1. 什麼是分形數學
三
動力系統中的分形集是近年分形幾何中最活躍和引人入勝的一個研究領域。動力系統的奇異吸引子通常都是分形集,它們產生於非線性函數的迭代和非線性微分方程中。1963年,氣象學家洛倫茲(E.N.Lorenz)在研究流體的對流運動時,發現了以他的名字命名的第一個奇異吸引子,它是一個典型的分形集。
1976年,法國天文學家伊儂(M.Henon)考慮標准二次映射迭代系統時獲得伊儂吸引子。它具有某種自相似性和分形性質。1986年勞威爾(H.A.Lauwerier)將斯梅爾的馬蹄映射變形成勞威爾映射,其迭代下不穩定流形的極限集成為典型的奇異吸引子,它與水平線的截面為康托集。1985年,格雷波基(C.Grebogi)等構造了一個二維迭代函數系統,其吸附界是維爾斯特拉斯函數,並得到盒維數。1985年,邁克多納(S.M.MacDonald)和格雷波基等得到分形吸附界的三種類型:
(1) 局部不連通的分形集;
(2) 局部連通的分形擬圓周;
(3) 既不局部連能又不是擬圓周。前兩者具有擬自相似性。
動力系統中另一類分形集來源於復平面上解析映射的迭代。朱利亞(G.Julia)和法圖(P.Fatou)於1918-1919年間開創這一研究。他們發現,解析映射的迭代把復平面劃分成兩部分,一部分為法圖集,另一部分為朱利亞集(J集)。他們在處理這一問題時還沒有計算機,完全依賴於他們自身固有的想像力,因此他們的智力成就受到局限。隨後50年間,這方面的研究沒有得到什麼進展。
隨著可用機算機來做實驗,這一研究課題才又獲得生機。1980年,曼德爾布羅特用計算機繪出用他名字命名的曼德爾布羅特集(M集)的第一張圖來。1982道迪(A.Douady)構造了含參二次復映射fc ,其朱利亞集J(fc)隨參數C的變化呈現各種各樣的分形圖象,著名的有道迪免子,聖馬科吸引子等。同年,茹厄勒(D.Ruelle)得到J集與映射系數的關系,解新局面了解析映射擊集豪斯道夫維數的計算問題。茄勒特(L.Garnett)得到J(fc)集豪斯道夫維數的數值解法。1983年,韋當(M.Widom)進一步推廣了部分結果 。法圖1926年就就開始整函數迭代的研究。1981年密休威茨(M.Misiuterwicz)證明指數映射的J集為復平面,解決了法圖提出的問題,引起研究者極大興趣。發現超越整函數的J集與有理映射J的性質差異,1984年德萬尼(R.L.Devanney)證明指數映射Eλ的J(Eλ)集是康托束或復平面而J(fc)是康托塵或連通集。
復平面上使J(fc)成為連通集的點C組成M集即曼德爾布羅特集,尤更斯(H.Jurgens)和培特根(H-O.Peitgen)認為,M集的性質過去一直是並且將來繼續是數學研究的一個巨大難題。通過將數學理論與計算機圖形學實驗加以融合,及道迪、扈巴德(H.Hubbard)等人在這方面進行的基礎性研究工作,在解決這一難題方面已取得重大進展,使人們加深了對M集的了解。道迪和扈巴德1982年證明M集是連通的和單連通的,人們猜測M集是局部連通的,目前每一張計算機圖形都證實了這一猜測,但至今還沒有人能給予證明。M是否為弧連通,目前尚不清楚。M集邊界的維數也是值得研究的問題之一。
M集除了將J集分成連通與非連通的兩類之外,還起著無窮個J集的圖解目錄表作用,即把M集C點周圍的圖形放大就是與C點有關的J集的組成部分。但這一發現的數學密性至今仍未確定,譚磊(Tan Lei)1985年證明了在每一個密休威茨點鄰近M集與相關的J集之間存在著相似性。尤金斯等在M集的靜電位研究中獲得與自然形貌相似的分形圖象。目前包括尤金斯等在內的很多研究人員都致力於藉助計算機活動錄象探索M集。其它一些分形集的研究工作正在取得進展。1990年德萬尼通過數值實驗觀察到M集的復雜圖形由許多不同周期的周期軌道的穩定區域共同構成。1991年黃永念運用他提出的代數分析法證明了這一事實,研究了M集及其廣義情況周期軌道整體解析特性。
巴斯萊(B.M.Barnsley)和德門科(S.Demko)1985年引入迭代函數系統,J集及其其它很多分形集都是某些迭代函數的吸引集,用其它方法產生的分形集也可用迭代函數系逼近。1988年,勞威爾通過數值研究發現畢達哥拉斯樹花是一迭代函數系的J集。1985年巴斯萊等研究含參數的函數系迭代動力系統,得到M集D並D與M在連通性上的差異。在一線性映射系迭代下,可以產生著名的分形曲線——雙生龍曲線。1986年水谷(M.Mitzutani)等對其動力系統進行了研究。
一般動力系統中的分形集,其豪斯道夫維數dH難以通過理論方法或計算方法求得。對於有迭式構造的分形集,貝德浮德(T.Bedford)等在1986年已給出卓有成效的演算法,但對一般非線性映射迭代動力系統產生的分形集,這些結果都難以應用,其豪斯道夫維數dH的結論與演算法實際上沒有。卡普蘭(j.L.Kaplan)和約克(J.A.York) 1979年引入李雅普洛夫維數dL並猜測dL=dH。1981年勒拉皮爾證明dH≤dL。楊(L.S.Young)1982年證明二維情況下dH=dL。艾茄瓦(A.K.Agarwal)等1986年給出例子說明高維情形卡普蘭-約克猜測不成立。這一猜測力圖從動力學特徵推斷幾何結構,其反問題是由吸引子維數推斷混沌力學,這是值得研究的問題。但目前工作甚少且主要限於計算機研究。此外,含參動力系統在混沌臨界態或突變處的分形集維數也有待進一步研究。
多重分形(multifractals)是與動力系統奇異吸引子有關的另一類重要分形集,其概念首先由曼德布羅特和倫依(A.Renyi)引入。法默(J.D.Farmer)等在1983年定義了多重分形廣義維數。1988年博爾(T.Bohr)等人將拓撲熵引入多重分形的動力學描述與熱力學類比。1988年,阿內多(A.Arneodo)等人將子波變換用於多重分形研究。費德(J.Feder)、特爾(T.Tel)等人進行了多重分形子集及標度指數的研究。阿姆特里卡等研究了多重分形的逆問題,提出廣義配分函數,給出廣義超越維數,對過去的維數進行了修正。李(J.Lee)等發現了多重分形熱力學形式上的相變。1990年,伯克(C.Beck)得到廣義維數的上下界和極限並研究了多重分形的均勻性量度。曼德布羅特研究了隨機多重分形及負分維。1991年科維克(Z.Kov.acs)等引入雙變數迭代系統,最大特徵值和吉布斯勢導出維數、熵、李雅普洛夫指數,提供了對多重分形相變分類的一般方案。對於多重分形相變分類的一般方案。對於多重分形目前雖已提出不少處理方法,但從數學的觀點上看,還不夠嚴格,部分問題的數學處理難度也較大。
四
分形理論真正發展起來才十餘年,並且方興未艾,很多方面的理論還有待進一步研究。值得注意的是,近年分形理論的應用發展遠遠超過了理論的發展,並且給分形的數學理論提出了更新更高的要求。各種分形維數計算方法和實驗方法的建立、改進和完善,使之理論簡便,可操作性強,是應用分形的科學家們普遍關注的問題。而在理論研究上,維數的理論計算、估計、分形重構(即求一動力系統,使其吸引集為給定分形集)、J集和M集及其推廣形式的性質、動力學特徵及維數研究將會成為數學工作者們十分活躍的研究領域。多重分形理論的完善、嚴格以及如何用這些理論來解決實際問題可能會引起科學家們廣泛的興趣,而動力學特徵、相變和子波變換可能會成為其中的幾個熱點。
在哲學方面,人們的興趣在於自相似性的普適性,M集和J集表現出的簡單性與復雜性,復數與實數的統一性,多重分形相變與突變論的關系,自組織臨界(SOC)現象的刻畫以及分形體系內部的各種矛盾的轉化等。可以預言,一場關於分形科學哲學問題的討論即將在國內展開
2. 請大俠們幫忙把分形理論介紹一下,最好有一些實際方面的應用!
分形理論是當今世界十分風靡和活躍的新理論、新學科。分形的概念是美籍數學家曼德布羅特(B.B.Mandelbort)首先提出的。1967年他在美國權威的《科學》雜志上發表了題為《英國的海岸線有多長?》的著名論文。海岸線作為曲線,其特徵是極不規則、極不光滑的,呈現極其蜿蜒復雜的變化。我們不能從形狀和結構上區分這部分海岸與那部分海岸有什麼本質的不同,這種幾乎同樣程度的不規則性和復雜性,說明海岸線在形貌上是自相似的,也就是局部形態和整體形態的相似。在沒有建築物或其他東西作為參照物時,在空中拍攝的100公里長的海岸線與放大了的10公里長海岸線的兩張照片,看上去會十分相似。事實上,具有自相似性的形態廣泛存在於自然界中,如:連綿的山川、飄浮的雲朵、岩石的斷裂口、布朗粒子運動的軌跡、樹冠、花菜、大腦皮層……曼德布羅特把這些部分與整體以某種方式相似的形體稱為分形(fractal)。1975年,他創立了分形幾何學(fractalgeometry)。在此基礎上,形成了研究分形性質及其應用的科學,稱為分形理論(fractaltheory)。
自相似原則和迭代生成原則是分形理論的重要原則。它表徵分形在通常的幾何變換下具有不變性,即標度無關性。由自相似性是從不同尺度的對稱出發,也就意味著遞歸。分形形體中的自相似性可以是完全相同,也可以是統計意義上的相似。標準的自相似分形是數學上的抽象,迭代生成無限精細的結構,如科契(Koch)雪花曲線、謝爾賓斯基(Sierpinski)地毯曲線等。這種有規分形只是少數,絕大部分分形是統計意義上的無規分形。
分維,作為分形的定量表徵和基本參數,是分形理論的又一重要原則。分維,又稱分形維或分數維,通常用分數或帶小數點的數表示。長期以來人們習慣於將點定義為零維,直線為一維,平面為二維,空間為三維,愛因斯坦在相對論中引入時間維,就形成四維時空。對某一問題給予多方面的考慮,可建立高維空間,但都是整數維。在數學上,把歐氏空間的幾何對象連續地拉伸、壓縮、扭曲,維數也不變,這就是拓撲維數。然而,這種傳統的維數觀受到了挑戰。曼德布羅特曾描述過一個繩球的維數:從很遠的距離觀察這個繩球,可看作一點(零維);從較近的距離觀察,它充滿了一個球形空間(三維);再近一些,就看到了繩子(一維);再向微觀深入,繩子又變成了三維的柱,三維的柱又可分解成一維的纖維。那麼,介於這些觀察點之間的中間狀態又如何呢?
顯然,並沒有繩球從三維對象變成一維對象的確切界限。數學家豪斯道夫(Hausdoff)在1919年提出了連續空間的概念,也就是空間維數是可以連續變化的,它可以是整數也可以是分數,稱為豪斯道夫維數。記作Df,一般的表達式為:K=LDf,也作K=(1/L)-Df,取對數並整理得Df=lnK/lnL,其中L為某客體沿其每個獨立方向皆擴大的倍數,K為得到的新客體是原客體的倍數。顯然,Df在一般情況下是一個分數。因此,曼德布羅特也把分形定義為豪斯道夫維數大於或等於拓撲維數的集合。英國的海岸線為什麼測不準?因為歐氏一維測度與海岸線的維數不一致。根據曼德布羅特的計算,英國海岸線的維數為1.26。有了分維,海岸線的長度就確定了。
分形理論既是非線性科學的前沿和重要分支,又是一門新興的橫斷學科。作為一種方法論和認識論,其啟示是多方面的:一是分形整體與局部形態的相似,啟發人們通過認識部分來認識整體,從有限中認識無限;二是分形揭示了介於整體與部分、有序與無序、復雜與簡單之間的新形態、新秩序;三是分形從一特定層面揭示了世界普遍聯系和統一的圖景。
=============================================
分形理論及其發展歷程
被譽為大自然的幾何學的分形(Fractal)理論,是現代數學的一個新分支,但其本質卻是一種新的世界觀和方法論。它與動力系統的混沌理論交叉結合,相輔相成。它承認世界的局部可能在一定條件下。過程中,在某一方面(形態,結構,信息,功能,時間,能量等)表現出與整體的相似性,它承認空間維數的變化既可以是離散的也可以是連續的,因而拓展了視野。
分形幾何的概念是美籍法國數學家曼德爾布羅特(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德國數學家維爾斯特拉斯(K.Weierestrass)構造了處處連續但處處不可微的函數,集合論創始人康托(G.Cantor,德國數學家)構造了有許多奇異性質的三分康托集。
1890年,義大利數學家皮亞諾(G.Peano)構造了填充空間的曲線。
1904年,瑞典數學家科赫(H.von Koch)設計出類似雪花和島嶼邊緣的一類曲線。
1915年,波蘭數學家謝爾賓斯基(W.Sierpinski)設計了象地毯和海綿一樣的幾何圖形。這些都是為解決分析與拓樸學中的問題而提出的反例,但它們正是分形幾何思想的源泉。
1910年,德國數學家豪斯道夫(F.Hausdorff)開始了奇異集合性質與量的研究,提出分數維概念。
1928年布利干(G.Bouligand)將閔可夫斯基容度應用於非整數維,由此能將螺線作很好的分類。
1932年龐特里亞金(L.S.Pontryagin)等引入盒維數。
1934年,貝塞考維奇(A.S.Besicovitch)更深刻地提示了豪斯道夫測度的性質和奇異集的分數維,他在豪斯道夫測度及其幾何的研究領域中作出了主要貢獻,從而產生了豪斯道夫-貝塞考維奇維數概念。以後,這一領域的研究工作沒有引起更多人的注意,先驅們的工作只是作為分析與拓撲學教科書中的反例而流傳開來。
二
1960年,曼德爾布羅特在研究棉價變化的長期性態時,發現了價格在大小尺度間的對稱性。同年在研究信號的傳輸誤差時,發現誤差傳輸與無誤差傳輸在時間上按康托集排列。在對尼羅河水位和英國海岸線的數學分析中,發現類似規律。他總結自然界中很多現象從標度變換角度表現出的對稱性。他將這類集合稱作自相似集,其嚴格定義可由相似映射給出。他認為,歐氏測度不能刻劃這類集的本質,轉向維數的研究,發現維數是尺度變換下的不變數,主張用維數來刻劃這類集合。
1975年,曼德爾布羅特用法文出版了分形幾何第一部著作《分形:形狀、機遇和維數》。1977年該書再次用英文出版。它集中了1975年以前曼德爾布羅特關於分形幾何的主要思想,它將分形定義為豪斯道夫維數嚴格大於其拓樸維數的集合,總結了根據自相似性計算實驗維數的方法,由於相似維數只對嚴格自相似這一小類集有意義,豪斯道夫維數雖然廣泛,但在很多情形下難以用計算方法求得,因此分形幾何的應用受到局限。
1982年,曼德爾布羅特的新著《自然界的分形幾何》出版,將分形定義為局部以某種方式與整體相似的集,重新討論盒維數,它比豪斯道夫維數容易計算,但是稠密可列集盒維數與集所在空間維數相等。為避免這一缺陷,1982年特里科特(C.Tricot)引入填充維數,
1983年格拉斯伯格(P.Grassberger)和普羅克西婭(I.Procaccia)提出根據觀測記錄的時間數據列直接計算動力系統吸引子維數的演算法。
1985年,曼德爾布羅特提出並研究自然界中廣泛存在的自仿射集,它包括自相似集並可通過仿射映射嚴格定義。1982年德金(F.M.Dekking)研究遞歸集,這類分形集由迭代過程和嵌入方法生成,范圍更廣泛,但維數研究非常困難。德金獲得維數上界。1989年,鍾紅柳等人解決了德金猜想,確定了一大類遞歸集的維數。
隨著分形理論的發展和維數計算方法的逐步提出與改進,1982年以後,分形理論逐漸在很多領域得到應用並越來越廣泛。建立簡便盛行的維數計算方法,以滿足應用發展的需要,還是一項艱巨的任務。
自然界中的分形,與概率統計、隨機過程關系密切。確定性的古典分形集加入隨機性,就會產生出隨機康托集、隨機科契曲線等各種隨機分形。1968年,曼德爾布羅特研究布朗運動這一隨機過程時,將其推廣到與分形有關的分數布朗運動。1974年他又提出了分形滲流模型。1988年,柴葉斯(j.T.Chayes)給出了詳細的數學分析。1984年,扎樂(U.Zahle)通過隨機刪除而得到十分有趣的分形構造,隨機分形能更真實地描述和模擬自然現象。
三
動力系統中的分形集是近年分形幾何中最活躍和引人入勝的一個研究領域。動力系統的奇異吸引子通常都是分形集,它們產生於非線性函數的迭代和非線性微分方程中。1963年,氣象學家洛倫茲(E.N.Lorenz)在研究流體的對流運動時,發現了以他的名字命名的第一個奇異吸引子,它是一個典型的分形集。
1976年,法國天文學家伊儂(M.Henon)考慮標准二次映射迭代系統時獲得伊儂吸引子。它具有某種自相似性和分形性質。1986年勞威爾(H.A.Lauwerier)將斯梅爾的馬蹄映射變形成勞威爾映射,其迭代下不穩定流形的極限集成為典型的奇異吸引子,它與水平線的截面為康托集。1985年,格雷波基(C.Grebogi)等構造了一個二維迭代函數系統,其吸附界是維爾斯特拉斯函數,並得到盒維數。1985年,邁克多納(S.M.MacDonald)和格雷波基等得到分形吸附界的三種類型:
(1) 局部不連通的分形集;
(2) 局部連通的分形擬圓周;
(3) 既不局部連能又不是擬圓周。前兩者具有擬自相似性。
動力系統中另一類分形集來源於復平面上解析映射的迭代。朱利亞(G.Julia)和法圖(P.Fatou)於1918-1919年間開創這一研究。他們發現,解析映射的迭代把復平面劃分成兩部分,一部分為法圖集,另一部分為朱利亞集(J集)。他們在處理這一問題時還沒有計算機,完全依賴於他們自身固有的想像力,因此他們的智力成就受到局限。隨後50年間,這方面的研究沒有得到什麼進展。
隨著可用機算機來做實驗,這一研究課題才又獲得生機。1980年,曼德爾布羅特用計算機繪出用他名字命名的曼德爾布羅特集(M集)的第一張圖來。1982道迪(A.Douady)構造了含參二次復映射fc ,其朱利亞集J(fc)隨參數C的變化呈現各種各樣的分形圖象,著名的有道迪免子,聖馬科吸引子等。同年,茹厄勒(D.Ruelle)得到J集與映射系數的關系,解新局面了解析映射擊集豪斯道夫維數的計算問題。茄勒特(L.Garnett)得到J(fc)集豪斯道夫維數的數值解法。1983年,韋當(M.Widom)進一步推廣了部分結果 。法圖1926年就就開始整函數迭代的研究。1981年密休威茨(M.Misiuterwicz)證明指數映射的J集為復平面,解決了法圖提出的問題,引起研究者極大興趣。發現超越整函數的J集與有理映射J的性質差異,1984年德萬尼(R.L.Devanney)證明指數映射Eλ的J(Eλ)集是康托束或復平面而J(fc)是康托塵或連通集。
復平面上使J(fc)成為連通集的點C組成M集即曼德爾布羅特集,尤更斯(H.Jurgens)和培特根(H-O.Peitgen)認為,M集的性質過去一直是並且將來繼續是數學研究的一個巨大難題。通過將數學理論與計算機圖形學實驗加以融合,及道迪、扈巴德(H.Hubbard)等人在這方面進行的基礎性研究工作,在解決這一難題方面已取得重大進展,使人們加深了對M集的了解。道迪和扈巴德1982年證明M集是連通的和單連通的,人們猜測M集是局部連通的,目前每一張計算機圖形都證實了這一猜測,但至今還沒有人能給予證明。M是否為弧連通,目前尚不清楚。M集邊界的維數也是值得研究的問題之一。
M集除了將J集分成連通與非連通的兩類之外,還起著無窮個J集的圖解目錄表作用,即把M集C點周圍的圖形放大就是與C點有關的J集的組成部分。但這一發現的數學密性至今仍未確定,譚磊(Tan Lei)1985年證明了在每一個密休威茨點鄰近M集與相關的J集之間存在著相似性。尤金斯等在M集的靜電位研究中獲得與自然形貌相似的分形圖象。目前包括尤金斯等在內的很多研究人員都致力於藉助計算機活動錄象探索M集。其它一些分形集的研究工作正在取得進展。1990年德萬尼通過數值實驗觀察到M集的復雜圖形由許多不同周期的周期軌道的穩定區域共同構成。1991年黃永念運用他提出的代數分析法證明了這一事實,研究了M集及其廣義情況周期軌道整體解析特性。
巴斯萊(B.M.Barnsley)和德門科(S.Demko)1985年引入迭代函數系統,J集及其其它很多分形集都是某些迭代函數的吸引集,用其它方法產生的分形集也可用迭代函數系逼近。1988年,勞威爾通過數值研究發現畢達哥拉斯樹花是一迭代函數系的J集。1985年巴斯萊等研究含參數的函數系迭代動力系統,得到M集D並D與M在連通性上的差異。在一線性映射系迭代下,可以產生著名的分形曲線——雙生龍曲線。1986年水谷(M.Mitzutani)等對其動力系統進行了研究。
一般動力系統中的分形集,其豪斯道夫維數dH難以通過理論方法或計算方法求得。對於有迭式構造的分形集,貝德浮德(T.Bedford)等在1986年已給出卓有成效的演算法,但對一般非線性映射迭代動力系統產生的分形集,這些結果都難以應用,其豪斯道夫維數dH的結論與演算法實際上沒有。卡普蘭(j.L.Kaplan)和約克(J.A.York) 1979年引入李雅普洛夫維數dL並猜測dL=dH。1981年勒拉皮爾證明dH≤dL。楊(L.S.Young)1982年證明二維情況下dH=dL。艾茄瓦(A.K.Agarwal)等1986年給出例子說明高維情形卡普蘭-約克猜測不成立。這一猜測力圖從動力學特徵推斷幾何結構,其反問題是由吸引子維數推斷混沌力學,這是值得研究的問題。但目前工作甚少且主要限於計算機研究。此外,含參動力系統在混沌臨界態或突變處的分形集維數也有待進一步研究。
多重分形(multifractals)是與動力系統奇異吸引子有關的另一類重要分形集,其概念首先由曼德布羅特和倫依(A.Renyi)引入。法默(J.D.Farmer)等在1983年定義了多重分形廣義維數。1988年博爾(T.Bohr)等人將拓撲熵引入多重分形的動力學描述與熱力學類比。1988年,阿內多(A.Arneodo)等人將子波變換用於多重分形研究。費德(J.Feder)、特爾(T.Tel)等人進行了多重分形子集及標度指數的研究。阿姆特里卡等研究了多重分形的逆問題,提出廣義配分函數,給出廣義超越維數,對過去的維數進行了修正。李(J.Lee)等發現了多重分形熱力學形式上的相變。1990年,伯克(C.Beck)得到廣義維數的上下界和極限並研究了多重分形的均勻性量度。曼德布羅特研究了隨機多重分形及負分維。1991年科維克(Z.Kov.acs)等引入雙變數迭代系統,最大特徵值和吉布斯勢導出維數、熵、李雅普洛夫指數,提供了對多重分形相變分類的一般方案。對於多重分形相變分類的一般方案。對於多重分形目前雖已提出不少處理方法,但從數學的觀點上看,還不夠嚴格,部分問題的數學處理難度也較大。
四
分形理論真正發展起來才十餘年,並且方興未艾,很多方面的理論還有待進一步研究。值得注意的是,近年分形理論的應用發展遠遠超過了理論的發展,並且給分形的數學理論提出了更新更高的要求。各種分形維數計算方法和實驗方法的建立、改進和完善,使之理論簡便,可操作性強,是應用分形的科學家們普遍關注的問題。而在理論研究上,維數的理論計算、估計、分形重構(即求一動力系統,使其吸引集為給定分形集)、J集和M集及其推廣形式的性質、動力學特徵及維數研究將會成為數學工作者們十分活躍的研究領域。多重分形理論的完善、嚴格以及如何用這些理論來解決實際問題可能會引起科學家們廣泛的興趣,而動力學特徵、相變和子波變換可能會成為其中的幾個熱點。
在哲學方面,人們的興趣在於自相似性的普適性,M集和J集表現出的簡單性與復雜性,復數與實數的統一性,多重分形相變與突變論的關系,自組織臨界(SOC)現象的刻畫以及分形體系內部的各種矛盾的轉化等。可以預言,一場關於分形科學哲學問題的討論即將在國內展開。
======================================
分形理論與波動理論研究http://www.chinavalue.net/showarticle.aspx?id=16055
迷人的分形理論控制了金融市場http://finance.sina.com.cn/forex/forexinfo/20050916/12161974322.shtml
分形理論與化學工程中的應用http://www.bookschina.com/1363175.htm
分形理論在城市研究中的應用http://www.tjplan.com/Article/ShowArticle.asp?ArticleID=3720
分形理論及其在水處理工程中的應用http://www.863p.com/water/WaterWscl/200611/15998_4.html
分形理論對教育研究的方法論啟示http://ced.xxjy.cn/RESOURCE/Article/JYLW/3/306/lw009994.htm
3. 分形理論的介紹
分形理論(Fractal Theory)是當今十分風靡和活躍的新理論、新學科。分形的概念是美籍數學家本華·曼德博(法語:Benoit B. Mandelbrot)首先提出的。分形理論的數學基礎是分形幾何學,即由分形幾何衍生出分形信息、分形設計、分形藝術等應用。分形理論的最基本特點是用分數維度的視角和數學方法描述和研究客觀事物,也就是用分形分維的數學工具來描述研究客觀事物。它跳出了一維的線、二維的面、三維的立體乃至四維時空的傳統藩籬,更加趨近復雜系統的真實屬性與狀態的描述,更加符合客觀事物的多樣性與復雜性。
4. 什麼是分形
分形理論建立於20世紀70年代末,至今仍鮮為世人所知,但30年來卻震驚著世界科學界,被科學界列入20世紀的20項重大科學發現之一。
眾所周知,基於傳統歐幾里得幾何學的各門自然科學總是把研究對象想像成一個個規則的形體,而人類"熟悉"卻無法描述的自然界許許多多真實的圖形竟如此不規則和支離破碎,與歐幾里得幾何圖形相比,擁有完全不同層次的復雜性。現代科學研究面對起伏蜿蜒的山脈、坑坑窪窪的地面、曲曲折折的海岸線、層層分叉的樹枝、支流縱橫的水系、翻騰變幻的浮雲、地殼上的褶皺、密布人體周身的血管、滿天閃爍的繁星、撕裂夜空的閃電、魔鬼般跳躍的火焰、船尾湍急的渦流、拍岸的驚濤與浪花、金屬和非金屬材料的斷面、生物的大分子結構、分子光譜分布以及電磁波雜訊分布等等,急切要求等到精確和深入的解。在這個傳統歐幾里得幾何學無能為力的領域,分形理論脫穎而出,它的研究和應用成果大放異彩。
目前,分形理論是非線性科學研究中十分活躍的一枝,它的研究對象是自然界和非線性系統中出現的不光滑和不規則的幾何形體,分形理論的數學基礎是分形幾何。什麼是分形?分形是對沒有特徵長度(特徵長度是指所考慮的集合對象所含有的各種長度的代表者,例如一個球,可用它的半徑作為它的特徵長度。)但具有一定意義下的自相似圖形和結構的總稱。「分形」一詞譯於英文Fractal,系分形理論的創始人曼德爾布羅特(B.B.Mandelbrot)於1975年由拉丁語Frangere,一詞創造而成,詞本身具有「破碎」和「不規則」兩個含義。
5. 什麼是分形數學
普通幾何學研究的對象,一般都具有整數的維數。比如,零維的點、一維的線、二維的面、三維的立體、乃至四維的時空。在20世紀70年代末80年代初,產生了新興的分形幾何學(fractal geometry),空間具有不一定是整數的維,而存在一個分數維數。這是幾何學的新突破,引起了數學家和自然科學者的極大關注。根據物理學家李蔭遠院士的建議,大陸將fractal一開始就定譯為「分形」,而台灣學者一般將fractal譯作「碎形」。
目錄
分形幾何的產生
兩名數學家的貢獻
芒德勃羅和電子計算機對分形幾何的影響
分形幾何的內容
關於維數
維數和測量的關系
分形幾何學的應用
分形幾何的意義
編輯本段分形幾何的產生
客觀自然界中許多事物,具有自相似的「層次」結構,在理想情況下,甚至具有無窮層次。適當的放大或縮小幾何尺寸,整個結構並不改變。不少復雜的物理現象,背後就是反映著這類層次結構的分形幾何學。 客觀事物有它自己的特徵長度,要用恰當的尺度去測量。用尺來測量萬里長城,嫌太短;用尺來測量大腸桿菌,又嫌太長。從而產生了特徵長度。還有的事物沒有特徵尺 分形幾何
度,就必須同時考慮從小到大的許許多多尺度(或者叫標度),這叫做「無標度性」的問題。 如物理學中的湍流,湍流是自然界中普遍現象,小至靜室中繚繞的輕煙,巨至木星大氣中的渦流,都是十分紊亂的流體運動。流體宏觀運動的能量,經過大、中、小、微等許許多度尺度上的漩渦,最後轉化成分子尺度上的熱運動,同時涉及大量不同尺度上的運動狀態,就要藉助「無標度性」解決問題,湍流中高漩渦區域,就需要用分形幾何學。
編輯本段兩名數學家的貢獻
在二十世紀七十年代,法國數學家芒德勃羅(B.B.Mandelbrot)在他的著作中探討了「英國的海岸線有多長」這個問題。這依賴於測量時所使用的尺度。 如果用公里作測量單位,從幾米到幾十米的一些曲折會被忽略;改用米來做單位,測得的總長度會增加,但是一些厘米量級以下的就不能反映出來。由於漲潮落潮使海岸線的水陸分界線具有各種層次的不規則性。海岸線在大小兩個方向都有自然的限制,取不列顛島外緣上幾個突出的點,用直線把它們連起來,得到海岸線長度的一種下界。使用比這更長的尺度是沒有意義的。還有海沙石的最小尺度是原子和分子,使用更小的尺度也是沒有意義的。在這兩個自然限度之間,存在著可以變化許多個數量級的「無標度」區,長度不是海岸線的定量特徵,就要用分維。 數學家柯赫(Koch)從一個正方形的「島」出發,始終保持面積不變,把它的「海岸線」變成無限曲線,其長度也不斷增加,並趨向於無窮大。以後可以看到,分維才是「Koch島」海岸線的確切特徵量,即海岸線的分維均介於1到2之間。 這些自然現象,特別是物理現象和分形有著密切的關系,銀河系中的若斷若續的星體分布,就具有分維的吸引子。多孔介質中的流體運動和它產生的滲流模型,都是分形的研究對象。這些促使數學家進一步的研究,從而產生了分形幾何學。
編輯本段芒德勃羅和電子計算機對分形幾何的影響
電子計算機圖形顯示協助了人們推開分形幾何的大門。這座具有無窮層次結構的宏偉建築,每一個角落裡都存在無限嵌套的迷宮和迴廊,促使數學家和科學家深入研究。 法國數學家芒德勃羅這位計算機和數學兼通的人物,對分形幾何產生了重大的推動作用。他在1975、1977和1982年先後用法文和英文出版了三本書,特別是《分形:形、機遇和維數》以及《自然界中的分形幾何學(Fractal Geometry of Nature)》,開創了新的數學分支:分形幾何學。「分形」(fractal)這個詞正是芒德勃羅在1975年造出來的,詞根是拉丁文的fractus,是「破碎」的意思。
編輯本段分形幾何的內容
分形幾何學的基本思想是:客觀事物具有自相似的層次結構,局部與整體在形態、功能、信息、時間、空間等方面具有統計意義上的相似性,稱為自相似性。例如,一塊磁鐵中的每一部分都像整體一樣具有南北兩極,不斷分割下去,每一部分都具有和整體磁鐵相同的磁場。這種自相似的層次結構,適當的放大或縮小幾何尺寸,整個結構不變。
編輯本段關於維數
維數是幾何對象的一個重要特徵量,它是幾何對象中一個點的位置所需的獨立坐標數目。在歐氏空間中,人們習慣把空間看成三維的,平面或球面看成二維,而把直線或曲 分形幾何作品
線看成一維。也可以稍加推廣,認為點是零維的,還可以引入高維空間,對於更抽象或更復雜的對象,只要每個局部可以和歐氏空間對應,也容易確定維數。但通常人們習慣於整數的維數。 分形理論認為維數也可以是分數,這類維數是物理學家在研究混沌吸引子等理論時需要引入的重要概念。為了定量地描述客觀事物的「非規則」程度,1919年,數學家從測度的角度引入了維數概念,將維數從整數擴大到分數,從而突破了一般拓撲集維數為整數的界限。
編輯本段維數和測量的關系
維數和測量有著密切的關系,下面我們舉例說明一下分維的概念。 當我們畫一根直線,如果我們用 0維的點來量它,其結果為無窮大,因為直線中包含無窮多個點;如果我們用一塊平面來量它,其結果是 0,因為直線中不包含平面。那麼,用怎樣的尺度來量它才會得到有限值哪?看來只有用與其同維數的小線段來量它才會得到有限值,而這里直線的維數為 1(大於0、小於2)。 對於我們上面提到的Koch曲線,其整體是一條無限長的線折疊而成,顯然,用小直線段量,其結果是無窮大,而用平面量,其結果是 0(此曲線中不包含平面),那麼只有找一個與「寇赫島」曲線維數相同的尺子量它才會得到有限值,而這個維數顯然大於 1、小於 2,那麼只能是小數了,所以存在分維。經過計算「寇赫島」曲線的豪斯多夫維數(分維數)為d=log(4)/log(3)=1.26185950714... 定義 設分成的最小的閉集(區間,圓面,球體)佔全集的1/δ,充滿全集的最小閉集的個數為N,若極限D=(δ→0)ln(N)/ln(1/δ)存在,則稱D為此集合的分形維數。
編輯本段分形幾何學的應用
分形幾何學已在自然界與物理學中得到了應用。如在顯微鏡下觀察落入溶液中的一粒花粉,會看見它不間斷地作無規則運動(布朗運動),這是花粉在大量液體分子的無規則碰撞(每秒鍾多達十億億次)下表現的平均行為。布朗粒子的軌跡,由各種尺寸的折線連成。只要有足夠的解析度,就可以發現原以為是直線段的部分,其實由大量更小尺度的折線連成。這是一種處處連續,但又處處無導數的曲線。這種布朗粒子軌跡的分維是 2,大大高於它的拓撲維數 1. 在某些電化學反應中,電極附近沉積的固態物質,以不規則的樹枝形狀向外增長。受到污染的一些流水中,粘在藻類植物上的顆粒和膠狀物,不斷因新的沉積而生長,成為帶有許多須須毛毛的枝條狀,就可以用分維。 自然界中更大的尺度上也存在分形對象。一枝粗干可以分出不規則的枝杈,每個枝杈繼續分為細杈……,至少有十幾次分支的層次,可以用分形幾何學去測量。 有人研究了某些雲彩邊界的幾何性質,發現存在從 1公里到1000公里的無標度區。小於 1公里的雲朵,更受地形概貌影響,大於1000公里時,地球曲率開始起作用。大小兩端都受到一定特徵尺度的限制,中間有三個數量級的無標度區,這已經足夠了。分形存在於這中間區域。 近幾年在流體力學不穩定性、光學雙穩定器件、化學震盪反映等試驗中,都實際測得了混沌吸引子,並從實驗數據中計算出它們的分維。學會從實驗數據測算分維是最近的一大進展。分形幾何學在物理學、生物學上的應用也正在成為有充實內容的研究領域。
編輯本段分形幾何的意義
上世紀80年代初開始的「分形熱」經久不息。分形作為一種新的概念和方法,正在許多領域開展應用探索。美國物理學大師約翰·惠勒說過:今後誰不熟悉分形,誰就不能被稱為科學上的文化人。由此可見分形的重要性。 中國著名學者周海中教授認為:分形幾何不僅展示了數學之美,也揭示了世界的本質,還改變了人們理解自然奧秘的方式;可以說分形幾何是真正描述大自然的幾何學,對它的研究也極大地拓展了人類的認知疆域。 分形幾何學作為當今世界十分風靡和活躍的新理論、新學科,它的出現,使人們重新審視這個世界:世界是非線性的,分形無處不在。分形幾何學不僅讓人們感悟到科學與藝術的融合,數學與藝術審美的統一,而且還有其深刻的科學方法論意義。
http://ke..com/view/44498.htm
6. 分形幾何指的是什麼
分形幾何學是一門以不規則幾何形態為研究對象的幾何學。相對於傳統幾何學的研究對象為整數維數,如,零維的點、一維的線、二維的面、三維的立體乃至四維的時空。分形幾何學的研究對象為非負實數維數,如0.63、1.58、2.72、log2/log3。
因為它的研究對象普遍存在於自然界中,因此分形幾何學又被稱為「大自然的幾何學」。 一個數學意義上分形的生成是基於一個不斷迭代的方程式,即一種基於遞歸的反饋系統。分形有幾種類型,可以分別依據表現出的精確自相似性、半自相似性和統計自相似性來定義。
雖然分形是一個數學構造,它們同樣可以在自然界中被找到,這使得它們被劃入藝術作品的范疇。分形在醫學、土力學、地震學和技術分析中都有應用。簡單的說,分形就是研究無限復雜具備自相似結構的幾何學。 是大自然復雜表面下的內在數學秩序。
分形幾何由來
客觀自然界中許多事物,具有自相似的「層次」結構,在理想情況下,甚至具有無窮層次。適當的放大或縮小事物的幾何尺寸,整個結構並不改變。不少復雜的物理現象,背後就是反映著這類層次結構的分形幾何學。
客觀事物都有它自己的特徵尺度,要用恰當的尺度去測量。用尺子來測量萬里長城,嫌太短,而用來測量大腸桿菌,又嫌太長。還有的事物沒有特徵尺度,就必須同時考慮從小到大的許許多多尺度,這就是無標度」的問題。
7. 什麼是分形
分形,具有以非整數維形式充填空間的形態特徵。通常被定義為「一個粗糙或零碎的幾何形狀,可以分成數個部分,且每一部分都(至少近似地)是整體縮小後的形狀」,即具有自相似的性質。分形(Fractal)一詞,是芒德勃羅創造出來的,其原意具有不規則、支離破碎等意義。1973年,芒德勃羅(B.B.Mandelbrot)在法蘭西學院講課時,首次提出了分維和分形的設想。
分形是一個數學術語,也是一套以分形特徵為研究主題的數學理論。分形理論既是非線性科學的前沿和重要分支,又是一門新興的橫斷學科,是研究一類現象特徵的新的數學分科,相對於其幾何形態,它與微分方程與動力系統理論的聯系更為顯著。分形的自相似特徵可以是統計自相似,構成分形也不限於幾何形式,時間過程也可以,故而與鞅論關系密切。
8. 數學分形和統計分形
自然界的許多事物和現象表現出極為復雜的形態,並非所顯示的那樣理想化.自相似性或標度不變性往往以統計方式表現出來,即當改變尺度時,在該尺度包含的部分統計學的特徵與整體是相似的.這種分形是數學分形的一種推廣,叫做統計分形.
數學分形是一種理想化的情況,它必須具備兩個條件:
(1)數學分形曲線必須具有無窮的「層次」結構,像Koch曲線那樣;數學分形必須是無限點的集合,像Cantor集合那樣.只有無窮的層次結構,才能使自相似性或標度不變性處處成立.
(2)數學分形的任何一個局部放大後,都和整體在形狀,數量以及統計分布上完全相似.
數學分形是分析自然界復雜事物的一個數學模型.要具體應用到真實的自然現象,應對數學分形做些推廣和修正:①由無窮「層次」結構到有限的「層次」結構,或由無窮集合到有限集合的推廣,這里就產生了在一定范圍內自相似性或標度不變性成立的問題,即無標度區間的問題;②由嚴格的數學相似到近似的統計相似性的推廣.
9. 學習分形幾何需要什麼知識基礎
分形幾何不同於普通幾何學的「點(0維)線(1維)面(2維)體(3維)」整數維空間。
學習分形幾何,普通的幾何(平面解析幾何,空間解析幾何,微分幾何)知識當然是基礎。
數學分析,線性代數,概率統計,實分析(測度論),復分析(映射理論)也都要具備一點。
10. 分形幾何是什麼 什麼是分形幾何
1、分形幾何學是一門以不規則幾何形態為研究對象的幾何學。相對於傳統幾何學的研究對象為整數維數,如,零維的點、一維的線、二維的面、三維的立體乃至四維的時空。分形幾何學的研究對象為非負實數維數,如0.63、1.58、2.72、log2/log3(參見康托爾集)。因為它的研究對象普遍存在於自然界中,因此分形幾何學又被稱為「大自然的幾何學」。
2、一個數學意義上分形的生成是基於一個不斷迭代的方程式,即一種基於遞歸的反饋系統。分形有幾種類型,可以分別依據表現出的精確自相似性、半自相似性和統計自相似性來定義。雖然分形是一個數學構造,它們同樣可以在自然界中被找到,這使得它們被劃入藝術作品的范疇。分形在醫學、土力學、地震學和技術分析中都有應用。