當前位置:首頁 » 基礎知識 » 小馬高中數學知識框架
擴展閱讀
萬疆歌詞創作意思是什麼 2024-11-01 20:04:28
國慶節小知識創意視頻 2024-11-01 20:02:04

小馬高中數學知識框架

發布時間: 2022-11-18 12:09:25

㈠ 高中數學知識結構框架圖

原發布者:呂明龍88
高中數學知識結構框圖必修一:第一章集合第三章基本初等函數(Ⅰ)必修二:第一章立體幾何初步第二章平面解析幾何初步必修三:第一章演算法初步第二章統計第三章概率必修四:第一章基本初等函數(II)第二章平面向量第三章三角恆等變換必修五:第一章解三角形第二章數列第三章不等式選修2-1:第一章常用邏輯用語第二章圓錐曲線與方程第三章空間向量與立體幾何選修2-2:第一章導數及其應用第二章推理與證明第三章數系的擴充與復數選修2-3:第一章計數原理第二章概率第三章統計案例

㈡ 高中數學知識體系的構成與構建

一、高中數學知識體系的構成

一個完整的知識體系,主要由以下幾部分構成:

1、全面完整的基礎知識

包括但不限於課本中出現的公理、定理、性質、推論、公式,它們的來龍去脈。

某一章知識內部各節之間的相互聯系。

各章知識之間的相互聯系。

每一章知識的重難點。

每一章知識在高考中的地位,所佔的分值。

2、各種典型題目的解決方法

在基礎知識掌握扎實的基礎上,重難點知識對應的題型種類,典型題目的處理方法。

遇到復雜題目時的思考方法和方向。

一些快速簡便的解題技巧。

3、高中數學中涉及到的各種數學思想

對於函數思想、方程思想、數形結合思想的掌握和有意識的應用。

4、解題能力

快速准確的解題能力,主要是計算速度和准確度。

5、學習方法

適合自己特點的數學學習方法,包括但不限於聽講、復習、練習等,比如作息時間的安排,各科目的學習安排,側重點,整塊時間和零碎時間的應用,如何對待錯題,聽課的方法,考試的技巧等。

逐漸完成1—4所涉及內容的掌握。

二、如何構建高中數學知識體系

1、高中數學知識體系的素材

要構建一個知識體系,首先我們要有足夠的素材,常見的有:大綱、課本、老師的授課筆記、資料、習題試題、網路上的各種資源。

(1)每年的12月份中國教育考試網會公布下一年高考的考試大綱。

與大綱配套的還有《考試說明》、《試題分析》,三者構成三件套,這個網上可能沒有電子版,需要的話可以在京東等網站購買。

這三本書對於你掌握知識沒有直接影響,一般是老師和教學研究人員看的。但是通過研究這些綱領性的內容,可以幫助你在腦子里大致構建出一個框架:高考考哪些知識,哪些是重點、難點,一般是如何命題的。

有了這個框架,我們就可以逐步向裡面填充內容。

當然實際上我們也不需要這么做,很多教輔書中都會有提及,只需要我們留意即可。

(2)課本是最基本的素材。

在課本上有每一個知識點的來龍去脈最淺顯的解釋,當你某一個基礎知識不夠扎實的時候,回去看課本總是不壞的選擇。課本上的例題、習題雖然難度都不大,但也是編寫者精心編寫,它起到的作用是讓你會用所學的知識解決初步的問題。

如果是程度不太好的同學,真的建議你去把課本拿出來重新學一遍,注意不是看,是學!

(3)老師的授課筆記主要是指老師的授課過程。

每一節課都是老師根據所教學生的水平,對課本上的內容進行加工後的成品,引導著學生一步一步將新知識納入既有的知識體系。它既包含了知識的發生、發展,也濃縮了老師對於這一章節的認識,可以說是最適合學生的素材。

(4)資料是重要的輔助素材。

嚴格來說,每一本優秀的學習資料都是一個完整的知識體系,都蘊含著編寫者對於高中數學的認識和把握。但是很多同學做了一本又一本資料,卻始終對於知識沒有清晰的認識,知識體系仍然不夠成形,原因在於這不是你自己思考總結出來的,你記不住。

就像是你看到一棟房子很漂亮,但是讓你去蓋的話,卻很難原樣復制,因為你不知道為什麼要這樣蓋!

所以我們在使用資料的時候,要邊用邊思考,邊總結,將資料上的知識內化為自己知識體系的一部分。資料也有很多種,有教材全解類的,有刷題類的,有針對某一個重點專題突破的,要根絕自身的情況去選擇。

(5)習題試題是兩種不同的類型。

試題是檢驗你學習成果、查漏補缺的重要工具,可以分成單元測試、期中期末考試、模擬考、高考這么幾類。

對於試題要重視的是其查漏補缺的功能,不能僅僅滿足於做完就算,也不能滿足於做一個錯題集,而是要學會去分析考試的側重點,分析出卷老師認為哪些是重要知識。

習題是我們平時練慣用的,習題的重要性毋庸置疑,通過習題我們可以更好的掌握知識,訓練解題能力,而知識能力都是通過解決習題體現的。

要學會分析每一道題目是要考察什麼知識,通過什麼方式來考察,有什麼慣用的出題類型,有什麼常見的處理方法,有沒有一些容易犯錯的地方會被老師拿來挖坑。

(6)網路資源。

身為高中生要善於運用網路,在我們周圍其實充斥著大量的學習資源,比如B站、知乎、網路文庫,還有一些專業網站,QQ群,有很多學習資料可供我們使用。

2、知識框架的搭建

知識框架的搭建是一個動態的過程,從無到有,在學生學習的過程中,一點一滴的建立。一開始不會太順遂,隨著學習內容的增多,慢慢的會有一個模糊的印象,這時候就需要有意識的進行整理總結,使得知識框架變得完整,清晰。

具體的操作過程中,比如在學習某一章新課的時候,通過課本目錄,或者資料,或者老師的點評講解,對於本章節在整個高中知識中的地位有一個認識。

其次對於本章的知識有一個了解,有哪幾節,可以分成幾大部分,內在邏輯聯系是什麼樣的?哪些章節是重點?

舉個例子,必修一的函數部分,其基本框架就是函數的定義、函數的表示、函數的性質、學習新的函數並用之前學過的性質來研究,然後是一種新的函數——三角函數,使用之前所學來進行研究。

那麼顯然函數的性質就是重點和難點,也是考試的考察點,因為不管函數是什麼樣,最終落腳點都在它們的性質上。

3、知識體系的細化

向每一節里填充知識,比如指數函數,包含哪些內容,是如何來組織的?它的定義是什麼,從何而來?圖像是什麼,有哪些性質,通過什麼來組織會比較好記,有哪些重點知識、難點知識要標出來。

注意這個過程剛開始可以對著課本或者資料完成,之後可以自己用思維導圖來嘗試梳理。

當把知識填充完成之後,需要向裡面繼續填充習題。

比如指數函數最重要的是圖像和單調性,一般對應的有什麼題型?如何來解決?有什麼需要注意之處?容易和哪些知識綜合出題?

此時我們可以借用資料和筆記來輔助,尤其是資料上對於知識的重難點和典型題目是有詳細解讀以及展開的。

4、知識體系的內化

如果我們只做到第三步,這個知識體系仍然不是你自己的。

因為這些知識只是你寫了出來,它與你還隔著兩個過程,一個是用「嘴」,一個是用「腦」。

其實也是兩個小經驗。

第一個是去給別人講,就像老師講課一樣,給別人去講每一節知識的發生、發展,來龍去脈,有什麼重難點,常見題型。

說的越詳細越好。

第二個是要學會把題目做「慢」,做「全」。

每一次做題,都要思考這道題考察的是什麼知識?如何去解決?有沒有其他方法?如果換一種類型如何解決?

其實就是把自己當成老師去講解這道題目。每一次都這樣去考慮,剛開始可能會慢,也可能總結不到位,但是日積月累,你就會明白我所說的每一道題都是有其目的的,是為了通過特定的方法考察某一知識是個什麼意思了。

這就相當於什麼呢?

就相當於你看到一個畫家畫的很好,你也知道裡面的理論,但是你仍然需要大量的練習才能達到他的水平。

而大量的練習其實是為了將知識內化為你自己的技能,對於題型——知識的對應有一個新的認識。

5、知識體系的拔高

當我們完成1——4步之後,應該對於這一章節的知識有了一個相對扎實全面的認識。

但我們所要做的並不僅僅如此,而是要將其進一步升華拔高,此時就不能不提所謂的數學思想。

數學思想有很多,高中比較常用的函數思想、數形結合思想、化歸思想,而且在實際運用數學知識解決問題的過程中,其實也在不斷的使用,只不過我們並未有意識的去運用它。

比如數形結合思想在某某題型中的應用。

還有一些本質性的東西,比如奇偶性實際上是對稱性的特殊情況,單調性的本質其實是不等關系。

這些高觀點的來源可以是自己的領悟,也可以是老師的講解,或者來自某本資料,但有一個共同點,它們可以讓你對於某個知識點,或者某一題型有本質的認識。

6、知識體系的檢驗和補充

知識體系的構建不是一勞永逸,受制於我們對於知識的掌握水平,我們所構建出來的知識體系會存在著這樣那樣的漏洞和缺陷,這就需要我們不斷的檢驗,不斷的補充。

檢驗是通過什麼呢?無非是做題,通過做題查找到自己的缺陷,然後有意識的去組織力量突破。

比如某種題型,在解決過程中總是容易忽略掉某種特殊情況,那就不是馬虎的問題,而是在某個知識點上盲區,才導致了學生在思考解題過程中會忽略掉。

7、解題能力的培養

解題能力也是知識體系的一部分,它所包含的內容有計算能力和題目分析能力,看到一道題目,能夠快速把它與腦海中的模型題對應,找出題目的關鍵條件(突破口),分析出解題的路徑,然後能夠快速准確的把題目計算出來,解決掉。

解題能力的培養並不是孤立的,是和其他過程同時進行的。

雖然我們這篇文章將構建知識框架的過程拆分出來,這樣做的好處是比較全面,但它們不是孤立的,而是綜合在一起的。

㈢ 高中必修一數學知識點總結

高中必修一數學知識點總結

高一數學必修一的學習,需要大家對知識點進行總結,這樣大家最大效率地提高自己的學習成績。下面高中必修一數學知識點總結是我為大家整理的,在這里跟大家分享一下。

高中必修一數學知識點總結

第一章 集合與函數概念

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:X Kb 1.C om

非負整數集(即自然數集) 記作:N

正整數集 :N*或 N+

整數集: Z

有理數集: Q

實數集: R

1)列舉法:{a,b,c……}

2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{xR|x-3>2} ,{x|x-3>2}

3) 語言描述法:例:{不是直角三角形的三角形}

4) Venn圖:

4、集合的分類:

(1)有限集 含有有限個元素的集合

(2)無限集 含有無限個元素的集合

(3)空集 不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關系

1.“包含”關系—子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A

2.“相等”關系:A=B (5≥5,且5≤5,則5=5)

實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

即:① 任何一個集合是它本身的子集。AA

② 真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)

③ 如果 AB, BC ,那麼 AC

④ 如果AB 同時 BA 那麼A=B

3. 不含任何元素的集合叫做空集,記為Φ

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

三、集合的運算

運算類型 交 集 並 集 補 集

定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作‘A並B’),即A B ={x|x A,或x B}).

設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

記作 ,即

CSA=

A A=A

A Φ=Φ

A B=B A

A B A

A B B

A A=A

A Φ=A

A B=B A

A B A

A B B

(CuA) (CuB)

= Cu (A B)

(CuA) (CuB)

= Cu(A B)

A (CuA)=U

A (CuA)= Φ.

二、函數的有關概念

1.函數的概念

設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

注意:

1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。

求函數的定義域時列不等式組的主要依據是:

(1)分式的分母不等於零;

(2)偶次方根的被開方數不小於零;

(3)對數式的真數必須大於零;

(4)指數、對數式的底必須大於零且不等於1.

(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數為零底不可以等於零,

(7)實際問題中的函數的定義域還要保證實際問題有意義.

相同函數的判斷方法:①表達式相同(與表示自變數和函數值的字母無關);

②定義域一致 (兩點必須同時具備)

2.值域 : 先考慮其定義域

(1)觀察法 (2)配方法 (3)代換法

3. 函數圖象知識歸納

(1)定義:

在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .

(2) 畫法

1.描點法: 2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱變換

4.區間的概念

(1)區間的分類:開區間、閉區間、半開半閉區間 (2)無窮區間 (3)區間的數軸表示.

5.映射

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作“f(對應關系):A(原象) B(象)”

對於映射f:A→B來說,則應滿足:

(1)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;

(2)集合A中不同的元素,在集合B中對應的象可以是同一個;

(3)不要求集合B中的每一個元素在集合A中都有原象。

6.分段函數

(1)在定義域的不同部分上有不同的解析表達式的函數。

(2)各部分的自變數的取值情況.

(3)分段函數的定義域是各段定義域的交集,值域是各段值域的並集.

補充:復合函數

如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。

二.函數的性質

1.函數的單調性(局部性質)

(1)增函數

設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1

如果對於區間D上的任意兩個自變數的值x1,x2,當x1f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.

注意:函數的單調性是函數的局部性質;

(2) 圖象的特點

如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

(3).函數單調區間與單調性的判定方法

(A) 定義法:

(1)任取x1,x2∈D,且x1

(2)作差f(x1)-f(x2);或者做商

(3)變形(通常是因式分解和配方);

(4)定號(即判斷差f(x1)-f(x2)的正負);

(5)下結論(指出函數f(x)在給定的區間D上的單調性).

(B)圖象法(從圖象上看升降)

(C)復合函數的單調性

復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”

注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.

8.函數的奇偶性(整體性質)

(1)偶函數:一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.

(2)奇函數:一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.

(3)具有奇偶性的函數的圖象的特徵:偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.

9.利用定義判斷函數奇偶性的步驟:

○1首先確定函數的定義域,並判斷其是否關於原點對稱;

○2確定f(-x)與f(x)的關系;

○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.

注意:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函數的圖象判定 .

10、函數的解析表達式

(1)函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

(2)求函數的解析式的.主要方法有:1.湊配法2.待定系數法3.換元法4.消參法

11.函數最大(小)值

○1 利用二次函數的性質(配方法)求函數的最大(小)值

○2 利用圖象求函數的最大(小)值

○3 利用函數單調性的判斷函數的最大(小)值:

如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);

如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

第三章 基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根,其中 >1,且 ∈ *.

負數沒有偶次方根;0的任何次方根都是0,記作 。

當 是奇數時, ,當 是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義

3.實數指數冪的運算性質

(1) • ;

(2) ;

(3) .

(二)指數函數及其性質

1、指數函數的概念:一般地,函數 叫做指數函數,其中x是自變數,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

a>1 0

定義域 R 定義域 R

值域y>0 值域y>0

在R上單調遞增 在R上單調遞減

非奇非偶函數 非奇非偶函數

函數圖象都過定點(0,1) 函數圖象都過定點(0,1)

注意:利用函數的單調性,結合圖象還可以看出:

(1)在[a,b]上, 值域是 或 ;

(2)若 ,則 ; 取遍所有正數當且僅當 ;

(3)對於指數函數 ,總有 ;

二、對數函數

(一)對數

1.對數的概念:

一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)

說明:○1 注意底數的限制 ,且 ;

○2 ;

○3 注意對數的書寫格式.

兩個重要對數:

○1 常用對數:以10為底的對數 ;

○2 自然對數:以無理數 為底的對數的對數 .

指數式與對數式的互化

冪值 真數

= N = b

底數

指數 對數

(二)對數的運算性質

如果 ,且 , , ,那麼:

○1 • + ;

○2 - ;

○3 .

注意:換底公式: ( ,且 ; ,且 ; ).

利用換底公式推導下面的結論:(1) ;(2) .

(3)、重要的公式 ①、負數與零沒有對數; ②、 , ③、對數恆等式

(二)對數函數

1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).

注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.

○2 對數函數對底數的限制: ,且 .

2、對數函數的性質:

a>1 0

定義域x>0 定義域x>0

值域為R 值域為R

在R上遞增 在R上遞減

函數圖象都過定點(1,0) 函數圖象都過定點(1,0)

(三)冪函數

1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.

2、冪函數性質歸納.

(1)所有的冪函數在(0,+∞)都有定義並且圖象都過點(1,1);

(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;

(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.

第四章 函數的應用

一、方程的根與函數的零點

1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。

2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。

即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.

3、函數零點的求法:

○1 (代數法)求方程 的實數根;

○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數 .

(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.

(2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.

(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.

5.函數的模型

;

㈣ 高中數學知識點公式

導語:上了高中之後,數學對很多學生來是件頭疼的事情。尤其是對女生來講。但是,我想告訴大家的是:其實數學是最好得分的科目,同時數學又是高考成敗的關鍵。學好數學,基礎是關鍵。牢固並且靈活運用數學的基礎知識很非常重要的!

高中數學知識點框架清單:

1、集合知識點

2、不等式知識點

3、常用邏輯用語知識點

4、導數及其應用知識點

5、概率知識點

6、函數、基本初等函數知識點

7、幾何證明選講知識點

8、計數原理知識點

9、解三角形知識點

10、矩陣與變換知識點

11、空間幾何知識點

12、空間向量及其應用知識點

13、框圖知識點

14、平面向量知識點

15、曲線與方程知識點

16、三角函數知識點

17、數列知識點

18、數系的擴充與復數的引入知識點

19、演算法初步知識點

20、隨機變數及其分布列知識點

21、統計與統計案例知識點

22、推理與證明知識點

23、圓柱、圓錐與圓錐曲線知識點

24、圓錐曲線知識點

25、直線與圓知識點

26、坐標系與參數方程知識點

高中數學有哪些重點公式?

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理

判別式

b2-4ac=0 註:方程有兩個相等的實根

b2-4ac>0 註:方程有兩個不等的實根

b2-4ac<0 註:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctg

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標

圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0

拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py

直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h

正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'

圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l

弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h

斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長

柱體體積公式 V=s*h 圓柱體 V=pi*r2h

【課外閱讀】:

影響高中數學成績的原因及解決方法

作為衡量一個人能力的重要學科,從小學到高中絕大多數同學對它情有獨鍾,投入了大量的時間與精力.然而並非人人都是成功者,許多小學、初中數學學科成績的佼佼者,進入高中階段,第一個跟頭就栽在數學上。這種現象目前是比較普遍的,應當引起重視。當然造成這種現象的原因是多方面的,本文僅就從學生的學習狀態方面淺談如下:

面對眾多初中學習的成功者淪為高中學習的失敗者,有人對他們的學習狀態進行了研究、調查,表明,造成成績滑坡的主要原因有以下幾個方面.

1.被動學習.許多同學進入高中後,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到“門道”.沒有真正理解所學內容。

2.學不得法.老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微.

3.不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海.到正規作業或考試中不是演算出錯就是中途“卡殼”.

4.進一步學習條件不具備.高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好准備.高中數學很多地方難度大、方法新、分析能力要求高.如二次函數在閉區間上的最值問題,函數值域的求法,實根分布與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等.客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的'.

解決對策:

1.培養良好學習習慣。良好的學習習慣包括制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面.

制定計劃使學習目的明確,時間安排合理,不慌不忙,穩扎穩打,它是推動學生主動學習和克服困難的內在動力.但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志.

課前自學是學生上好新課,取得較好學習效果的基礎.課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權.自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上.

上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節.“學然後知不足”,課前自學過的同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼.

及時復習是高效率學習的重要一環,通過反復閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比較,一邊復習一邊將復習成果整理在筆記上,使對所學的新知識由“懂”到“會”.

獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程.這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由“會”到“熟”.

解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而不舍的精神,做錯的作業再做一遍.對錯誤的地方沒弄清楚要反復思考,實在解決不了的要請教老師和同學,並要經常把易錯的地方拿出來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”.

系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節.小結要在系統復習的基礎上以教材為依據,參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系.以達到對所學知識融會貫通的目的.經常進行多層次小結,能對所學知識由“活”到“悟”.

課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等.課外學習是課內學習的補充和繼續,它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能滿足和發展他們的興趣愛好,培養獨立學習和工作能力,激發求知慾與學習熱情.

2.循序漸進,防止急躁

由於學生年齡較小,閱歷有限,為數不少的高中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想憑幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振.針對這些情況,學生應懂得學習是一個長期的鞏固舊知識、發現新知識的積累過程,決非一朝一夕可以完成,為什麼高中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度.

3.研究學科特點,尋找最佳學習方法

數學學科擔負著培養學生運算能力、邏輯思維能力、空間想像能力,以及運用所學知識分析問題、解決問題的能力的重任.它的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高.學習數學一定要講究“活”,只看書不做題不行,埋頭做題不總結積累不行,對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法.華羅庚先生倡導的“由薄到厚”和“由厚到薄”的學習過程就是這個道理.方法因人而異,但學習的四個環節(預習、上課、整理、作業)和一個步驟(復習總結)是少不了的。

㈤ 求高中數學所有的知識點框架,(越詳細越好),包括理科專用。

高三數學備考公式篇

1. 元素與集合的關系,.
2.德摩根公式 .
3.包含關系

4.容斥原理

.
5.集合的子集個數共有 個;真子集有–1個;非空子集有 –1個;非空的真子集有–2個.
6.二次函數的解析式的三種形式
(1)一般式;(2)頂點式;
(3)零點式.
7.解連不等式常有以下轉化形式
.
8.方程在上有且只有一個實根,與不等價,前者是後者的一個必要而不是充分條件.特別地, 方程有且只有一個實根在內,等價於,或且,或且.
9.閉區間上的二次函數的最值
二次函數在閉區間上的最值只能在處及區間的兩端點處取得,具體如下:
(1)當a>0時,若,則;
,,.
(2)當a<0時,若,則,若,則,.
10.一元二次方程的實根分布
依據:若,則方程在區間內至少有一個實根 .
設,則
(1)方程在區間內有根的充要條件為或;
(2)方程在區間內有根的充要條件為或或或;
(3)方程在區間內有根的充要條件為或 .
11.定區間上含參數的二次不等式恆成立的條件依據
(1)在給定區間的子區間(形如,,不同)上含參數的二次不等式(為參數)恆成立的充要條件是.
(2)在給定區間的子區間上含參數的二次不等式(為參數)恆成立的充要條件是.
(3)恆成立的充要條件是或.
12.真值表

p

q

非p

p或q

p且q









































13.充要條件
(1)充分條件:若,則是充分條件.
(2)必要條件:若,則是必要條件.
(3)充要條件:若,且,則是充要條件.
註:如果甲是乙的充分條件,則乙是甲的必要條件;反之亦然.
14.函數的單調性
(1)設那麼
上是增函數;
上是減函數.
(2)設函數在某個區間內可導,如果,則為增函數;如果,則為減函數.
15.如果函數和都是減函數,則在公共定義域內,和函數也是減函數; 如果函數和在其對應的定義域上都是減函數,則復合函數是增函數.
16.奇偶函數的圖象特徵
奇函數的圖象關於原點對稱,偶函數的圖象關於y軸對稱;反過來,如果一個函數的圖象關於原點對稱,那麼這個函數是奇函數;如果一個函數的圖象關於y軸對稱,那麼這個函數是偶函數.
17.若函數是偶函數,則;若函數是偶函數,則.
18.對於函數(),恆成立,則函數的對稱軸是函數;兩個函數與 的圖象關於直線對稱.
19.若,則函數的圖象關於點對稱; 若,則函數為周期為的周期函數.
20.多項式函數的奇偶性
多項式函數是奇函數的偶次項(即奇數項)的系數全為零.
多項式函數是偶函數的奇次項(即偶數項)的系數全為零.
21.函數的圖象的對稱性
(1)函數的圖象關於直線對稱
.
(2)函數的圖象關於直線對稱
.
22.兩個函數圖象的對稱性
(1)函數與函數的圖象關於直線(即軸)對稱.
(2)函數與函數的圖象關於直線對稱.
(3)函數和的圖象關於直線y=x對稱.
23.若將函數的圖象右移、上移個單位,得到函數的圖象;若將曲線的圖象右移、上移個單位,得到曲線的圖象.
24.互為反函數的兩個函數的關系
.
25.幾個常見的函數方程
(1)正比例函數,.
(2)指數函數,.
(3)對數函數,.
(4)冪函數,.
(5)餘弦函數,正弦函數,,
.
26.幾個函數方程的周期(約定a>0)
(1),則的周期T=a;
(2),或,或,或,則的周期T=2a;
(3),則的周期T=3a;
(4)且,則的周期T=4a;
(5)
,則的周期T=5a;
(6),則的周期T=6a.
27.分數指數冪 (1)(,且).(2)(,且).
28.根式的性質(1).(2)當為奇數時,;當為偶數時,.
2932.有理指數冪的運算性質
(1) .(2) .
(3).
註: 若a>0,p是一個無理數,則ap表示一個確定的實數.上述有理指數冪的運算性質,對於無理數指數冪都適用.
30.指數式與對數式的互化式
.
31.對數的換底公式 (,且,,且, ).
推論 (,且,,且,, ).
32.對數的四則運演算法則
若a>0,a≠1,M>0,N>0,則(1);
(2) ;(3).
33.設函數,記.若的定義域為,則,且;若的值域為,則,且.對於的情形,需要單獨檢驗.
34. 對數換底不等式及其推廣
若,,,,則函數
(1)當時,在和上為增函數.
, (2)當時,在和上為減函數.
推論:設,,,且,則
(1).(2).
35.數列的同項公式與前n項的和的關系
( 數列的前n項的和為).
36.等差數列的通項公式;
其前n項和公式為.
37.等比數列的通項公式;
其前n項的和公式為或.
38.等比差數列:的通項公式為

其前n項和公式為.
39.常見三角不等式(1)若,則.
(2) 若,則.(3) .
40.同角三角函數的基本關系式 ,=,.
41.正弦、餘弦的誘導公式(奇變偶不變)

42.和角與差角公式
;;
.
(平方正弦公式);
.
=(輔助角所在象限由點的象限決定, ).
43.二倍角公式 .
..
44. 三倍角公式
.
..
45.三角函數的周期公式
函數,x∈R及函數,x∈R(A,ω,為常數,且A≠0,ω>0)的周期;函數,(A,ω,為常數,且A≠0,ω>0)的周期.
46.正弦定理 .
47.餘弦定理;;.
48.面積定理
(1)(分別表示a、b、c邊上的高).
(2).
(3).
49.三角形內角和定理
在△ABC中,有
.
50.實數與向量的積的運算律
設λ、μ為實數,那麼(1) 結合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;(3)第二分配律:λ(a+b)=λa+λb.
51.向量的數量積的運算律:(1) a·b= b·a (交換律);
(2)(a)·b= (a·b)=a·b= a·(b);(3)(a+b)·c= a ·c +b·c.
52.平面向量基本定理
如果e1、e 2是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量,有且只有一對實數λ1、λ2,使得a=λ1e1+λ2e2.
不共線的向量e1、e2叫做表示這一平面內所有向量的一組基底.
53.向量平行的坐標表示
設a=,b=,且b0,則ab(b0).
54. a與b的數量積(或內積)a·b=|a||b|cosθ.
55. a·b的幾何意義數量積a·b等於a的長度|a|與b在a的方向上的投影|b|cosθ的乘積.
56.平面向量的坐標運算
(1)設a=,b=,則a+b=.
(2)設a=,b=,則a-b=.
(3)設A,B,則.
(4)設a=,則a=.
(5)設a=,b=,則a·b=.
57.兩向量的夾角公式(a=,b=).
58.平面兩點間的距離公式=
(A,B).
59.向量的平行與垂直
設a=,b=,且b0,則A||bb=λa .
ab(a0)a·b=0.
60.線段的定比分公式
設,,是線段的分點,是實數,且,則
().
61.三角形的重心坐標公式
△ABC三個頂點的坐標分別為、、,則△ABC的重心的坐標是.
62.點的平移公式
.
注:圖形F上的任意一點P(x,y)在平移後圖形上的對應點為,且的坐標為.
63.「按向量平移」的幾個結論
(1)點按向量a=平移後得到點.
(2) 函數的圖象按向量a=平移後得到圖象,則的函數解析式為.
(3) 圖象按向量a=平移後得到圖象,若的解析式,則的函數解析式為.
(4)曲線:按向量a=平移後得到圖象,則的方程為.
(5) 向量m=按向量a=平移後得到的向量仍然為m=.
64. 三角形五「心」向量形式的充要條件
設為所在平面上一點,角所對邊長分別為,則
(1)為的外心.
(2)為的重心.
(3)為的垂心.
(4)為的內心.
(5)為的的旁心.
65.常用不等式:
(1)(當且僅當a=b時取「=」號).
(2)(當且僅當a=b時取「=」號).
(3)
(4)柯西不等式
(5).
66.極值定理
已知都是正數,則有
(1)若積是定值,則當時和有最小值;
(2)若和是定值,則當時積有最大值.
推廣 已知,則有
(1)若積是定值,則當最大時,最大;當最小時,最小.
(2)若和是定值,則當最大時, 最小;當最小時, 最大.
67.一元二次不等式,如果與同號,則其解集在兩根之外;如果與異號,則其解集在兩根之間.簡言之:同號兩根之外,異號兩根之間.
.
68.含有絕對值的不等式
當a> 0時,有
.
或.
69.指數不等式與對數不等式
(1)當時,;
.
(2)當時,;

70.斜率公式 (、).
71.直線的五種方程
(1)點斜式 (直線過點,且斜率為).
(2)斜截式 (b為直線在y軸上的截距).
(3)兩點式 ()(、 ()).
(4)截距式 (分別為直線的橫、縱截距,)
(5)一般式 (其中A、B不同時為0).
72.兩條直線的平行和垂直
(1)若,
①;②.
(2)若,,且A1、A2、B1、B2都不為零,
①;②;
73.四種常用直線系方程
(1)定點直線系方程:經過定點的直線系方程為(除直線),其中是待定的系數; 經過定點的直線系方程為,其中是待定的系數.
(2)共點直線系方程:經過兩直線,的交點的直線系方程為(除),其中λ是待定的系數.
(3)平行直線系方程:直線中當斜率k一定而b變動時,表示平行直線系方程.與直線平行的直線系方程是(),λ是參變數.
(4)垂直直線系方程:與直線 (A≠0,B≠0)垂直的直線系方程是,λ是參變數.
74.點到直線的距離
(點,直線:).
75. 或所表示的平面區域
設直線,則或所表示的平面區域是:
若,當與同號時,表示直線的上方的區域;當與異號時,表示直線的下方的區域.簡言之,同號在上,異號在下.
若,當與同號時,表示直線的右方的區域;當與異號時,表示直線的左方的區域. 簡言之,同號在右,異號在左.
76. 或所表示的平面區域
設曲線(),則
或所表示的平面區域是:
所表示的平面區域上下兩部分;
所表示的平面區域上下兩部分.
77. 圓的四種方程
(1)圓的標准方程 .
(2)圓的一般方程 (>0).
(3)圓的參數方程 .
(4)圓的直徑式方程 (圓的直徑的端點是、).
78. 圓系方程(1)過點,的圓系方程是

,其中是直線的方程,λ是待定的系數.
(2)過直線:與圓:的交點的圓系方程是,λ是待定的系數.
(3) 過圓:與圓:的交點的圓系方程是,λ是待定的系數.
79.點與圓的位置關系
點與圓的位置關系有三種
若,則
點在圓外;點在圓上;點在圓內.
80.直線與圓的位置關系
直線與圓的位置關系有三種:
;
;
.其中.
81.兩圓位置關系的判定方法
設兩圓圓心分別為O1,O2,半徑分別為r1,r2,
;
;
;
;
.
82.圓的切線方程
(1)已知圓.
①若已知切點在圓上,則切線只有一條,其方程是
.
當圓外時, 表示過兩個切點的切點弦方程.
②過圓外一點的切線方程可設為,再利用相切條件求k,這時必有兩條切線,注意不要漏掉平行於y軸的切線.
③斜率為k的切線方程可設為,再利用相切條件求b,必有兩條切線.
(2)已知圓.
①過圓上的點的切線方程為;
②斜率為的圓的切線方程為.
83.橢圓的參數方程是.
84.橢圓焦半徑公式 ,.
85.橢圓的的內外部
(1)點在橢圓的內部.
(2)點在橢圓的外部.
86. 橢圓的切線方程
(1)橢圓上一點處的切線方程是.
(2)過橢圓外一點所引兩條切線的切點弦方程是
.
(3)橢圓與直線相切的條件是.
87.雙曲線的焦半徑公式
,.
88.雙曲線的方程與漸近線方程的關系
(1)若雙曲線方程為漸近線方程:.
(2)若漸近線方程為雙曲線可設為.
(3)若雙曲線與有公共漸近線,可設為(,焦點在x軸上,,焦點在y軸上).
89. 雙曲線的切線方程
(1)雙曲線上一點處的切線方程是.
(2)過雙曲線外一點所引兩條切線的切點弦方程是
.
(3)雙曲線與直線相切的條件是.
90. 拋物線的焦半徑公式 拋物線焦半徑.
過焦點弦長.
91.拋物線上的動點可設為P或 P,其中 .
92.二次函數的圖象是拋物線:(1)頂點坐標為;(2)焦點的坐標為;(3)准線方程是.
93. 拋物線的切線方程
(1)拋物線上一點處的切線方程是.
(2)過拋物線外一點所引兩條切線的切點弦方程是.
(3)拋物線與直線相切的條件是.
94.兩個常見的曲線系方程
(1)過曲線,的交點的曲線系方程是
(為參數).
(2)共焦點的有心圓錐曲線系方程,其中.當時,表示橢圓; 當時,表示雙曲線.
95.直線與圓錐曲線相交的弦長公式 或
(弦端點A,由方程 消去y得到,,為直線的傾斜角,為直線的斜率).
96.圓錐曲線的兩類對稱問題
(1)曲線關於點成中心對稱的曲線是.
(2)曲線關於直線成軸對稱的曲線是
.
97.「四線」一方程
對於一般的二次曲線,用代,用代,用代,用代,用代即得方程
,曲線的切線,切點弦,中點弦,弦中點方程均是此方程得到.
98.證明直線與直線的平行的思考途徑
(1)轉化為判定共面二直線無交點;(2)轉化為二直線同與第三條直線平行;
(3)轉化為線面平行;(4)轉化為線面垂直;(5)轉化為面面平行.
99.證明直線與平面的平行的思考途徑
(1)轉化為直線與平面無公共點;(2)轉化為線線平行;(3)轉化為面面平行.
100.證明平面與平面平行的思考途徑
(1)轉化為判定二平面無公共點;(2)轉化為線面平行;(3)轉化為線面垂直.
101.證明直線與直線的垂直的思考途徑
(1)轉化為相交垂直;(2)轉化為線面垂直;(3)轉化為線與另一線的射影垂直;
(4)轉化為線與形成射影的斜線垂直.
102.證明直線與平面垂直的思考途徑
(1)轉化為該直線與平面內任一直線垂直;(2)轉化為該直線與平面內相交二直線垂直;(3)轉化為該直線與平面的一條垂線平行;(4)轉化為該直線垂直於另一個平行平面;
(5)轉化為該直線與兩個垂直平面的交線垂直.
103.證明平面與平面的垂直的思考途徑
(1)轉化為判斷二面角是直二面角;(2)轉化為線面垂直.
104.平面向量加法的平行四邊形法則向空間的推廣
始點相同且不在同一個平面內的三個向量之和,等於以這三個向量為棱的平行六面體的以公共始點為始點的對角線所表示的向量.
105.共線向量定理
對空間任意兩個向量a、b(b≠0 ),a∥b存在實數λ使a=λb.
三點共線.
、共線且不共線且不共線.
106.共面向量定理
向量p與兩個不共線的向量a、b共面的存在實數對,使.
推論 空間一點P位於平面MAB內的存在有序實數對,使,
或對空間任一定點O,有序實數對,使.
107.對空間任一點和不共線的三點A、B、C,滿足(),則當時,對於空間任一點,總有P、A、B、C四點共面;當時,若平面ABC,則P、A、B、C四點共面;若平面ABC,則P、A、B、C四點不共面.
四點共面與、共面
(平面ABC).
108.空間向量基本定理
如果三個向量a、b、c不共面,那麼對空間任一向量p,存在一個唯一的有序實數組x,y,z,使p=xa+yb+zc.
推論 設O、A、B、C是不共面的四點,則對空間任一點P,都存在唯一的三個有序實數x,y,z,使.
109.射影公式
已知向量=a和軸,e是上與同方向的單位向量.作A點在上的射影,作B點在上的射影,則
〈a,e〉=a·e
110.向量的直角坐標運算
設a=,b=則(1)a+b=;
(2)a-b=;(3)λa= (λ∈R);
(4)a·b=;
111.設A,B,則= .
112.空間的線線平行或垂直
設,,則;
.
113.夾角公式
設a=,b=,則cos〈a,b〉=.
推論 ,此即三維柯西不等式.
114. 四面體的對棱所成的角
四面體中, 與所成的角為,則.
115.異面直線所成角
=
(其中()為異面直線所成角,分別表示異面直線的方向向量)
116.直線與平面所成角(為平面的法向量).
117.若所在平面若與過若的平面成的角,另兩邊,與平面成的角分別是、,為的兩個內角,則
.
特別地,當時,有.
118.若所在平面若與過若的平面成的角,另兩邊,與平面成的角分別是、,為的兩個內角,則
.
特別地,當時,有.
119.二面角的平面角
或(,為平面,的法向量).
120.三餘弦定理
設AC是α內的任一條直線,且BC⊥AC,垂足為C,又設AO與AB所成的角為,AB與AC所成的角為,AO與AC所成的角為.則.
121. 三射線定理
若夾在平面角為的二面角間的線段與二面角的兩個半平面所成的角是,,與二面角的棱所成的角是θ,則有 ;
(當且僅當時等號成立).
122.空間兩點間的距離公式
若A,B,則
=.
123.點到直線距離
(點在直線上,直線的方向向量a=,向量b=).
124.異面直線間的距離
(是兩異面直線,其公垂向量為,分別是上任一點,為間的距離).
125.點到平面的距離
(為平面的法向量,是經過面的一條斜線,).
126.異面直線上兩點距離公式
.
.
().
(兩條異面直線a、b所成的角為θ,其公垂線段的長度為h.在直線a、b上分別取兩點E、F,,,).
127.三個向量和的平方公式

128. 長度為的線段在三條兩兩互相垂直的直線上的射影長分別為,夾角分別為,則有
.
(立體幾何中長方體對角線長的公式是其特例).
129. 面積射影定理 .
(平面多邊形及其射影的面積分別是、,它們所在平面所成銳二面角的為).
130. 斜稜柱的直截面
已知斜稜柱的側棱長是,側面積和體積分別是和,它的直截面的周長和面積分別是和,則
① .②.
131.作截面的依據
三個平面兩兩相交,有三條交線,則這三條交線交於一點或互相平行.
132.棱錐的平行截面的性質
如果棱錐被平行於底面的平面所截,那麼所得的截面與底面相似,截面面積與底面面積的比等於頂點到截面距離與棱錐高的平方比(對應角相等,對應邊對應成比例的多邊形是相似多邊形,相似多邊形面積的比等於對應邊的比的平方);相應小棱錐與小棱錐的側面積的比等於頂點到截面距離與棱錐高的平方比.
133.歐拉定理(歐拉公式)
(簡單多面體的頂點數V、棱數E和面數F).
(1)=各面多邊形邊數和的一半.特別地,若每個面的邊數為的多邊形,則面數F與棱數E的關系:;
(2)若每個頂點引出的棱數為,則頂點數V與棱數E的關系:.
134.球的半徑是R,則其體積,其表面積.
135.球的組合體
(1)球與長方體的組合體:
長方體的外接球的直徑是長方體的體對角線長.
(2)球與正方體的組合體:
正方體的內切球的直徑是正方體的棱長, 正方體的棱切球的直徑是正方體的面對角線長, 正方體的外接球的直徑是正方體的體對角線長.
(3) 球與正四面體的組合體:
棱長為的正四面體的內切球的半徑為,外接球的半徑為.
136.柱體、錐體的體積
137.分類計數原理(加法原理).
138.分步計數原理(乘法原理).
139.排列數公式 ==.(,∈N*,且).注:規定.
140.排列恆等式 (1);(2);
(3); (4);
(5).(6) .
141.組合數公式
===(∈N*,,且).
142.組合數的兩個性質
(1)= ;(2) +=.
注:規定.
143.組合恆等式
(1);(2);(3);
(4)=;(5).
(6).
(7).
(8).
(9).
(10).
144.排列數與組合數的關系 .
145.單條件排列
以下各條的大前提是從個元素中取個元素的排列.
(1)「在位」與「不在位」
①某(特)元必在某位有種;②某(特)元不在某位有(補集思想)(著眼位置)(著眼元素)種.
(2)緊貼與插空(即相鄰與不相鄰)
①定位緊貼:個元在固定位的排列有種.
②浮動緊貼:個元素的全排列把k個元排在一起的排法有種.註:此類問題常用捆綁法;
③插空:兩組元素分別有k、h個(),把它們合在一起來作全排列,k個的一組互不能挨近的所有排列數有種.
(3)兩組元素各相同的插空
個大球個小球排成一列,小球必分開,問有多少種排法?
當時,無解;當時,有種排法.
(4)兩組相同元素的排列:兩組元素有m個和n個,各組元素分別相同的排列數為.
146.分配問題
(1)(平均分組有歸屬問題)將相異的、個物件等分給個人,各得件,其分配方法數共有.
(2)(平均分組無歸屬問題)將相異的·個物體等分為無記號或無順序的堆,其分配方法數共有
.
(3)(非平均分組有歸屬問題)將相異的個物體分給個人,物件必須被分完,分別得到,,…,件,且,,…,這個數彼此不相等,則其分配方法數共有.
(4)(非完全平均分組有歸屬問題)將相異的個物體分給個人,物件必須被分完,分別得到,,…,件,且,,…,這個數中分別有a、b、c、…個相等,則其分配方法數有 .
(5)(非平均分組無歸屬問題)將相異的個物體分為任意的,,…,件無記號的堆,且,,…,這個數彼此不相等,則其分配方法數有.
(6)(非完全平均分組無歸屬問題)將相異的個物體分為任意的,,…,件無記號的堆,且,,…,這個數中分別有a、b、c、…個相等,則其分配方法數有.
(7)(限定分組有歸屬問題)將相異的()個物體分給甲、乙、丙,……等個人,物體必須被分完,如果指定甲得件,乙得件,丙得件,…時,則無論,,…,等個數是否全相異或不全相異其分配方法數恆有
.
147.「錯位問題」及其推廣
貝努利裝錯箋問題:信封信與個信封全部錯位的組合數為
.
推廣: 個元素與個位置,其中至少有個元素錯位的不同組合總數為

.
148.二項式定理 ;
二項展開式的通項公式.
149.等可能性事件的概率.
150.互斥事件A,B分別發生的概率的和P(A+B)=P(A)+P(B).
151.個互斥事件分別發生的概率的和P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
152.獨立事件A,B同時發生的概率P(A·B)= P(A)·P(B).
153.n個獨立事件同時發生的概率 P(A1· A2·…· An)=P(A1)· P(A2)·…· P(An).
154.n次獨立重復試驗中某事件恰好發生k次的概率
155.離散型隨機變數的分布列的兩個性質
(1);(2).
156.數學期望
157.數學期望的性質
(1)(2)若~,則.
(3) 若服從幾何分布,且,則.
158.方差
159.標准差=.
160.方差的性質(1);(2)若~,則.
(3) 若服從幾何分布,且,則.
161.方差與期望的關系.
162.正態分布密度函數,式中的實數μ,(>0)是參數,分別表示個體的平均數與標准差.
163.標准正態分布密度函數.
164.對於,取值小於x的概率.

.
165.回歸直線方程 ,其中.
166.相關系數 .
|r|≤1,且|r|越接近於1,相關程度越大;|r|越接近於0,相關程度越小.
167.在處的導數(或變化率或微商)
.
168.瞬時速度.
169.在的導數.
170. 函數在點處的導數的幾何意義
函數在點處的導數是曲線在處的切線的斜率,相應的切線方程是.
171.幾種常見函數的導數(1) (C為常數).(2) .
(3) .(4) . (5) ;.
(6) ; .
172.導數的運演算法則
(1).(2).(3).
173.復合函數的求導法則
設函數在點處有導數,函數在點處的對應點U處有導數,則復合函數在點處有導數,且,或寫作.
174.判別是極大(小)值的方法
當函數在點處連續時,
(1)如果在附近的左側,右側,則是極大值;
(2)如果在附近的左側,右側,則是極小值.
175.復數的相等.()
176.復數的模(或絕對值)==.
177.復數的四則運演算法則
(1);(2);
(3);
(4).

㈥ 高中數學必修一知識點框架

有很多的同學是非常的想知道,高中數學必修一的知識點框架有哪些的,我整理了相關信息,希望會對大家有所幫助!

1 高中數學必修一知識點框架圖

1 高中如何提高數學成績

一、課內重視聽講,課後及時復習

接受一種新的知識,主要實在課堂上進行的,所以要重視課堂上的學習效率,找到適合自己的學習方法,上課時要跟住老師的思路,積極思考。下課之後要及時復習,遇到不懂的地方要及時去問,在做作業的時候,先把老師課堂上講解的內容回想一遍,還要牢牢的掌握公式及推理過程,盡量不要去翻書。盡量自己思考,不要急於翻看答案。還要經常性的總結和復習,把知識點結合起來,變成自己的知識體系。

二、多做題,養成良好的解題習慣

要想學好數學,大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數學成績。剛開始做題的時候先以書上習題為主,答好基礎,然後逐漸增加難度,開拓思路,練習各種類型的解題思路,對於容易出現錯誤的題型,應該記錄下來,反復加以聯系。在做題的時候應該養成良好的解題習慣,集中注意力,這樣才能進入最佳的狀態,形成習慣,這樣在考試的時候才能運用自如。

1 高中提高數學成績的技巧

1、提高高中數學成績最重要的一點就是課前預習

相信各科老師下課之前都會要求學生提前預習下節課的內容。而高中數學作為邏輯性較強的一門課程,課前預習更是提高成績必須做到的。

上課之前把要上的內容都預習一下,看一下課本要求,把重點和難理解的都標記出來,等著老師上課講。這樣一來,上課目前明確,由於心中有疑問,等著老師解答,上課的時候自然而然的就集中注意力跟著老師的思路走了。

2、提高數學成績還要做到上課認真聽講

很多高中生數學成績不好的原因就是上課不注意聽,導致下課不會做題,時間長了上數學課精神就很難集中了,數學成績也就越來越差。

所以高中生如果想提高數學成績,上課一定要全神貫注的聽講,老師講到課本上沒有的內容、或者經典例題的詳細解題過程都動筆記一下,免得上課沒聽明白,想復習的時候又找不到。

㈦ 高中數學知識整個體系脈絡或框架

高考數學基礎知識匯總
第一部分 集合
(1)含n個元素的集合的子集數為2^n,真子集數為2^n-1;非空真子集的數為2^n-2;
(2) 注意:討論的時候不要遺忘了 的情況。
(3)
第二部分 函數與導數
1.映射:注意 ①第一個集合中的元素必須有象;②一對一,或多對一。
2.函數值域的求法:①分析法 ;②配方法 ;③判別式法 ;④利用函數單調性 ;
⑤換元法 ;⑥利用均值不等式 ; ⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數有界性( 、 、 等);⑨導數法
3.復合函數的有關問題
(1)復合函數定義域求法:
① 若f(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出② 若f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域。
(2)復合函數單調性的判定:
①首先將原函數 分解為基本函數:內函數 與外函數 ;
②分別研究內、外函數在各自定義域內的單調性;
③根據「同性則增,異性則減」來判斷原函數在其定義域內的單調性。
注意:外函數 的定義域是內函數 的值域。
4.分段函數:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。
5.函數的奇偶性
⑴函數的定義域關於原點對稱是函數具有奇偶性的必要條件;
⑵ 是奇函數 ;
⑶ 是偶函數 ;
⑷奇函數 在原點有定義,則 ;
⑸在關於原點對稱的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;
(6)若所給函數的解析式較為復雜,應先等價變形,再判斷其奇偶性;
6.函數的單調性
⑴單調性的定義:
① 在區間 上是增函數 當 時有 ;
② 在區間 上是減函數 當 時有 ;
⑵單調性的判定
1 定義法:
注意:一般要將式子 化為幾個因式作積或作商的形式,以利於判斷符號;
②導數法(見導數部分);
③復合函數法(見2 (2));
④圖像法。
註:證明單調性主要用定義法和導數法。
7.函數的周期性
(1)周期性的定義:
對定義域內的任意 ,若有 (其中 為非零常數),則稱函數 為周期函數, 為它的一個周期。
所有正周期中最小的稱為函數的最小正周期。如沒有特別說明,遇到的周期都指最小正周期。
(2)三角函數的周期
① ;② ;③ ;
④ ;⑤ ;
⑶函數周期的判定
①定義法(試值) ②圖像法 ③公式法(利用(2)中結論)
⑷與周期有關的結論
① 或 的周期為 ;
② 的圖象關於點 中心對稱 周期為2 ;
③ 的圖象關於直線 軸對稱 周期為2 ;
④ 的圖象關於點 中心對稱,直線 軸對稱 周期為4 ;
8.基本初等函數的圖像與性質
⑴冪函數: ( ;⑵指數函數: ;
⑶對數函數: ;⑷正弦函數: ;
⑸餘弦函數: ;(6)正切函數: ;⑺一元二次函數: ;
⑻其它常用函數:
1 正比例函數: ;②反比例函數: ;特別的
2 函數 ;
9.二次函數:
⑴解析式:
①一般式: ;②頂點式: , 為頂點;
③零點式: 。
⑵二次函數問題解決需考慮的因素:
①開口方向;②對稱軸;③端點值;④與坐標軸交點;⑤判別式;⑥兩根符號。
⑶二次函數問題解決方法:①數形結合;②分類討論。
10.函數圖象:
⑴圖象作法 :①描點法 (特別注意三角函數的五點作圖)②圖象變換法③導數法
⑵圖象變換:
1 平移變換:ⅰ ,2 ———「正左負右」
ⅱ ———「正上負下」;
3 伸縮變換:
ⅰ , ( ———縱坐標不變,橫坐標伸長為原來的 倍;
ⅱ , ( ———橫坐標不變,縱坐標伸長為原來的 倍;
4 對稱變換:ⅰ ;ⅱ ;
ⅲ ; ⅳ ;
5 翻轉變換:
ⅰ ———右不動,右向左翻( 在 左側圖象去掉);
ⅱ ———上不動,下向上翻(| |在 下面無圖象);
11.函數圖象(曲線)對稱性的證明
(1)證明函數 圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明函數 與 圖象的對稱性,即證明 圖象上任意點關於對稱中心(對稱軸)的對稱點在 的圖象上,反之亦然;
註:
①曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
②曲線C1:f(x,y)=0關於直線x=a的對稱曲線C2方程為:f(2a-x, y)=0;
③曲線C1:f(x,y)=0,關於y=x+a(或y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x) (x∈R) y=f(x)圖像關於直線x= 對稱;
特別地:f(a+x)=f(a-x) (x∈R) y=f(x)圖像關於直線x=a對稱;
⑤函數y=f(x-a)與y=f(b-x)的圖像關於直線x= 對稱;
12.函數零點的求法:
⑴直接法(求 的根);⑵圖象法;⑶二分法.
13.導數
⑴導數定義:f(x)在點x0處的導數記作 ;
⑵常見函數的導數公式: ① ;② ;③ ;
④ ;⑤ ;⑥ ;⑦ ;
⑧ 。
⑶導數的四則運演算法則:
⑷(理科)復合函數的導數:
⑸導數的應用:
①利用導數求切線:注意:ⅰ所給點是切點嗎?ⅱ所求的是「在」還是「過」該點的切線?
②利用導數判斷函數單調性:
ⅰ 是增函數;ⅱ 為減函數;
ⅲ 為常數;
③利用導數求極值:ⅰ求導數 ;ⅱ求方程 的根;ⅲ列表得極值。
④利用導數最大值與最小值:ⅰ求的極值;ⅱ求區間端點值(如果有);ⅲ得最值。
14.(理科)定積分
⑴定積分的定義:
⑵定積分的性質:① ( 常數);
② ;
③ (其中 。
⑶微積分基本定理(牛頓—萊布尼茲公式):
⑷定積分的應用:①求曲邊梯形的面積: ;
3 求變速直線運動的路程: ;③求變力做功: 。
第三部分 三角函數、三角恆等變換與解三角形
1.⑴角度制與弧度制的互化: 弧度 , 弧度, 弧度
⑵弧長公式: ;扇形面積公式: 。
2.三角函數定義:角 中邊上任意一點 為 ,設 則:

3.三角函數符號規律:一全正,二正弦,三兩切,四餘弦;
4.誘導公式記憶規律:「函數名不(改)變,符號看象限」;
5.⑴ 對稱軸: ;對稱中心: ;
⑵ 對稱軸: ;對稱中心: ;
6.同角三角函數的基本關系: ;

7.兩角和與差的正弦、餘弦、正切公式:①

② ③ 。

8.二倍角公式:① ;
② ;③ 。

9.正、餘弦定理:
⑴正弦定理: ( 是 外接圓直徑 )
註:① ;② ;③ 。
⑵餘弦定理: 等三個;註: 等三個。
10。幾個公式:
⑴三角形面積公式: ;
⑵內切圓半徑r= ;外接圓直徑2R=
11.已知 時三角形解的個數的判定:

第四部分 立體幾何
1.三視圖與直觀圖:註:原圖形與直觀圖面積之比為 。
2.表(側)面積與體積公式:
⑴柱體:①表面積:S=S側+2S底;②側面積:S側= ;③體積:V=S底h
⑵錐體:①表面積:S=S側+S底;②側面積:S側= ;③體積:V= S底h:
⑶台體:①表面積:S=S側+S上底S下底;②側面積:S側= ;③體積:V= (S+ )h;
⑷球體:①表面積:S= ;②體積:V= 。
3.位置關系的證明(主要方法):
⑴直線與直線平行:①公理4;②線面平行的性質定理;③面面平行的性質定理。
⑵直線與平面平行:①線面平行的判定定理;②面面平行 線面平行。
⑶平面與平面平行:①面面平行的判定定理及推論;②垂直於同一直線的兩平面平行。
⑷直線與平面垂直:①直線與平面垂直的判定定理;②面面垂直的性質定理。
⑸平面與平面垂直:①定義---兩平面所成二面角為直角;②面面垂直的判定定理。
註:理科還可用向量法。
4.求角:(步驟-------Ⅰ。找或作角;Ⅱ。求角)
⑴異面直線所成角的求法:
1 平移法:平移直線,2 構造三角形;
3 ②補形法:補成正方體、平行六面體、長方體等,4 發現兩條異面直線間的關系。
註:理科還可用向量法,轉化為兩直線方向向量的夾角。
⑵直線與平面所成的角:
①直接法(利用線面角定義);②先求斜線上的點到平面距離h,與斜線段長度作比,得sin 。
註:理科還可用向量法,轉化為直線的方向向量與平面法向量的夾角。
⑶二面角的求法:
①定義法:在二面角的棱上取一點(特殊點),作出平面角,再求解;
②三垂線法:由一個半面內一點作(或找)到另一個半平面的垂線,用三垂線定理或逆定理作出二面角的平面角,再求解;
③射影法:利用面積射影公式: ,其中 為平面角的大小;
註:對於沒有給出棱的二面角,應先作出棱,然後再選用上述方法;
理科還可用向量法,轉化為兩個班平面法向量的夾角。
5.求距離:(步驟-------Ⅰ。找或作垂線段;Ⅱ。求距離)
⑴兩異面直線間的距離:一般先作出公垂線段,再進行計算;
⑵點到直線的距離:一般用三垂線定理作出垂線段,再求解;
⑶點到平面的距離:
①垂面法:藉助面面垂直的性質作垂線段(確定已知面的垂面是關鍵),再求解;
5 等體積法;
理科還可用向量法: 。
⑷球面距離:(步驟)
(Ⅰ)求線段AB的長;(Ⅱ)求球心角∠AOB的弧度數;(Ⅲ)求劣弧AB的長。
6.結論:
⑴從一點O出發的三條射線OA、OB、OC,若∠AOB=∠AOC,則點A在平面∠BOC上的射影在∠BOC的平分線上;
⑵立平斜公式(最小角定理公式):
⑶正棱錐的各側面與底面所成的角相等,記為 ,則S側cos =S底;
⑷長方體的性質
①長方體體對角線與過同一頂點的三條棱所成的角分別為 則:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。
②長方體體對角線與過同一頂點的三側面所成的角分別為 則有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。
⑸正四面體的性質:設棱長為 ,則正四面體的:
1 高: ;②對棱間距離: ;③相鄰兩面所成角餘弦值: ;④內切2 球半徑: ;外接球半徑: ;
第五部分 直線與圓
1.直線方程
⑴點斜式: ;⑵斜截式: ;⑶截距式: ;
⑷兩點式: ;⑸一般式: ,(A,B不全為0)。
(直線的方向向量:( ,法向量(
2.求解線性規劃問題的步驟是:
(1)列約束條件;(2)作可行域,寫目標函數;(3)確定目標函數的最優解。
3.兩條直線的位置關系:

4.直線系

5.幾個公式
⑴設A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:( );
⑵點P(x0,y0)到直線Ax+By+C=0的距離: ;
⑶兩條平行線Ax+By+C1=0與 Ax+By+C2=0的距離是 ;
6.圓的方程:
⑴標准方程:① ;② 。
⑵一般方程: (
註:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圓 A=C≠0且B=0且D2+E2-4AF>0;
7.圓的方程的求法:⑴待定系數法;⑵幾何法;⑶圓系法。
8.圓系:
⑴ ;
註:當 時表示兩圓交線。
⑵ 。
9.點、直線與圓的位置關系:(主要掌握幾何法)
⑴點與圓的位置關系:( 表示點到圓心的距離)
① 點在圓上;② 點在圓內;③ 點在圓外。
⑵直線與圓的位置關系:( 表示圓心到直線的距離)
① 相切;② 相交;③ 相離。
⑶圓與圓的位置關系:( 表示圓心距, 表示兩圓半徑,且 )
① 相離;② 外切;③ 相交;
④ 內切;⑤ 內含。
10.與圓有關的結論:
⑴過圓x2+y2=r2上的點M(x0,y0)的切線方程為:x0x+y0y=r2;
過圓(x-a)2+(y-b)2=r2上的點M(x0,y0)的切線方程為:(x0-a)(x-a)+(y0-b)(y-b)=r2;
⑵以A(x1,y2)、B(x2,y2)為直徑的圓的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。
第六部分 圓錐曲線
1.定義:⑴橢圓: ;
⑵雙曲線: ;⑶拋物線:略
2.結論
⑴焦半徑:①橢圓: (e為離心率); (左「+」右「-」);
②拋物線:
⑵弦長公式:

註:(Ⅰ)焦點弦長:①橢圓: ;②拋物線: =x1+x2+p= ;(Ⅱ)通徑(最短弦):①橢圓、雙曲線: ;②拋物線:2p。
⑶過兩點的橢圓、雙曲線標准方程可設為: ( 同時大於0時表示橢圓, 時表示雙曲線);
⑷橢圓中的結論:
①內接矩形最大面積 :2ab;
②P,Q為橢圓上任意兩點,且OP 0Q,則 ;
③橢圓焦點三角形:<Ⅰ>. ,( );<Ⅱ>.點 是 內心, 交 於點 ,則 ;
④當點 與橢圓短軸頂點重合時 最大;
⑸雙曲線中的結論:
①雙曲線 (a>0,b>0)的漸近線: ;
②共漸進線 的雙曲線標准方程為 為參數, ≠0);
③雙曲線焦點三角形:<Ⅰ>. ,( );<Ⅱ>.P是雙曲線 - =1(a>0,b>0)的左(右)支上一點,F1、F2分別為左、右焦點,則△PF1F2的內切圓的圓心橫坐標為 ;
④雙曲線為等軸雙曲線 漸近線為 漸近線互相垂直;
(6)拋物線中的結論:
①拋物線y2=2px(p>0)的焦點弦AB性質:<Ⅰ>. x1x2= ;y1y2=-p2;
<Ⅱ>. ;<Ⅲ>.以AB為直徑的圓與准線相切;<Ⅳ>.以AF(或BF)為直徑的圓與 軸相切;<Ⅴ>. 。
②拋物線y2=2px(p>0)內結直角三角形OAB的性質:
<Ⅰ>. ; <Ⅱ>. 恆過定點 ;
<Ⅲ>. 中點軌跡方程: ;<Ⅳ>. ,則 軌跡方程為: ;<Ⅴ>. 。
③拋物線y2=2px(p>0),對稱軸上一定點 ,則:
<Ⅰ>.當 時,頂點到點A距離最小,最小值為 ;<Ⅱ>.當 時,拋物線上有關於 軸對稱的兩點到點A距離最小,最小值為 。
3.直線與圓錐曲線問題解法:
⑴直接法(通法):聯立直線與圓錐曲線方程,構造一元二次方程求解。
注意以下問題:
①聯立的關於「 」還是關於「 」的一元二次方程?
②直線斜率不存在時考慮了嗎?
③判別式驗證了嗎?
⑵設而不求(代點相減法):--------處理弦中點問題
步驟如下:①設點A(x1,y1)、B(x2,y2);②作差得 ;③解決問題。
4.求軌跡的常用方法:(1)定義法:利用圓錐曲線的定義; (2)直接法(列等式);(3)代入法(相關點法或轉移法);⑷待定系數法;(5)參數法;(6)交軌法。
第七部分 平面向量
⑴設a=(x1,y1),b=(x2,y2),則: ① a‖b(b≠0) a= b ( x1y2-x2y1=0;
② a⊥b(a、b≠0) a•b=0 x1x2+y1y2=0 .
⑵a•b=|a||b|cos<a,b>=x2+y1y2;
註:①|a|cos<a,b>叫做a在b方向上的投影;|b|cos<a,b>叫做b在a方向上的投影;
6 a•b的幾何意義:a•b等於|a|與|b|在a方向上的投影|b|cos<a,b>的乘積。
⑶cos<a,b>= ;
⑷三點共線的充要條件:P,A,B三點共線 ;
附:(理科)P,A,B,C四點共面 。
第八部分 數列
1.定義:
⑴等差數列 ;
⑵等比數列

2.等差、等比數列性質
等差數列 等比數列
通項公式
前n項和
性質 ①an=am+ (n-m)d, ①an=amqn-m;
②m+n=p+q時am+an=ap+aq ②m+n=p+q時aman=apaq
③ 成AP ③ 成GP
④ 成AP, ④ 成GP,
等差數列特有性質:
1 項數為2n時:S2n=n(an+an+1)=n(a1+a2n); ; ;
2 項數為2n-1時:S2n-1=(2n-1) ; ; ;
3 若 ;若 ;
若 。
3.數列通項的求法:
⑴分析法;⑵定義法(利用AP,GP的定義);⑶公式法:累加法( ;
⑷疊乘法( 型);⑸構造法( 型);(6)迭代法;
⑺間接法(例如: );⑻作商法( 型);⑼待定系數法;⑽(理科)數學歸納法。
註:當遇到 時,要分奇數項偶數項討論,結果是分段形式。
4.前 項和的求法:
⑴拆、並、裂項法;⑵倒序相加法;⑶錯位相減法。
5.等差數列前n項和最值的求法:
⑴ ;⑵利用二次函數的圖象與性質。
第九部分 不等式
1.均值不等式:
注意:①一正二定三相等;②變形, 。
2.絕對值不等式:
3.不等式的性質:
⑴ ;⑵ ;⑶ ;
;⑷ ; ;
;⑸ ;(6)

4.不等式等證明(主要)方法:
⑴比較法:作差或作比;⑵綜合法;⑶分析法。
第十部分 復數
1.概念:
⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;
⑵z=a+bi是虛數 b≠0(a,b∈R);
⑶z=a+bi是純虛數 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;
⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);
2.復數的代數形式及其運算:設z1= a + bi , z2 = c + di (a,b,c,d∈R),則:
(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)•(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;
3.幾個重要的結論:
;⑶ ;⑷
⑸ 性質:T=4; ;
(6) 以3為周期,且 ; =0;
(7) 。
4.運算律:(1)
5.共軛的性質:⑴ ;⑵ ;⑶ ;⑷ 。
6.模的性質:⑴ ;⑵ ;⑶ ;⑷ ;
第十一部分 概率
1.事件的關系:
⑴事件B包含事件A:事件A發生,事件B一定發生,記作 ;
⑵事件A與事件B相等:若 ,則事件A與B相等,記作A=B;
⑶並(和)事件:某事件發生,當且僅當事件A發生或B發生,記作 (或 );
⑷並(積)事件:某事件發生,當且僅當事件A發生且B發生,記作 (或 ) ;
⑸事件A與事件B互斥:若 為不可能事件( ),則事件A與互斥;
(6)對立事件: 為不可能事件, 為必然事件,則A與B互為對立事件。
2.概率公式:
⑴互斥事件(有一個發生)概率公式:P(A+B)=P(A)+P(B);
⑵古典概型: ;
⑶幾何概型: ;

第十二部分 統計與統計案例
1.抽樣方法
⑴簡單隨機抽樣:一般地,設一個總體的個數為N,通過逐個不放回的方法從中抽取一個容量為n的樣本,且每個個體被抽到的機會相等,就稱這種抽樣為簡單隨機抽樣。
註:①每個個體被抽到的概率為 ;
②常用的簡單隨機抽樣方法有:抽簽法;隨機數法。
⑵系統抽樣:當總體個數較多時,可將總體均衡的分成幾個部分,然後按照預先制定的
規則,從每一個部分抽取一個個體,得到所需樣本,這種抽樣方法叫系統抽樣。
註:步驟:①編號;②分段;③在第一段採用簡單隨機抽樣方法確定其時個體編號 ;
④按預先制定的規則抽取樣本。
⑶分層抽樣:當已知總體有差異比較明顯的幾部分組成時,為使樣本更充分的反映總體的情況,將總體分成幾部分,然後按照各部分佔總體的比例進行抽樣,這種抽樣叫分層抽樣。
註:每個部分所抽取的樣本個體數=該部分個體數
2.總體特徵數的估計:
⑴樣本平均數 ;
⑵樣本方差 ;
⑶樣本標准差 = ;
3.相關系數(判定兩個變數線性相關性):
註:⑴ >0時,變數 正相關; <0時,變數 負相關;
⑵① 越接近於1,兩個變數的線性相關性越強;② 接近於0時,兩個變數之間幾乎不存在線性相關關系。
4.回歸分析中回歸效果的判定:
⑴總偏差平方和: ⑵殘差: ;⑶殘差平方和: ;⑷回歸平方和: - ;⑸相關指數 。
註:① 得知越大,說明殘差平方和越小,則模型擬合效果越好;
② 越接近於1,,則回歸效果越好。
5.獨立性檢驗(分類變數關系):
隨機變數 越大,說明兩個分類變數,關系越強,反之,越弱。
第十四部分 常用邏輯用語與推理證明
1. 四種命題:
⑴原命題:若p則q; ⑵逆命題:若q則p;
⑶否命題:若 p則 q;⑷逆否命題:若 q則 p
註:原命題與逆否命題等價;逆命題與否命題等價。
2.充要條件的判斷:
(1)定義法----正、反方向推理;
(2)利用集合間的包含關系:例如:若 ,則A是B的充分條件或B是A的必要條件;若A=B,則A是B的充要條件;
3.邏輯連接詞:
⑴且(and) :命題形式 p q; p q p q p q p
⑵或(or):命題形式 p q; 真 真 真 真 假
⑶非(not):命題形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
4.全稱量詞與存在量詞
⑴全稱量詞-------「所有的」、「任意一個」等,用 表示;
全稱命題p: ;
全稱命題p的否定 p: 。
⑵存在量詞--------「存在一個」、「至少有一個」等,用 表示;
特稱命題p: ;
特稱命題p的否定 p: ;
第十五部分 推理與證明
1.推理:
⑴合情推理:歸納推理和類比推理都是根據已有事實,經過觀察、分析、比較、聯想,在進行歸納、類比,然後提出猜想的推理,我們把它們稱為合情推理。
①歸納推理:由某類食物的部分對象具有某些特徵,推出該類事物的全部對象都具有這些特徵的推理,或者有個別事實概括出一般結論的推理,稱為歸納推理,簡稱歸納。
註:歸納推理是由部分到整體,由個別到一般的推理。
②類比推理:由兩類對象具有類似和其中一類對象的某些已知特徵,推出另一類對象也具有這些特徵的推理,稱為類比推理,簡稱類比。
註:類比推理是特殊到特殊的推理。
⑵演繹推理:從一般的原理出發,推出某個特殊情況下的結論,這種推理叫演繹推理。
註:演繹推理是由一般到特殊的推理。
「三段論」是演繹推理的一般模式,包括:
⑴大前提---------已知的一般結論;
⑵小前提---------所研究的特殊情況;
⑶結 論---------根據一般原理,對特殊情況得出的判斷。
二.證明
⒈直接證明
⑴綜合法
一般地,利用已知條件和某些數學定義、定理、公理等,經過一系列的推理論證,最後推導出所要證明的結論成立,這種證明方法叫做綜合法。綜合法又叫順推法或由因導果法。
⑵分析法
一般地,從要證明的結論出發,逐步尋求使它成立的充分條件,直至最後,把要證明的結論歸結為判定一個明顯成立的條件(已知條件、定義、定理、公理等),這種證明的方法叫分析法。分析法又叫逆推證法或執果索因法。
2.間接證明------反證法
一般地,假設原命題不成立,經過正確的推理,最後得出矛盾,因此說明假設錯誤,從而證明原命題成立,這種證明方法叫反證法。
附:數學歸納法(僅限理科)
一般的證明一個與正整數 有關的一個命題,可按以下步驟進行:
⑴證明當 取第一個值 是命題成立;
⑵假設當 命題成立,證明當 時命題也成立。
那麼由⑴⑵就可以判定命題對從 開始所有的正整數都成立。
這種證明方法叫數學歸納法。
註:①數學歸納法的兩個步驟缺一不可,用數學歸納法證明問題時必須嚴格按步驟進行;
3 的取值視題目而4 定,5 可能是1,6 也可能是2等。
第十六部分 理科選修部分
1. 排列、組合和二項式定理
⑴排列數公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),當m=n時為全排列 =n(n-1)(n-2)…3.2.1=n!;
⑵組合數公式: (m≤n), ;
⑶組合數性質: ;
⑷二項式定理:
①通項: ②注意二項式系數與系數的區別;
⑸二項式系數的性質:
①與首末兩端等距離的二項式系數相等;②若n為偶數,中間一項(第 +1項)二項式系數最大;若n為奇數,中間兩項(第 和 +1項)二項式系數最大;

(6)求二項展開式各項系數和或奇(偶)數項系數和時,注意運用賦值法。
2. 概率與統計
⑴隨機變數的分布列:
①隨機變數分布列的性質:pi≥0,i=1,2,…; p1+p2+…=1;
②離散型隨機變數:
X x1 X2 … xn …
P P1 P2 … Pn …
期望:EX= x1p1 + x2p2 + … + xnpn + … ;
方差:DX= ;
註: ;
③兩點分布:
X 0 1 期望:EX=p;方差:DX=p(1-p).
P 1-p p

4 超幾何分布:
一般地,在含有M件次品的N件產品中,任取n件,其中恰有X件次品,則 其中, 。
稱分布列

X 0 1 … m
P …
為超幾何分布列, 稱X服從超幾何分布。
⑤二項分布(獨立重復試驗):
若X~B(n,p),則EX=np, DX=np(1- p);註: 。
⑵條件概率:稱 為在事件A發生的條件下,事件B發生的概率。
註:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。
⑶獨立事件同時發生的概率:P(AB)=P(A)P(B)。
⑷正態總體的概率密度函數: 式中 是參數,分別表示總體的平均數(期望值)與標准差;
(6)正態曲線的性質:
①曲線位於x軸上方,與x軸不相交;②曲線是單峰的,關於直線x= 對稱;
③曲線在x= 處達到峰值 ;④曲線與x軸之間的面積為1;
5 當 一定時,6 曲線隨 質的變化沿x軸平移;
7 當 一定時,8 曲線形狀由 確定: 越大,9 曲線越「矮胖」,10 表示總體分布越集中;
越小,曲線越「高瘦」,表示總體分布越分散。
註:P =0.6826;P =0.9544
P =0.9974

㈧ 高中數學集合知識點大全

集合,簡稱集,是數學中一個基本概念,也是集合論的主要研究對象。集合論的基本理論創立於19世紀,關於集合的最簡單的說法就是在樸素集合論(最原始的集合論)中的定義,即集合是「確定的一堆東西」,集合里的「東西」則稱為元素。下面我給大家分享一些高中數學集合知識點大全,希望能夠幫助大家,歡迎閱讀!

目錄

高中數學集合知識點

高中數學學習方法

高中數學考試答題技巧

高中數學集合知識點

1.集合的有關概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示 方法 :常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:N,Z,Q,R,

2.子集、交集、並集、補集、空集、全集等概念。

1)子集:若對x∈A都有x∈B,則A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)並集:A∪B={x| x∈A或x∈B}

5)補集:CUA={x| x A但x∈U}

注意:①? A,若A≠?,則? A ;

②若 , ,則 ;

③若 且 ,則A=B(等集)

3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與 、?的區別;(2) 與 的區別;(3) 與 的區別。

4.有關子集的幾個等價關系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

5.交、並集運算的性質

①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

>>>

高中 數學 學習方法

1、 課前預習 能提高聽課的針對性。

預習中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助於提高思維能力,預習後把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預習還可以培養自己的自學能力。

2、聽課過程中的科學。

首先應做好課前的物質准備和精神准備,以使得上課時不至於出現書、本等物丟三落四的現象;上課前也不應做過於激烈的 體育運動 或看小書、下棋、激烈爭論等。以免上課後還喘噓噓,或不能平靜下來。

其次就是聽課要全神貫注。

全神貫注就是全身心地投入課堂學習,耳到、眼到、心到、口到、手到。

耳到:就是專心聽講,聽老師如何講課,如何分析,如何歸納 總結 ,另外,還要聽同學們的答問,看是否對自己有所啟發。

眼到:就是在聽講的同時看課本和板書,看老師講課的表情,手勢等動作,生動而深刻的接受老師所要表達的思想。

心到:就是用心思考,跟上老師的數學思路,分析老師是如何抓住重點,解決疑難的。

口到:就是在老師的指導下,主動回答問題或參加討論。

手到:就是在聽、看、想、說的基礎上劃出課文的重點,記下講課的要點以及自己的感受或有 創新思維 的見解。

若能做到上述「五到」,精力便會高度集中,課堂所學的一切重要內容便會在自己頭腦中留下深刻的印象。

3、特別注意講課的開頭和結尾。

講課開頭,一般是概括前節課的要點指出本節課要講的內容,是把舊知識和新知識聯系起來的環節,結尾常常是對一節課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節知識方法的綱要。

4、要認真把握好思維邏輯,分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。

>>>

高中數學考試答題技巧

掌握時間

由於,基礎中考能力,所以要注重解題的快法和巧法,能在30分鍾左右,完成全部的選擇填空題,這是奪取高分的關鍵。在平時當中一定要求自己選擇填空一分鍾一道題。用數學思想方法高速解答選擇填空題。

先易後難

所以,只做選擇,填空和前三道大題是不夠全面的。因為,後「三難」題中的容易部分比前面的基礎部分還要容易,所以我們應該志在必得。在復習的時候,根據自己的情況,如果基礎較好那首先爭取選擇,填空前三道大題得滿分。然後,再提高解答「三難」題的能力,爭取「三難」題得分20分到30分。這樣,你的總分就可以超過130分,向145分沖刺。

後三題盡量多得分

第二段是解答題的前三題,分值不到40分。這樣前兩個階段的總分在110分左右。第三段是最後「三難」題,分值不到40分。「三難」題並不全難,難點的分值只有12分到18分,平均每道題只有4分到6分。首先,應在「三難」題中奪得12分到20分,剩下最難的步驟分在努力爭取。後3題不是只做第一問的問題,而應該猜想評分標准,按步驟由前向後爭取高分。

>>>


高中數學集合知識點大全相關 文章 :

★ 高一數學集合知識點及例題分析

★ 高一數學集合知識點匯總(2)

★ 高一數學必修一集合公式知識點與學習方法

★ 高中數學全部知識點提綱整理

★ 高中數學必考知識點歸納整理

★ 高中數學知識點重點總結大全

★ 高中數學知識點總結歸納最新

★ 高一數學知識點匯總大全

★ 高一數學知識點全面總結

★ 高一數學必修一知識點整理大全

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();