了』。故首難就是記憶知識!許多人以為記憶知識很簡單,記憶是人的天生能力,多看看書多做做題就能搞定。其實不然,每個人的記憶天賦有差異,就算你天賦最高,記憶信息的長度能達到8個字元以上,在面對海量的不斷推陳出新的數學知識,也只能望洋興嘆!該怎麼辦呢?數學知識間有其內在的邏輯聯系,這決定了學習者需要去找到這些邏輯聯系。比如一元一次方程與一元二次方程之間的聯系,你有思考過嗎?後者因式分解後可以得到兩個一元一次方程。又如一一元一次不等式、一元一次方程及一次函數,這三者之間的聯系你考慮過嗎?我稱這類思考活動為知識的加工處理,更可以形象地稱作:打上自己的烙印。在神話世界裡,別人的法寶或法器要能為自己所用,必須要打上自己的烙印。在數學世界裡也是如此,海量的數學知識是人類的公共財富,要想成為你自己的,須打上自己的烙印。在我所接觸的初中生中普遍存在『重視刷題,忽視知識的加工整理』現象。忽視或缺少知識的加工整理,感覺數學知識難記、記不住、記不準,這就不足為奇!其二,解題難。體現在練習題量大,解題速度慢。感覺數學難得初中生往往解題速度慢,出錯率較高。事實上我們的學習過程分為新知學習、復習鞏固、綜合測驗三個環節,數學的任何一章節都是這種循序漸進的學習模式。新知學習時學生往往翻書做題,練習題大都能做對,到了復習鞏固階段往往會出現新舊知識相結合的習題,學生的出錯率會遞增,最後到了綜合測驗,輻射的知識章節更多,完全可能出現一道綜合題涉及到三個及以上章節的知識 ,需要准確調用這些知識方能得到解答。我對初二學生平時做練習的建議如下:不要為了做題而做題,要知道做題的真正目的——鞏固知識、綜合知識!有了這個認識,接下來就會去設計自己的練習策略。我的策略分享如下:耐心地先把所有作業練習題目都閱讀一遍,將這些練習題分類『基礎知識基礎能力類,簡單綜合類,復雜綜合類』,基礎類堅持不翻書閉卷做,綜合類若已想不起所涉及的知識須停下來耐心地去查閱記憶。以上兩難正是學生獲得數學素養與數學能力的練兵場,解決兩難的辦法是有了,可功夫還得學生們自己去下!希望我的這兩點見解能對您有所幫助!
1.將知識串聯起來,把基礎打牢,定理公式多記憶
2.三個點,三條邊,三個角。再加上幾個特殊三角形。其實就這些東西
你不會的,就是難點;寫在書上的,都是你要注意的。
作為大一的數學系學生,提及初二在腦海里已經是遙遠的事情了。
總體來說,我那時的初中數學還算是比較簡單的,它對於學生們的數學素養的要求還沒有那麼的高,更看重的應該是學生們對知識的接受能力和運用其去解決簡單的問題。
但畢竟一切都會有所變化,我也了解到現在的初中數學也很靈活,角度也刁鑽了許多。要說現在的初二數學難點在哪,我想更多方面是涉及一些抽象,不具體的知識點,那是的學生只有13.14歲,也沒有過高的能力去解答難題。初二更多的還是要上課好好聽講,下課好好做題,中考不是很困難的。
而對於三角形這一章節的內容,更多的還是全等三角形和相似三角形以及三角形內特殊的點,如重心,中心,垂心等。能夠利用判別三角形全等(相似)的判定定理來進行證明,然後得出一些角或邊的關系,進一步解決題目。
總之,三角形要說難難就難在有它的一些心的性質以及在具體題目里有多個三角形公用角或邊,從而給學生們解題帶來很大的困擾,標記角和邊都很亂,這就需要學生們仔細認真。就比如我當年中考壓軸題,我記得很清楚是一道三角形的題目,許多三角形的那個角和邊都在一個圖形里,找著找著就亂完了,因此這是三角形里最容易困擾學生們的了。
最後,祝你學習進步,中考好好加油,只要你努力學習,難點終會被攻破的,加油!
要靈活撐握全等相似三角形符合條件,也就是證明論證時的滿足條件。
判斷全等相似的條件,要和實際聯系起來。
⑸ 小升初數學考試重難點知識點的梳理
小升初數學考試重難點知識點的梳理
約數倍數:
(1)最大公約最小公倍數(2)約數個數決定法則 (小升初常考內容)
質數合數:
(1)質數、合數的概念和判斷(2)分解質因數(重點)
余數問題:
(1)帶余除式的理解和運用;(2)同餘的性質和運用;(3)中國剩餘定理奇偶問題:(1)奇偶與四則運算;(2)奇偶性質在實際解題過程中的應用完全平方數:(1)完全平方數的`判斷和性質(2)完全平方數的運用整數及分數的分解與分拆(重點、難點)
整除問題:
(1)數的整除的特徵和性質 (小升初分班常考內容)
(2)位值原理的應用(用字母和數字混合表示多位數)
數、行、形、算,也就是數論,行程,圖形、計算四個問題。那麼這四個問題我們需要掌握到什麼樣的程度?
數論難在它的抽象,這是區分尖子生和普通生的關鍵;行程問題復雜就在其應用,孩子在做這類題目的時候,要求的不僅是其思維,還有其表述;圖形問題(幾何問題)雜而難,重點要求的是面積的計算,這是中學教育的開始;計算是基礎,是孩子取得高分的必要保障。
;⑹ 初中數學最難學的是什麼知識點
數與式
易錯點1:有理數、無理數以及實數的有關概念理解錯誤,相反數、倒數、絕對值的意義概念混淆。以及絕對值與數的分類。每年選擇必考。
易錯點2:實數的運算要掌握好與實數有關的概念、性質,靈活地運用各種運算律,關鍵是把好符號關;在較復雜的運算中,不注意運算順序或者不合理使用運算律,從而使運算出現錯誤。
易錯點3:平方根、算術平方根、立方根的區別。填空題必考。
易錯點4:求分式值為零時學生易忽略分母不能為零。
易錯點5:分式運算時要注意運演算法則和符號的變化。當分式的分子分母是多項式時要先因式分解,因式分解要分解到不能再分解為止,注意計算方法,不能去分母,把分式化為最簡分式。填空題必考。
易錯點6:非負數的性質:幾個非負數的和為0,每個式子都為0;整體代入法;完全平方式。
易錯點7:計算第一題必考。五個基本數的計算:0 指數,三角函數,絕對值,負指數,二次根式的化簡。
易錯點8:科學記數法。精確度,有效數字。這個上海還沒有考過,知道就好!
易錯點9:代入求值要使式子有意義。各種數式的計算方法要掌握,一定要注意計算順序。
方程(組)與不等式(組)
易錯點1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。
易錯點2:運用等式性質時,兩邊同除以一個數必須要注意不能為0 的情況,還要關註解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個帶X 公因式要回頭檢驗!
易錯點3:運用不等式的性質3時,容易忘記改不改變符號的方向而導致結果出錯。
易錯點4:關於一元二次方程的取值范圍的題目易忽視二次項系數不為0導致出錯。
易錯點5:關於一元一次不等式組有解無解的條件易忽視相等的情況。
易錯點6:解分式方程時首要步驟去分母,分數相相當於括弧,易忘記根檢驗,導致運算結果出錯。
易錯點7:不等式(組)的解得問題要先確定解集,確定解集的方法運用數軸。
易錯點8:利用函數圖象求不等式的解集和方程的解。
函數
易錯點1:各個待定系數表示的的意義。
易錯點2:熟練掌握各種函數解析式的求法,有幾個的待定系數就要幾個點值。
易錯點3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質確定增減性。
易錯點4:兩個變數利用函數模型解實際問題,注意區別方程、函數、不等式模型解決不等領域的問題。
易錯點5:利用函數圖象進行分類(平行四邊形、相似、直角三角形、等腰三角形)以及分類的求解方法。
易錯點6:與坐標軸交點坐標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。
易錯點7:數形結合思想方法的運用,還應注意結合圖像性質解題。函數圖象與圖形結合學會從復雜圖形分解為簡單圖形的方法,圖形為圖像提供數據或者圖像為圖形提供數據。
易錯點8:自變數的取值范圍有:二次根式的被開方數是非負數,分式的分母不為0,0指數底數不為0,其它都是全體實數。
三角形
易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特徵與區別。
易錯點2:三角形三邊之間的不等關系,注意其中的「任何兩邊」。最短距離的方法。
易錯點3:三角形的內角和,三角形的分類與三角形內外角性質,特別關注外角性質中的「不相鄰」。
易錯點4:全等形,全等三角形及其性質,三角形全等判定。著重學會論證三角形全等,三角形相似與全等的綜合運用以及線段相等是全等的特徵,線段的倍分是相似的特徵以及相似與三角函數的結合。邊邊角兩個三角形不一定全等。
易錯點5:兩個角相等和平行經常是相似的基本構成要素,以及相似三角形對應高之比等於相似比,對應線段成比例,面積之比等於相似比的平方。
易錯點6:等腰(等邊)三角形的定義以及等腰(等邊)三角形的判定與性質,運用等腰(等邊)三角形的判定與性質解決有關計算與證明問題,這里需注意分類討論思想的滲入。
易錯點7:運用勾股定理及其逆定理計算線段的長,證明線段的數量關系,解決與面積有關的問題以及簡單的實際問題。
易錯點8:將直角三角形,平面直角坐標系,函數,開放性問題,探索性問題結合在一起綜合運用探究各種解題方法。
易錯點9:中點,中線,中位線,一半定理的歸納以及各自的性質。
易錯點10:直角三角形判定方法:三角形面積的確定與底上的高(特別是鈍角三角形)。
易錯點11:三角函數的定義中對應線段的比經常出錯以及特殊角的三角函數值。
四邊形
易錯點1:平行四邊形的性質和判定,如何靈活、恰當地應用。三角形的穩定性與四邊形不穩定性。
易錯點2:平行四邊形注意與三角形面積求法的區分。平行四邊形與特殊平行四邊形之間的轉化關系。
易錯點3:運用平行四邊形是中心對稱圖形,過對稱中心的直線把它分成面積相等的兩部分。對角線將四邊形分成面積相等的四部分。
易錯點4:平行四邊形中運用全等三角形和相似三角形的知識解題,突出轉化思想的滲透。
易錯點5:矩形、菱形、正方形的概念、性質、判定及它們之間的關系,主要考查邊長、對角線長、面積等的計算。矩形與正方形的折疊。
易錯點6:四邊形中的翻折、平移、旋轉、剪拼等動手操作性問題,掌握其中的不變與旋轉一些性質。
易錯點7:梯形問題的主要做輔助線的方法
圓
易錯點1:對弧、弦、圓周角等概念理解不深刻,特別是弦所對的圓周角有兩種情況要特別注意,兩條弦之間的距離也要考慮兩種情況。
易錯點2:對垂徑定理的理解不夠,不會正確添加輔助線運用直角三角形進行解題。
易錯點3:對切線的定義及性質理解不深,不能准確的利用切線的性質進行解題以及對切線的判定方法兩種方法使用不熟練。
易錯點4:考查圓與圓的位置關系時,相切有內切和外切兩種情況,包括相交也存在兩圓圓心在公共弦同側和異側兩種情況,學生很容易忽視其中的一種情況。
易錯點5:與圓有關的位置關系把握好d 與R和R+r,R-r 之間的關系以及應用上述的方法求解。
易錯點6:圓周角定理是重點,同弧(等弧)所對的圓周角相等,直徑所對的圓周角是直角,90 度的圓周角所對的弦是直徑,一條弧所對的圓周角等於它所對的圓心角的一半。
易錯點7:幾個公式一定要牢記:三角形、平行四邊形、菱形、矩形、正方形、梯形、圓的面積公式,圓周長公式,弧長,扇形面積,圓錐的側面積以及全面積以及弧長與底面周長,母線長與扇形的半徑之間的轉化關系。
對稱圖形
易錯點1:軸對稱、軸對稱圖形,及中心對稱、中心對稱圖形概念和性質把握不準。
易錯點2:圖形的軸對稱或旋轉問題,要充分運用其性質解題,即運用圖形的「不變性」,在軸對稱和旋轉中角的大小不變,線段的長短不變。
易錯點3:將軸對稱與全等混淆,關於直線對稱與關於軸對稱混淆。
統計與概率
易錯點1:中位數、眾數、平均數的有關概念理解不透徹,錯求中位數、眾數、平均數。
易錯點2:在從統計圖獲取信息時,一定要先判斷統計圖的准確性。不規則的統計圖往往使人產生錯覺,得到不準確的信息。
易錯點3:對普查與抽樣調查的概念及它們的適用范圍不清楚,造成錯誤。
易錯點4:極差、方差的概念理解不清晰,從而不能正確求出一組數據的極差、方差。
易錯點5:概率與頻率的意義理解不清晰,不能正確的求出事件的概率。
易錯點6:平均數、加權平均數、方差公式,扇形統計圖的圓心角與頻率之間的關系,頻數、頻率、總數之間的關系。加權平均數的權可以是數據、比分、百分數還可以是概率(或頻率)。
易錯點7:求概率的方法:
(1)簡單事件。
(2)兩步以及兩步以上的簡單事件求概率的方法:利用樹狀或者列表表示各種等可能的情況與事件的可能性的比值。
(3)復雜事件求概率的方法運用頻率估算概率。
易錯點8:判斷是否公平的方法運用概率是否相等,關注頻率與概率的整合。
⑺ 初中數學重點難點歸納總結
初中的數學重點知識點很多,難點也多,為了幫助同學們更好的學好初中數學,以下是我分享給大家的初中數學重點難點歸納,希望可以幫到你!
初中數學重點難點歸納
點線角定理:
點的定理:過兩點有且只有一條直線
點的定理:兩點之間線段最短
角的定理:同角或等角的補角相等
角的定理:同角或等角的餘角相等
直線定理:過一點有且只有一條直線和已知直線垂直
直線定理:直線外一點與直線上各點連接的所有線段中,垂線段最短
平行定理:
經過直線外一點,有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
平行性質:
1、同位角相等,兩直線平行
2、內錯角相等,兩直線平行
3、同旁內角互補,兩直線平行
平行推論:
1、兩直線平行,同位角相等
2、兩直線平行,內錯角相等
3、兩直線平行,同旁內角互補
三角形內角定理:
定理:三角形兩邊的和大於第三邊
推論:三角形兩邊的差小於第三邊
三角形內角和定理:三角形三個內角的和等於180°
推論1:直角三角形的兩個銳角互余
推論2:三角形的一個外角等於和它不相鄰的兩個內角的和
推論3:三角形的一個外角大於任何一個和它不相鄰的內角
全等三角形判定定理:
定理:全等三角形的對應邊、對應角相等
邊角邊定理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
角邊角定理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等
推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等
邊邊邊定理(SSS):有三邊對應相等的兩個三角形全等
斜邊、直角邊定理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等
角的平分線定理:
定理1:在角的平分線上的點到這個角的兩邊的距離相等
定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
角的平分線是到角的兩邊距離相等的所有點的集合
等腰三角形的性質定理:
等腰三角形的兩個底角相等(即等邊對等角)
推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
推論3:等邊三角形的各角都相等,並且每一個角都等於60°
等腰三角形的判定定理:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等 角對等邊)
推論1:三個角都相等的三角形是等邊三角形
推論2:有一個角等於60°的等腰三角形是等邊三角形
對稱定理
定理:線段垂直平分線上的點和這條線段兩個端點的距離相等
逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
定理1:關於某條直線對稱的兩個圖形是全等形
定理2:如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
定理3:兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
直角三角形定理:
定理:在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
判定定理:直角三角形斜邊上的中線等於斜邊上的一半
勾股定理:直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a²+b²=c²。
勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a²+b²=c²,那麼這個三角形是直角三角形。
初中數學學習技巧
一、數學概念學習方法。
數學中有許多概念,如何正確地掌握概念,應該知道學習概念需要怎樣的一個過程,應達到什麼程度。一個數學概念需要記住名稱,敘述出本質屬性,體會出所涉及的范圍,並應用概念准確進行判斷。這些問題老師沒有要求,不給出學習方法,學生將很難有規律地進行學習。
數學概念的學習方法是:
1、閱讀概念,記住名稱或符號。
2、背誦定義,掌握特性。
3、舉出正反實例,體會概念反映的范圍。
4、進行練習,准確地判斷。
二、學公式的學習方法
公式具有抽象性,公式中的字母代表一定范圍內的無窮多個數。有的學生在學習公式時,可以在短時間內掌握,而有的學生卻要反來復去地體會,才能跳出千變萬化的數字關系的泥堆里。教師應明確告訴學生學習公式過程需要的步驟,使學生能夠迅速順利地掌握公式。
數學公式的學習方法是:
1、書寫公式,記住公式中字母間的關系。
2、懂得公式的來龍去脈,掌握推導過程。
3、用數字驗算公式,在公式具體化過程中體會公式中反映的規律。
4、將公式進行各種變換,了解其不同的變化形式。
5、將公式中的字母想像成抽象的框架,達到自如地應用公式。
三、數學定理的學習方法。
一個定理包含條件和結論兩部分,定理必須進行證明,證明過程是連接條件和結論的橋梁,而學習定理是為了更好地應用它解決各種問題。
數學定理的學習方法是:
1、背誦定理。
2、分清定理的條件和結論。
3、理解定理的證明過程。
4、應用定理證明有關問題。
5、體會定理與有關定理和概念的內在關系。
有的定理包含公式,如韋達定理、勾股定理、正弦定理,它們的學習還應該同數公式的學習方法結合起來進行。
四、初學幾何證明的學習方法。
在七年級第二學期,八年級立體幾何學習的開始,學生總感到難以入門,以下的方法是許多老教師十分認同的,無論是上課還是自學,均可以開展。
1、看題畫圖。(看,寫)
2、審題找思路(聽老師講解)
3、閱讀書中證明過程。
4、回憶並書寫證明過程。
五、提高幾何證明能力的化歸法。
在掌握了幾何證明的基本知識和方法以後,在能夠較順利和准確地表述證明過程的基礎上,如何提高幾何證明能力?這就需要積累各種幾何題型的證明思路,需要懂得若干證明技巧。這樣我們可以通過老師集中講解,或者通過集中閱讀若干幾何證明題,而達到上述目的。化歸法是將未知化歸為已知的方法,當我們遇到一個新的幾何證明題時,我們需要注意其題型,找到關鍵步驟,將它化歸為已知題型時就可結束。此時最重要的是記住化歸步驟及證題思路即可,不再重視祥細的表述過程。
幾何證明能力的化歸法:
1、審題,弄清已知條件和求證結論。
2、畫圖,作輔助線,尋找證題途徑。
3、記錄證題途徑的各個關鍵步驟。
4、總結證明思路,使證題過程在大腦中形成清晰的印象。
初中數學學習建議
1.突出一個“勤”字(克服一個“惰”字)
數學家華羅庚曾經說過:“聰明在於學習,天才在於勤奮”
“勤能補拙是良訓,一分辛勞一分才:
我們在學習的時候要突出一個勤字,克服一個“懶”字,怎麼突出“勤”字
“聰”:怎麼個勤法,從這個字面上來看,要做到五勤:“耳勤”“眼勤”(耳朵聽,眼睛看,接受信息)
“口勤”(討論,回答問題,而不是講話,消化信息)“腦勤”(善於思考問題,積極思考問題——吸收、儲存信息) 那是不是做到以上四點就行了呢?不是。這個字還有缺陷,在聰下面加上“手”
“手勤”(動手多實踐,不僅光做題,做課件,做模型)
這樣的人聰明不聰明?
最大的提高學習效率,首先要做到—— 上課認真聽講(這是根本)回家先復習再做題如果課聽不好,就別想消化知識
2.學好初中數學還有兩個要點,要狠抓兩個要點:
學好數學,一要(動手),二要(動腦)。
動腦就是要學會觀察分析問題,學會思考,不要拿到題就做,找到已知和未知想像之間有什麼聯系,多問幾個為什麼
動手就是多實踐,多做題,要“拳不離手”(武術)“曲不離口”(唱歌)
同學就是“題不離手”,這兩個要點大家要記住。
“動腦又動手,才能最大地發揮大腦的效率”
3.做到“三個一遍”
大家聽過“失敗是成功之母”聽過“重復是學習之母”嗎?
培根(18-19世紀英國的哲學家)——“知識就是力量”
“重復是學習之母”
如何重復,我給你們解釋一下:
“上課要認真聽一遍,動手推一遍,想一遍”
“下課 看 ”
“考試前 ”
4.重視“四個依據”
讀好一本教科書——它是教學、中考的主要依據;
記好一本筆記 ——它是教師多年經驗的結晶;
做好做凈一本習題集——它是使知識拓寬;
記好一本心得筆記,最好每人自己准備一本錯題集
猜你喜歡:
1. 初中數學學習方法的六大要點
2. 初一數學知識歸納總結有哪些
3. 初中數學知識點歸納
4. 初中數學學習方法總結
5. 初一數學上冊期末備考重難點歸納
⑻ 高中數學重點、難點有哪些
高中數學重點難點歸納總結——函數
高中數學重點難點歸納總結——數列與極限
高中數學重點難點歸納總結——解析幾何
問題背景本人是一名市重點高中數學教師,2019年高考數學班級平均分126分,其中更是有12位同學考上了985、211雙一流學校,一本達線率100%
高中數學重難點正如題主所說的函數問題,函數問題貫穿整個高中數學內容,其解題方法跟思想更是與各類題型融會貫通,在這里就舉一個例子。
就像這些宗譜卷裡面經常遇到的第12題函數有幾個零點我們都是用數形結合去轉化問題,將原本的一個抽象函數轉化為定圖像於動圖象之間交點的問題。
然後再去判斷參數范圍在哪一個區間裡面變化才能夠滿足題意,那麼就能夠做到輕松求解。
謝謝大家,如果有疑問可以關注,私信我。也有很多圖條上的學生經常在私信里問我題目,我都會逐一解答,謝謝大家支持。
⑼ 初中數學知識點總結大全 重點都在這了
初中生學習數學要特別注意知識點的總結,下面我為大家總結了初中 數學知識點 ,僅供大家參考。
數學基礎知識點
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
初中數學重點知識點平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
數學基本定理1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
以上就是我為大家總結的 初中數學 知識點總結大全,僅供參考,希望對大家有所幫助。
⑽ 高三數學重要難點知識點
在學習上,面次考試過後,都會感覺每次我們總是距離我們的目標還相差一點點的距離,真讓人不甘心。那就請繼續努力下去,不要氣餒,不要放棄,我們的目的終會實現。下面是我給大家帶來的 高三數學 重要難點知識點,希望能幫助到你!
高三數學重要難點知識點1
復數的概念:
形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。
復數的表示:
復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實部,b叫復數的虛部。
復數的幾何意義:
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數
(2)復數的幾何意義:復數集C和復平面內所有的點所成的集合是一一對應關系,即
這是因為,每一個復數有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數和它對應。
這就是復數的一種幾何意義,也就是復數的另一種表示 方法 ,即幾何表示方法。
復數的模:
復數z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數的模,記為|Z|,即|Z|=
虛數單位i:
(1)它的平方等於-1,即i2=-1;
(2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數模的性質:
復數與實數、虛數、純虛數及0的關系:
對於復數a+bi(a、b∈R),當且僅當b=0時,復數a+bi(a、b∈R)是實數a;當b≠0時,復數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。
高三數學重要難點知識點2
一次函數的定義
一次函數,也作線性函數,在x,y坐標軸中可以用一條直線表示,當一次函數中的一個變數的值確定時,可以用一元一次方程確定另一個變數的值。
函數的表示方法
列表法:一目瞭然,使用起來方便,但列出的對應值是有限的,不易看出自變數與函數之間的對應規律。
解析式法:簡單明了,能夠准確地反映整個變化過程中自變數與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變數之間的函數關系。
一次函數的性質
一般地,形如y=kx+b(k,b是常數,且k≠0),那麼y叫做x的一次函數,當b=0時,y=kx+b即y=kx,所以說正比例函數是一種特殊的一次函數
註:一次函數一般形式y=kx+b(k不為0)
a)k不為0
b)x的指數是1
c)b取任意實數
一次函數y=kx+b的圖像是經過(0,b)和(-b/k,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看做直線y=kx平移|b|個單位長度得到。(當b>0時,向上平移;b<0時,向下平移)
高三數學重要難點知識點3
一、柱、錐、台、球的結構特徵
結構特徵
圖例
稜柱
(1)兩底 面相 互平行,其餘各面都是平行四邊形;
(2)側棱平行且相等.
圓柱
(1)兩底面相互平行;(2)側面的母線平行於圓柱的軸;
(3)是以矩形的一邊所在直線為旋轉軸,其餘三邊旋轉形成的曲面所圍成的幾何體.
棱錐
(1)底面是多邊形,各側面均是三角形;
(2)各側面有一個公共頂點.
圓錐
(1)底面是圓;(2)是以直角三角形的一條直角邊所在的直線為旋轉軸,其餘兩邊旋轉形成的曲面所圍成的幾何體.
稜台
(1)兩底面相互平行;(2)是用一個平行於棱錐底面的平面去截棱錐,底面和截面之間的部分.
圓台
(1)兩底面相互平行;
(2)是用一個平行於圓錐底面的平面去截圓錐,底面和截面之間的部分.
球
(1)球心到球面上各點的距離相等;(2)是以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體.
二、簡單組合體的結構特徵
三、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)
註:
正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前後的位置關系,即反映了物體的長度和寬度;
側視圖反映了物體上下、前後的位置關系,即反映了物體的高度和寬度。
四、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
五、柱體、錐體、台體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,h'為斜高,l為母線)
(3)柱體、錐體、台體的體積公式
(4)球體的表面積和體積公式:
高三數學重要難點知識點相關 文章 :
★ 高三數學復習重要知識點
★ 2020高考數學重難點知識歸納
★ 高三數學重點知識總結大全
★ 高三數學重要知識點總結,高考數學答題時有何技巧
★ 高三數學必考知識點復習總結
★ 高考數學易錯點及重要知識點歸納
★ 高三數學知識點考點總結大全
★ 人教版高三數學重要知識點
★ 高三數學知識點大全