1. 初二數學下冊北師大版,總結下每單元的要點,要詳細的,急!
知識要點1.分式的有關概念
設A、B表示兩個整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能為零,否則分式沒有意義
分子與分母沒有公因式的分式叫做最簡分式.如果分子分母有公因式,要進行約分化簡
2、分式的基本性質
(M為不等於零的整式)
3.分式的運算(分式的運演算法則與分數的運演算法則類似).
(異分母相加,先通分);
4.零指數
5.負整數指數
注意正整數冪的運算性質
可以推廣到整數指數冪,也就是上述等式中的m、n可以是O或負整數.
6、解分式方程的一般步驟:在方程的兩邊都乘以最簡公分母,約去分母,化為整式方程.解這個整式方程..驗根,即把整式方程的根代入最簡公分母,看結果是不是零,若結果不是0,說明此根是原方程的根;若結果是0,說明此根是原方程的增根,必須捨去.
7、列分式方程解應用題的一般步驟:
(1)審清題意;(2)設未知數(要有單位);(3)根據題目中的數量關系列出式子,找出相等關系,列出方程;(4)解方程,並驗根,還要看方程的解是否符合題意;(5)寫出答案(要有單位)。
正比例、反比例、一次函數
第一象限(+,+),第二象限(-,+)第三象限(-、-)第四象限(+,-);
x軸上的點的縱坐標等於0,反過來,縱坐標等於0的點都在x軸上,y軸上的點的橫坐標等於0,反過來,橫坐標等於0的點都在y軸上,
若點在第一、三象限角平分線上,它的橫坐標等於縱坐標,若點在第二,四象限角平分線上,它的橫坐標與縱坐標互為相反數;
若兩個點關於x軸對稱,橫坐標相等,縱坐標互為相反數;若兩個點關於y軸對稱,縱坐標相等,橫坐標互為相反數;若兩個點關於原點對稱,橫坐標、縱坐標都是互為相反數。
1、一次函數,正比例函數的定義
(1)如果y=kx+b(k,b為常數,且k≠0),那麼y叫做x的一次函數。
(2)當b=0時,一次函數y=kx+b即為y=kx(k≠0).這時,y叫做x的正比例函數。
註:正比例函數是特殊的一次函數,一次函數包含正比例函數。
2、正比例函數的圖象與性質
(1)正比例函數y=kx(k≠0)的圖象是過(0,0)(1,k)的一條直線。
(2)當k>0時y隨x的增大而增大直線y=kx經過一、三象限從左到右直線上升。
當k<0時y隨x的增大而減少直線y=kx經過二、四象限從左到右直線下降。
3、一次函數的圖象與性質
(1)一次函數y=kx+b(k≠0)的圖象是過(0,b)(-,0)的一條直線。
註:(0,b)是直線與y軸交點坐標,(-,0)是直線與x軸交點坐標.
(2)當k>0時y隨x的增大而增大直線y=kx+b(k≠0)是上升的
當k<0時y隨x的增大而減少直線y=kx+b(k≠0)是下降的
4、一次函數y=kx+b(k≠0,kb為常數)中k、b的符號對圖象的影響
(1)k>0,b>0直線經過一、二、三象限
(2)k>0,b<0直線經過一、三、四象限
(3)k<0,b>0直線經過一、二、四象限
(4)k<0,b<0直線經過二、三、四象限
5、對一次函數y=kx+b的系數k,b的理解。
(1)k(k≠0)相同,b不同時的所有直線平行,即直線;直線(均不為零,為常數)
(2)k(k≠0)不同,b相同時的所有直線恆過y軸上一定點(0,b),例如:直線y=2x+3,y=-2x+3,均交於y軸一點(0,3)
6、直線的平移:所謂平移,就是將一條直線向左、向右(或向上,向下)平行移動,平移得到的直線k不變,直線沿y軸平移多少個單位,可由公式得到,其中b1,b2是兩直線與y軸交點的縱坐標,直線沿x軸平移多少個單位,可由公式求得,其中x1,x2是由兩直線與x軸交點的橫坐標。
7、直線y=kx+b(k≠0)與方程、不等式的聯系
(1)一條直線y=kx+b(k≠0)就是一個關於y的二元一次方程
(2)求兩直線的交點,就是解關於x,y的方程組
(3)若y>0則kx+b>0。若y<0,則kx+b<0
(4)一元一次不等式,y1≤kx+b≤y2(y1,y2都是已知數,且y1<y2)的解集就是直線y=kx+b上滿足y1≤y≤y2那條線段所對應的自變數的取值范圍。
(5)一元一次不等式kx+b≤y0(或kx+b≥y0)(y0為已知數)的解集就是直線y=kx+b上滿足y≤y0(或y≥y0)那條射線所對應的自變數的取范圍。
8、確定正比例函數與一次函數的解析式應具備的條件
(1)由於比例函數y=kx(k≠0)中只有一個待定系數k,故只要一個條件(如一對x,y的值或一個點)就可求得k的值。
(2)一次函數y=kx+b中有兩個待定系數k,b,需要兩個獨立的條件確定兩個關於k,b的方程,求得k,b的值,這兩個條件通常是兩個點,或兩對x,y的值。
9、反比例函數
(1)反比例函數及其圖象
如果,那麼,y是x的反比例函數。
反比例函數的圖象是雙曲線,它有兩個分支,可用描點法畫出反比例函數的圖象
(2)反比例函數的性質
當K>0時,圖象的兩個分支分別在一、三象限內,在每個象限內,y隨x的增大而減小;
當K<0時,圖象的兩個分支分別在二、四象限內,在每個象限內,y隨x的增大而增大。
(3)由於比例函數中只有一個待定系數k,故只要一個條件(如一對x,y的值或一個點)就可求得k的值。
回答人的補充2009-08-2114:04三角形相似
相似三角形的判定方法:
(1)若DE‖BC(A型和X型)則△ADE∽△ABC
(2)射影定理若CD為Rt△ABC斜邊上的高(雙直角圖形)
解直角三角形
不知道是否是你所需要的...
2. 北師大版八年級下冊數學具體內容
第一章 一元一次不等式和一元一次不等式組
一、一般地,用符號「<」(或「≤」),「>」(或「≥」)連接的式子叫做不等式。
能使不等式成立的未知數的值,叫做不等式的解. 不等式的解不唯一,把所有滿足不等式的解集合在一起,構成不等式的解集. 求不等式解集的過程叫解不等式.
由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集 :一元一次不等式組各個不等式的解集的公共部分。
等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式. 基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式.
二、不等式的基本性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變. (註:移項要變號,但不等號不變。)性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變.不等式的基本性質<1>、 若a>b, 則a+c>b+c;<2>、若a>b, c>0 則ac>bc若c<0, 則ac<bc
不等式的其他性質:反射性:若a>b,則b<a;傳遞性:若a>b,且b>c,則a>c
三、解不等式的步驟:1、去分母; 2、去括弧; 3、移項合並同類項; 4、系數化為1。 四、解不等式組的步驟:1、解出不等式的解集2、在同一數軸表示不等式的解集。 五、列一元一次不等式組解實際問題的一般步驟:(1) 審題;(2)設未知數,找(不等量)關系式;(3)設元,(根據不等量)關系式列不等式(組)(4)解不等式組;檢驗並作答。
六、常考題型: 1、 求4x-6 7x-12的非負數解. 2、已知3(x-a)=x-a+1r的解適合2(x-5) 8a,求a 的范圍.
3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間。
第二章 分解因式
一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2 二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。 1、把幾個整式的積化成一個多項式的形式,是乘法運算.2、把一個多項式化成幾個整式的積的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解與整式乘法是相反方向的變形。
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式. 找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.
四、分解因式的一般步驟為:(1)若有「-」先提取「-」,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止.
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式. 分解因式的方法: 1、提公因式法。2、運用公式法。
第三章 分式
註:1°對於任意一個分式,分母都不能為零.
2°分式與整式不同的是:分式的分母中含有字母,整式的分母中不含字母.
3°分式的值為零含兩層意思:分母不等於零;分子等於零。( 中B≠0時,分式有意義;分式 中,當B=0分式無意義;當A=0且B≠0時,分式的值為零。)
常考知識點:1、分式的意義,分式的化簡。2、分式的加減乘除運算。3、分式方程的解法及其利用分式方程解應用題。
第四章 相似圖形
一、 定義 表示兩個比相等的式子叫比例.如果a與b的比值和c與d的比值相等,那麼 或a∶b=c∶d,這時組成比例的四個數a,b,c,d叫做比例的項,兩端的兩項叫做外項,中間的兩項叫做內項.即a、d為外項,c、b為內項. 如果選用同一個長度單位量得兩條線段AB、CD的長度分別是m、n,那麼就說這兩條線段的比(ratio)AB∶CD=m∶n,或寫成 = ,其中,線段AB、CD分別叫做這兩個線段比的前項和後項.如果把 表示成比值k,則 =k或AB=k•CD. 四條線段a,b,c,d中,如果a與b的比等於c與d的比,即 ,那麼這四條線段a,b,c,d叫做成比例線段,簡稱比例線段. 黃金分割的定義:在線段AB上,點C把線段AB分成兩條線段AC和BC,如果 ,那麼稱線段AB被點C黃金分割(golden section),點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.其中 ≈0.618. 引理:平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例. 相似多邊形: 對應角相等,對應邊成比例的兩個多邊形叫做相似多邊形. 相似多邊形:各角對應相等、各邊對應成比例的兩個多邊形叫做相似多邊形。 相似比:相似多邊形對應邊的比叫做相似比.
二、比例的基本性質:1、若ad=bc(a,b,c,d都不等於0),那麼 .如果(b,d都不為0),那麼ad=bc.2、合比性質:如果 ,那麼 。3、等比性質:如果 =…= (b+d+…+n≠0),那麼 。4、更比性質:若 那麼 。5、反比性質:若 那麼
三、求兩條線段的比時要注意的問題:(1)兩條線段的長度必須用同一長度單位表示,如果單位長度不同,應先化成同一單位,再求它們的比;(2)兩條線段的比,沒有長度單位,它與所採用的長度單位無關;(3)兩條線段的長度都是正數,所以兩條線段的比值總是正數.
四、相似三角形(多邊形)的性質:相似三角形對應角相等,對應邊成比例,相似三角形對應高的比、對應角平分線的比和對應中線的比都等於相似比。相似多邊形的周長比等於相似比,面積比等於相似比的平方.
五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL
六、相似三角形的判定方法,判斷方法有:1.三邊對應成比例的兩個三角形相似;2.兩角對應相等的兩個三角形相似;3.兩邊對應成比例且夾角相等;4.定義法: 對應角相等,對應邊成比例的兩個三角形相似。5、定理:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。 在特殊的三角形中,有的相似,有的不相似.1、兩個全等三角形一定相似.2、兩個等腰直角三角形一定相似.3、兩個等邊三角形一定相似.4、兩個直角三角形和兩個等腰三角形不一定相似.
七、位似圖形上任意一對對應點到位似中心的距離之比等於位似比。 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一個點,那麼這樣的兩個圖形叫做位似圖形,這個點叫位似中心,這時的相似比又稱為位似比。
八、常考知識點:1、比例的基本性質,黃金分割比,位似圖形的性質。2、相似三角形的性質及判定。相似多邊形的性質。
第五章四邊形
3. 數學北師大版必修二提綱
很多的學生對於數學都感到頭痛,因為數學的分數每次都不高,並且很多的知識點都不太懂,下面我給大家分享一些數學北師大版必修二提綱,希望能夠幫助大家,歡迎閱讀!
數學北師大版必修二提綱
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數),其中直線不在直線系中。
(6)兩直線平行與垂直
當,時,;
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(7)兩條直線的交點
相交
交點坐標即方程組的一組解。
方程組無解;方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點,
則
(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解。
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標准方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點;當時,方程不表示任何圖形。
(3)求圓方程的 方法 :
一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經過切點,只有一條公切線;
當時,兩圓內含;當時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
三、立體幾何初步
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底 面相 似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、
俯視圖(從上向下)
註:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
4、柱體、錐體、台體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、台體的體積公式
(4)球體的表面積和體積公式:V=;S=
4、空間點、直線、平面的位置關系
公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內。
應用:判斷直線是否在平面內
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a。
符號語言:
公理2的作用:
①它是判定兩個平面相交的方法。
②它說明兩個平面的交線與兩個平面公共點之間的關系:交線x共點。
③它可以判斷點在直線上,即證若干個點共線的重要依據。
公理3:經過不在同一條直線上的三點,有且只有一個平面。
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:
①它是空間內確定平面的依據
②它是證明平面重合的依據
公理4:平行於同一條直線的兩條直線互相平行
空間直線與直線之間的位置關系
①異面直線定義:不同在任何一個平面內的兩條直線
②異面直線性質:既不平行,又不相交。
③異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線
④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。
求異面直線所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。
B、證明作出的角即為所求角
C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補。
(8)空間直線與平面之間的位置關系
直線在平面內——有無數個公共點.
三種位置關系的符號表示:aαa∩α=Aa‖α
(9)平面與平面之間的位置關系:平行——沒有公共點;α‖β
相交——有一條公共直線。α∩β=b
5、空間中的平行問題
(1)直線與平面平行的判定及其性質
線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。
線線平行線面平行
線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那麼這條直線和交線平行。線面平行線線平行
(2)平面與平面平行的判定及其性質
兩個平面平行的判定定理
(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行。
(線線平行→面面平行),
(3)垂直於同一條直線的兩個平面平行,
兩個平面平行的性質定理
(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面。
性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。
②面面垂直的判定定理和性質定理
判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直。
性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面。
9、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規定為。
②兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規定為。
②平面的垂線與平面所成的角:規定為。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。
求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」。
在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,
在解題時,注意挖掘題設中兩個主要信息:
(1)斜線上一點到面的垂線;
(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角
垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
短時間提高數學成績的方法
1、查查在知識方面還能做那些努力。關鍵的是做好知識的准備,考前要檢查自己在初中學習的數學知識是否還有漏洞,是否有遺忘或易混的地方;其次是對解題常犯錯誤的准備,再看一下自己的錯誤筆記,如果你沒有錯題本,那可以把以前的做過的卷子找出來。翻看修改的部分,那就是出錯的地方、爭取在答卷時,不犯或少犯過去曾犯過的錯誤。也就是錯誤不二犯。
2、一定要對自己、對未來充滿信心,心態問題是影響考試的最重要的原因。走進考場就要有舍我其誰的霸氣。要信心十足,要相信自己已經讀了一千天的初中,進行了三百多天的復習,做了三千至四千道初中數學題,養兵千日,用兵一時,現在是收獲的時候,自己會取得好成績的。
3、看完書後,把課本放起來,做習題,通過做習題來再一次檢查自己哪些地方做的不夠好,如果碰到不會的地方,可以再看課本,這樣以來,相信會給你留下深刻的印象。
數學答題技巧
1、直接推演法
直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法。
2、驗證法
由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
3、特殊元素法
用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
4、排除法
對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
5、圖解法
藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
數學北師大版必修二提綱相關 文章 :
★ 北師大高一數學必修2第二章解析幾何知識點
★ 初二數學知識點北師大版
★ 備考資料
★ 北師大小學數學教學大綱
★ 北師大高中數學必修2試題
★ 北師大版初中數學知識點提綱
★ 北師大版初二數學下冊知識點歸納
★ 北師大版二年級數學教材
★ 北師大版小學數學上冊知識點總結歸納
★ 北師大版高一數學必修一集合知識點
4. 跪求北師大版八年級上冊數學的所有概念
北師大版初中數學定理知識點匯總八年級(上冊)
第一章 勾股定理
※直角三角形兩直角邊的平和等於斜邊的平方。即:
(由直角三角形得到邊的關系)
如果三角形的三邊長a,b,c滿足 ,那麼這個三角形是直角三角形。
滿足條件 的三個正整數,稱為勾股數。常見的勾股數組有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)
第二章 實數
※算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作 。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
※平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
※正數有兩個平方根(一正一負);0隻有一個平方根,就是它本身;負數沒有平方根。
※正數的立方根是正數;0的立方根是0;負數的立方根是負數。
第三章 圖形的平移與旋轉
平移:在平面內,將一個圖形沿某個方向移動一定距離,這樣的圖形運動稱為平移。
平移的基本性質:經過平移,對應線段、對應角分別相等;對應點所連的線段平行且相等。
旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。
這個定點叫旋轉中心,轉動的角度叫旋轉角。
旋轉的性質:旋轉後的圖形與原圖形的大小和形狀相同;
旋轉前後兩個圖形的對應點到旋轉中心的距離相等;
對應點到旋轉中心的連線所成的角度彼此相等。
(例:如圖所示,點D、E、F分別為點A、B、C的對應點,經過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的角度,任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。)
第四章 四平邊形性質探索
※平行四邊的定義:兩線對邊分別平行的四邊形叫做平行四邊形,平行四邊形不相鄰的兩頂點連成的線段叫做它的對角線。
※平行四邊形的性質:平行四邊形的對邊相等,對角相等,對角線互相平分。
※平行四邊形的判別方法:兩組對邊分別平行的四邊形是平行四邊形。
兩組對邊分別相等的四邊形是平行四邊形。
一組對邊平行且相等的四邊形是平行四邊形。
兩條對角線互相平分的四邊形是平行四邊形。
※平行線之間的距離:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等。這個距離稱為平行線之間的距離。
菱形的定義:一組鄰邊相等的平行四邊形叫做菱形。
※菱形的性質:具有平行四邊形的性質,且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。
菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。
※菱形的判別方法:一組鄰邊相等的平行四邊形是菱形。
對角線互相垂直的平行四邊形是菱形。
四條邊都相等的四邊形是菱形。
※矩形的定義:有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
※矩形的性質:具有平行四邊形的性質,且對角線相等,四個角都是直角。(矩形是軸對稱圖形,有兩條對稱軸)
※矩形的判定:有一個內角是直角的平行四邊形叫矩形(根據定義)。
對角線相等的平行四邊形是矩形。
四個角都相等的四邊形是矩形。
※推論:直角三角形斜邊上的中線等於斜邊的一半。
正方形的定義:一組鄰邊相等的矩形叫做正方形。
※正方形的性質:正方形具有平行四邊形、矩形、菱形的一切性質。(正方形是軸對稱圖形,有兩條對稱軸)
※正方形常用的判定:
有一個內角是直角的菱形是正方形;
鄰邊相等的矩形是正方形;
對角線相等的菱形是正方形;
對角線互相垂直的矩形是正方形。
正方形、矩形、菱形和平行邊形四者之間的關系(如圖3所示):
※梯形定義:一組對邊平行且另一組對邊不平行的四邊形叫做梯形。
※兩條腰相等的梯形叫做等腰梯形。
※一條腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性質:等腰梯形同一底上的兩個內角相等,對角線相等。
同一底上的兩個內角相等的梯形是等腰梯形。
※多邊形內角和:n邊形的內角和等於(n-2)·180°
※多邊形的外角和都等於360°
※在平面內,一個圖形繞某個點旋轉180°,如果旋轉前後的圖形互相重合,那麼這個圖開叫做中心對稱圖形。
※中心對稱圖形上的每一對對應點所連成的線段被對稱中心平分。
第五章 位置的確定
※平面直角坐標系概念:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系,水平的數軸叫x軸或橫軸;鉛垂的數軸叫y軸或縱軸,兩數軸的交點O稱為原點。
※點的坐標:在平面內一點P,過P向x軸、y軸分別作垂線,垂足在x軸、y軸上對應的數a、b分別叫P點的橫坐標和縱坐標,則有序實數對(a、b)叫做P點的坐標。
※在直角坐標系中如何根據點的坐標,找出這個點(如圖4所示),方法是由P(a、b),在x軸上找到坐標為a的點A,過A作x軸的垂線,再在y軸上找到坐標為b的點B,過B作y軸的垂線,兩垂線的交點即為所找的P點。
※如何根據已知條件建立適當的直角坐標系?
根據已知條件建立坐標系的要求是盡量使計算方便,一般地沒有明確的方法,但有以下幾條常用的方法:①以某已知點為原點,使它坐標為(0,0);②以圖形中某線段所在直線為x軸(或y軸);③以已知線段中點為原點;④以兩直線交點為原點;⑤利用圖形的軸對稱性以對稱軸為y軸等。
※圖形「縱橫向伸縮」的變化規律:
A、將圖形上各個點的坐標的縱坐標不變,而橫坐標分別變成原來的n倍時,所得的圖形比原來的圖形在橫向:①當n>1時,伸長為原來的n倍;②當0<n<1時,壓縮為原來的n倍。
B、將圖形上各個點的坐標的橫坐標不變,而縱坐標分別變成原來的n倍時,所得的圖形比原來的圖形在縱向:①當n>1時, 伸長為原來的n倍;②當0<n<1時,壓縮為原來的n倍。
※圖形「縱橫向位置」的變化規律:
A、將圖形上各個點的坐標的縱坐標不變,而橫坐標分別加上a,所得的圖形形狀、大小不變,而位置向右(a>0)或向左(a<0)平移了|a|個單位。
B、將圖形上各個點的坐標的橫坐標不變,而縱坐標分別加上b,所得的圖形形狀、大小不變,而位置向上(b>0)或向下(b<0)平移了|b|個單位。
※圖形「倒轉與對稱」的變化規律:
A、將圖形上各個點的橫坐標不變,縱坐標分別乘以-1,所得的圖形與原來的圖形關於x軸對稱。
B、將圖形上各個點的縱坐標不變,橫坐標分別乘以-1,所得的圖形與原來的圖形關於y軸對稱。
※圖形「擴大與縮小」的變化規律:
將圖形上各個點的縱、橫坐標分別變原來的n倍(n>0),所得的圖形與原圖形相比,形狀不變;①當n>1時,對應線段大小擴大到原來的n倍;②當0<n<1時,對應線段大小縮小到原來的n倍。
第六章 一次函數
若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
※正比例函數y=kx的圖象是經過原點(0,0)的一條直線。
※在一次函數y=kx+b中: 當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。
第七章 二元一次方程組
※含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。 兩個一次方程所組成的一組方程叫做二元一次方程組。
※解二元一次方程組:①代入消元法; ②加減消元法(無論是代入消元法還是加減消元法,其目的都是將「二元一次方程」變為「一元一次方程」,所謂之「消元」)
※在利用方程來解應用題時,主要分為兩個步驟:①設未知數(在設未知數時,大多數情況只要設問題為x或y;但也有時也須根據已知條件及等量關系等諸多方面考慮);②尋找等量關系(一般地,題目中會含有一表述等量關系的句子,只須找到此句話即可根據其列出方程)。
※處理問題的過程可以進一步概括為:
第八章 數據的代表
※加權平均數:一組數據 的權分加為 ,則稱 為這n個數的加權平均數。 (如:對某同學的數學、語文、科學三科的考查,成績分別為72,50,88,而三項成績的「權」分別為4、3、1,則加權平均數為: )
※一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。
※一組數據中出現次數最多的那個數據叫做這組數據的眾數。
※眾數著眼於對各數據出現次數的考察,中位數首先要將數據按大小順序排列,而且要注意當數據個數為奇數時,中間的那個數據就是中位數;當數據個數為偶數時,居於中間的兩個數據的平均數才是中位數,特別要注意一組數據的平均數和中位數是唯一的,但眾數則不一定是唯一的。
5. 求北師大版八年級數學上冊知識點總結
北師大版《數學》(八年級上冊)知識點總結
第一章 勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等於斜邊c的平方,即
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有關系 ,那麼這個三角形是直角三角形。
3、勾股數:滿足 的三個正整數,稱為勾股數。
第二章 實數
一、實數的概念及分類
1、實數的分類
正有理數
有理數 零 有限小數和無限循環小數
實數 負有理數
正無理數
無理數 無限不循環小數
負無理數
2、無理數:無限不循環小數叫做無理數。
在理解無理數時,要抓住「無限不循環」這一時之,歸納起來有四類:
(1)開方開不盡的數,如 等;
(2)有特定意義的數,如圓周率π,或化簡後含有π的數,如 +8等;
(3)有特定結構的數,如0.1010010001…等;
(4)某些三角函數值,如sin60o等
二、實數的倒數、相反數和絕對值
1、相反數
實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關於原點對稱,如果a與b互為相反數,則有a+b=0,a=—b,反之亦成立。
2、絕對值
在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。
3、倒數
如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和-1。零沒有倒數。
4、數軸
規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。
解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,並能靈活運用。
5、估算
三、平方根、算數平方根和立方根
1、算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼這個正數x就叫做a的算術平方根。特別地,0的算術平方根是0。
表示方法:記作「 」,讀作根號a。
性質:正數和零的算術平方根都只有一個,零的算術平方根是零。
2、平方根:一般地,如果一個數x的平方等於a,即x2=a,那麼這個數x就叫做a的平方根(或二次方根)。
表示方法:正數a的平方根記做「 」,讀作「正、負根號a」。
性質:一個正數有兩個平方根,它們互為相反數;零的平方根是零;負數沒有平方根。
開平方:求一個數a的平方根的運算,叫做開平方。
注意 的雙重非負性:
0
3、立方根
一般地,如果一個數x的立方等於a,即x3=a那麼這個數x就叫做a 的立方根(或三次方根)。
表示方法:記作
性質:一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零。
注意: ,這說明三次根號內的負號可以移到根號外面。
四、實數大小的比較
1、實數比較大小:正數大於零,負數小於零,正數大於一切負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。
2、實數大小比較的幾種常用方法
(1)數軸比較:在數軸上表示的兩個數,右邊的數總比左邊的數大。
(2)求差比較:設a、b是實數,
(3)求商比較法:設a、b是兩正實數,
(4)絕對值比較法:設a、b是兩負實數,則 。
(5)平方法:設a、b是兩負實數,則 。
五、算術平方根有關計算(二次根式)
1、含有二次根號「 」;被開方數a必須是非負數。
2、性質:
(1)
(2)
(3) ( )
(4) ( )
3、運算結果若含有「 」形式,必須滿足:(1)被開方數的因數是整數,因式是整式;(2)被開方數中不含能開得盡方的因數或因式
六、實數的運算
(1)六種運算:加、減、乘、除、乘方 、開方
(2)實數的運算順序
先算乘方和開方,再算乘除,最後算加減,如果有括弧,就先算括弧裡面的。
(3)運算律
加法交換律
加法結合律
乘法交換律
乘法結合律
乘法對加法的分配律
第三章 圖形的平移與旋轉
一、平移
1、定義
在平面內,將一個圖形整體沿某方向移動一定的距離,這樣的圖形運動稱為平移。
2、性質
平移前後兩個圖形是全等圖形,對應點連線平行且相等,對應線段平行且相等,對應角相等。
二、旋轉
1、定義
在平面內,將一個圖形繞某一定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角叫做旋轉角。
2、性質
旋轉前後兩個圖形是全等圖形,對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角等於旋轉角。
第四章 四邊形性質探索
一、四邊形的相關概念
1、四邊形
在同一平面內,由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩定性
3、四邊形的內角和定理及外角和定理
四邊形的內角和定理:四邊形的內角和等於360°。
四邊形的外角和定理:四邊形的外角和等於360°。
推論:多邊形的內角和定理:n邊形的內角和等於 180°;
多邊形的外角和定理:任意多邊形的外角和等於360°。
6、設多邊形的邊數為n,則多邊形的對角線共有 條。從n邊形的一個頂點出發能引(n-3)條對角線,將n邊形分成(n-2)個三角形。
二、平行四邊形
1、平行四邊形的定義
兩組對邊分別平行的四邊形叫做平行四邊形。
2、平行四邊形的性質
(1)平行四邊形的對邊平行且相等。
(2)平行四邊形相鄰的角互補,對角相等
(3)平行四邊形的對角線互相平分。
(4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。
常用點:(1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段的中點是對角線的交點,並且這條直線二等分此平行四邊形的面積。
(2)推論:夾在兩條平行線間的平行線段相等。
3、平行四邊形的判定
(1)定義:兩組對邊分別平行的四邊形是平行四邊形
(2)定理1:兩組對角分別相等的四邊形是平行四邊形
(3)定理2:兩組對邊分別相等的四邊形是平行四邊形
(4)定理3:對角線互相平分的四邊形是平行四邊形
(5)定理4:一組對邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。
平行線間的距離處處相等。
5、平行四邊形的面積
S平行四邊形=底邊長×高=ah
三、矩形
1、矩形的定義
有一個角是直角的平行四邊形叫做矩形。
2、矩形的性質
(1)矩形的對邊平行且相等
(2)矩形的四個角都是直角
(3)矩形的對角線相等且互相平分
(4)矩形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到矩形四個頂點的距離相等);對稱軸有兩條,是對邊中點連線所在的直線。
3、矩形的判定
(1)定義:有一個角是直角的平行四邊形是矩形
(2)定理1:有三個角是直角的四邊形是矩形
(3)定理2:對角線相等的平行四邊形是矩形
4、矩形的面積
S矩形=長×寬=ab
四、菱形
1、菱形的定義
有一組鄰邊相等的平行四邊形叫做菱形
2、菱形的性質
(1)菱形的四條邊相等,對邊平行
(2)菱形的相鄰的角互補,對角相等
(3)菱形的對角線互相垂直平分,並且每一條對角線平分一組對角
(4)菱形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到菱形四條邊的距離相等);對稱軸有兩條,是對角線所在的直線。
3、菱形的判定
(1)定義:有一組鄰邊相等的平行四邊形是菱形
(2)定理1:四邊都相等的四邊形是菱形
(3)定理2:對角線互相垂直的平行四邊形是菱形
4、菱形的面積
S菱形=底邊長×高=兩條對角線乘積的一半
五、正方形 (3~10分)
1、正方形的定義
有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質
(1)正方形四條邊都相等,對邊平行
(2)正方形的四個角都是直角
(3)正方形的兩條對角線相等,並且互相垂直平分,每一條對角線平分一組對角
(4)正方形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點;對稱軸有四條,是對角線所在的直線和對邊中點連線所在的直線。
3、正方形的判定
判定一個四邊形是正方形的主要依據是定義,途徑有兩種:
先證它是矩形,再證它是菱形。
先證它是菱形,再證它是矩形。
4、正方形的面積
設正方形邊長為a,對角線長為b
S正方形=
六、梯形
(一) 1、梯形的相關概念
一組對邊平行而另一組對邊不平行的四邊形叫做梯形。
梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長的底叫做下底。
梯形中不平行的兩邊叫做梯形的腰。
梯形的兩底的距離叫做梯形的高。
2、梯形的判定
(1)定義:一組對邊平行而另一組對邊不平行的四邊形是梯形。
(2)一組對邊平行且不相等的四邊形是梯形。
(二)直角梯形的定義:一腰垂直於底的梯形叫做直角梯形。
一般地,梯形的分類如下:
一般梯形
梯形 直角梯形
特殊梯形
等腰梯形
(三)等腰梯形
1、等腰梯形的定義
兩腰相等的梯形叫做等腰梯形。
2、等腰梯形的性質
(1)等腰梯形的兩腰相等,兩底平行。
(2)等腰梯形同一底上的兩個角相等,同一腰上的兩個角互補。
(3)等腰梯形的對角線相等。
(4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。
3、等腰梯形的判定
(1)定義:兩腰相等的梯形是等腰梯形
(2)定理:在同一底上的兩個角相等的梯形是等腰梯形
(3)對角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)
(四)梯形的面積
(1)如圖,
(2)梯形中有關圖形的面積:
① ;
② ;
③
七、有關中點四邊形問題的知識點:
(1)順次連接任意四邊形的四邊中點所得的四邊形是平行四邊形;
(2)順次連接矩形的四邊中點所得的四邊形是菱形;
(3)順次連接菱形的四邊中點所得的四邊形是矩形;
(4)順次連接等腰梯形的四邊中點所得的四邊形是菱形;
(5)順次連接對角線相等的四邊形四邊中點所得的四邊形是菱形;
(6)順次連接對角線互相垂直的四邊形四邊中點所得的四邊形是矩形;
(7)順次連接對角線互相垂直且相等的四邊形四邊中點所得的四邊形是正方形;
八、中心對稱圖形
1、定義
在平面內,一個圖形繞某個點旋轉180°,如果旋轉前後的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
2、性質
(1)關於中心對稱的兩個圖形是全等形。
(2)關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分。
(3)關於中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱。
九、四邊形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的關系圖:
第五章 位置的確定
一、 在平面內,確定物體的位置一般需要兩個數據。
二、平面直角坐標系及有關概念
1、平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
2、為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬於任何一個象限。
3、點的坐標的概念
對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當 時,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
4、不同位置的點的坐標的特徵
(1)、各象限內點的坐標的特徵
點P(x,y)在第一象限
點P(x,y)在第二象限
點P(x,y)在第三象限
點P(x,y)在第四象限
(2)、坐標軸上的點的特徵
點P(x,y)在x軸上 ,x為任意實數
點P(x,y)在y軸上 ,y為任意實數
點P(x,y)既在x軸上,又在y軸上 x,y同時為零,即點P坐標為(0,0)即原點
(3)、兩條坐標軸夾角平分線上點的坐標的特徵
點P(x,y)在第一、三象限夾角平分線(直線y=x)上 x與y相等
點P(x,y)在第二、四象限夾角平分線上 x與y互為相反數
(4)、和坐標軸平行的直線上點的坐標的特徵
位於平行於x軸的直線上的各點的縱坐標相同。
位於平行於y軸的直線上的各點的橫坐標相同。
(5)、關於x軸、y軸或原點對稱的點的坐標的特徵
點P與點p』關於x軸對稱 橫坐標相等,縱坐標互為相反數,即點P(x,y)關於x軸的對稱點為P』(x,-y)
點P與點p』關於y軸對稱 縱坐標相等,橫坐標互為相反數,即點P(x,y)關於y軸的對稱點為P』(-x,y)
點P與點p』關於原點對稱 橫、縱坐標均互為相反數,即點P(x,y)關於原點的對稱點為P』(-x,-y)
(6)、點到坐標軸及原點的距離
點P(x,y)到坐標軸及原點的距離:
(1)點P(x,y)到x軸的距離等於
(2)點P(x,y)到y軸的距離等於
(3)點P(x,y)到原點的距離等於
三、坐標變化與圖形變化的規律:
坐標( x , y )的變化 圖形的變化
x × a或 y × a 被橫向或縱向拉長(壓縮)為原來的 a倍
x × a, y × a 放大(縮小)為原來的 a倍
x ×( -1)或 y ×( -1) 關於 y 軸或 x 軸對稱
x ×( -1), y ×( -1) 關於原點成中心對稱
x +a或 y+ a 沿 x 軸或 y 軸平移 a個單位
x +a, y+ a 沿 x 軸平移 a個單位,再沿 y 軸平移 a個單
第六章 一次函數
一、函數:
一般地,在某一變化過程中有兩個變數x與y,如果給定一個x值,相應地就確定了一個y值,那麼我們稱y是x的函數,其中x是自變數,y是因變數。
二、自變數取值范圍
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。
三、函數的三種表示法及其優缺點
(1)關系式(解析)法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做關系式(解析)法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數關系的方法叫做圖象法。
四、由函數關系式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
五、正比例函數和一次函數
1、正比例函數和一次函數的概念
一般地,若兩個變數x,y間的關系可以表示成 (k,b為常數,k 0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。
特別地,當一次函數 中的b=0時(即 )(k為常數,k 0),稱y是x的正比例函數。
2、一次函數的圖像: 所有一次函數的圖像都是一條直線
3、一次函數、正比例函數圖像的主要特徵:
一次函數 的圖像是經過點(0,b)的直線;正比例函數 的圖像是經過原點(0,0)的直線。
k的符號 b的符號 函數圖像 圖像特徵
k>0 b>0 y
0 x
圖像經過一、二、三象限,y隨x的增大而增大。
b<0 y
0 x
圖像經過一、三、四象限,y隨x的增大而增大。
K<0 b>0 y
0 x
圖像經過一、二、四象限,y隨x的增大而減小
b<0
y
0 x
圖像經過二、三、四象限,y隨x的增大而減小。
註:當b=0時,一次函數變為正比例函數,正比例函數是一次函數的特例。
4、正比例函數的性質
一般地,正比例函數 有下列性質:
(1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;
(2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。
5、一次函數的性質
一般地,一次函數 有下列性質:
(1)當k>0時,y隨x的增大而增大
(2)當k<0時,y隨x的增大而減小
6、正比例函數和一次函數解析式的確定
確定一個正比例函數,就是要確定正比例函數定義式 (k 0)中的常數k。確定一個一次函數,需要確定一次函數定義式 (k 0)中的常數k和b。解這類問題的一般方法是待定系數法。
7、一次函數與一元一次方程的關系:
任何一個一元一次方程都可轉化為:kx+b=0(k、b為常數,k≠0)的形式. 而一次函數解析式形式正是y=kx+b(k、b為常數,k≠0).當函數值為0時,即kx+b=0就與一元一次方程完全相同.
結論:由於任何一元一次方程都可轉化為kx+b=0(k、b為常數,k≠0)的形式.所以解一元一次方程可以轉化為:當一次函數值為0時,求相應的自變數的值.
從圖象上看,這相當於已知直線y=kx+b確定它與x軸交點的橫坐標值.
第七章 二元一次方程組
1、二元一次方程
含有兩個未知數,並且所含未知數的項的次數都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
3、二元一次方程組
含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。
4二元一次方程組的解
二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
5、二元一次方程組的解法
(1)代入(消元)法(2)加減(消元)法
6、一次函數與二元一次方程(組)的關系:
(1)一次函數與二元一次方程的關系:
直線y=kx+b上任意一點的坐標都是它所對應的二元一次方程kx- y+b=0的解
(2)一次函數與二元一次方程組的關系:
二元一次方程組 的解可看作兩個一次函數
和 的圖象的交點。
當函數圖象有交點時,說明相應的二元一次方程組有解;當函數圖象(直線)平行即無交點時,說明相應的二元一次方程組無解。
第八章 數據的代表
1、刻畫數據的集中趨勢(平均水平)的量:平均數 、眾數、中位數
2、平均數
(1)平均數:一般地,對於n個數 我們把 叫做這n個數的算術平均數,簡稱平均數,記為 。
(2)加權平均數:
3、眾數
一組數據中出現次數最多的那個數據叫做這組數據的眾數。
4、中位數
一般地,將一組數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。
6. 八年級北師大版的數學概念和公式有哪些
一次函數,通過函數圖像獲取信息,發展形象思維、了解兩個條件確定一個一次函數,能由兩個條件求出一些簡單的一次函數表達式,並解決有關問題、能熟練地作出一次函數的圖像,領會方程與圖像的關系、明確一次函數和正比例函數的表達式。
難點:實數, 了解數的算數平方根、平方根的概念,會用根號表示一個數的算數平方根和平方根、了解開平方與平方是互逆的,會利用這個互逆運算關系求某些非負數的算數平方根和平方根、要注意平方根和算術平方根的區別與聯系,區別是:正數的平方根有兩個,而算數平方根只有一個。聯系是:在於正數的正的平方根就是它的算數平方根,而負的平方根是它的算數平方根的相反數,因此,可根據它的算數平方根立即寫出它的平方根、會用計算器求平方根和立方根、了解實數的意義。
重點:二元一次方程組和四邊形性質的探索。
二元一次方程組:了解二元一次方程組、並會判斷一組數是不是某個二元一次方程組的解,會用代入消元法和加減消元法解二元一次方程組、會根據題意列出相應的二元一次方程組,並解、了解二元一次方程組與函數之間的關系。
四邊形性質的探索:1.利用平行四邊形的性質,可以求角的度數、線段的長度,也可以證明角相等、線段相等、線段平分等問題。 2. 探索並掌握平行四邊形的判別條件。 要判別一個四邊形是菱形,一般先判別這個四邊形是 平行四邊形,然後在判別一組鄰邊相等或對角線互相垂直。 3.梯形與矩形也是根據定義所判斷 4.之後會判斷多邊形的內角和與外角和。4.會畫中心對稱圖形,旋轉或平移以後。
7. 北師大版八年級數學知識點總結
正好我今年教八年級數學。沒有時間自己整理,從網上下載的,我看不錯,你借鑒一下。
北師大版初中數學定理知識點匯總
八年級(下冊)
第一章 一元一次不等式和一元一次不等式組
一. 不等關系
※1. 一般地,用符號「<」(或「≤」), 「>」(或「≥」)連接的式子叫做不等式.
¤2. 要區別方程與不等式: 方程表示的是相等的關系;不等式表示的是不相等的關系.
※3. 准確「翻譯」不等式,正確理解「非負數」、「不小於」等數學術語.
非負數 <===> 大於等於0(≥0) <===> 0和正數 <===> 不小於0
非正數 <===> 小於等於0(≤0) <===> 0和負數 <===> 不大於0
二. 不等式的基本性質
※1. 掌握不等式的基本性質,並會靈活運用:
(1) 不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c, a-c>b-c.
(2) 不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc, .
(3) 不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac<bc,
※2. 比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a<b,那麼a-b是負數;反過來,如果a-b是正數,那麼a<b;
即:
a>b <===> a-b>0
a=b <===> a-b=0
a<b <===> a-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
三. 不等式的解集:
※1. 能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.
※2. 不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.
¤3. 不等式的解集在數軸上的表示:
用數軸表示不等式的解集時,要確定邊界和方向:
①邊界:有等號的是實心圓圈,無等號的是空心圓圈;
②方向:大向右,小向左
四. 一元一次不等式:
※1. 只含有一個未知數,且含未知數的式子是整式,未知數的次數是1. 像這樣的不等式叫做一元一次不等式.
※2. 解一元一次不等式的過程與解一元一次方程類似,特別要注意,當不等式兩邊都乘以一個負數時,不等號要改變方向.
※3. 解一元一次不等式的步驟:
①去分母;
②去括弧;
③移項;
④合並同類項;
⑤系數化為1(不等號的改變問題)
※4. 一元一次不等式基本情形為ax>b(或ax<b)
①當a>0時,解為 ;
②當a=0時,且b<0,則x取一切實數;
當a=0時,且b≥0,則無解;
③當a<0時, 解為 ;
¤5. 不等式應用的探索(利用不等式解決實際問題)
列不等式解應用題基本步驟與列方程解應用題相類似,即:
①審: 認真審題,找出題中的不等關系,要抓住題中的關鍵字眼,如「大於」、「小於」、「不大於」、「不小於」等含義;
②設: 設出適當的未知數;
③列: 根據題中的不等關系,列出不等式;
④解: 解出所列的不等式的解集;
⑤答: 寫出答案,並檢驗答案是否符合題意.
五. 一元一次不等式與一次函數
六. 一元一次不等式組
※1. 定義: 由含有一個相同未知數的幾個一元一次不等式組成的不等式組,叫做一元一次不等式組.
※2. 一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集.如果這些不等式的解集無公共部分,就說這個不等式組無解.
幾個不等式解集的公共部分,通常是利用數軸來確定.
※3. 解一元一次不等式組的步驟:
(1)分別求出不等式組中各個不等式的解集;
(2)利用數軸求出這些解集的公共部分,即這個不等式組的解集.
兩個一元一次不等式組的解集的四種情況(a、b為實數,且a<b)
一元一次不等式 解集 圖示 敘述語言表達
x>b 兩大取較大
x>a 兩小取小
a<x<b 大小交叉中間找
無解 在大小分離沒有解
(是空集)
第二章 分解因式
一. 分解因式
※1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
※2. 因式分解與整式乘法是互逆關系.
因式分解與整式乘法的區別和聯系:
(1)整式乘法是把幾個整式相乘,化為一個多項式;
(2)因式分解是把一個多項式化為幾個因式相乘.
二. 提公共因式法
※1. 如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.
如:
※2. 概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即:
※3. 易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.
三. 運用公式法
※1. 如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.
※2. 主要公式:
(1)平方差公式:
(2)完全平方公式:
¤3. 易錯點點評:
因式分解要分解到底.如 就沒有分解到底.
※4. 運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號.
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍.
※5. 因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
四. 分組分解法:
※1. 分組分解法:利用分組來分解因式的方法叫做分組分解法.
如:
※2. 概念內涵:
分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式.
※3. 注意: 分組時要注意符號的變化.
五. 十字相乘法:
※1.對於二次三項式 ,將a和c分別分解成兩個因數的乘積, , , 且滿足 ,往往寫成 的形式,將二次三項式進行分解.
如:
※2. 二次三項式 的分解:
※3. 規律內涵:
(1)理解:把 分解因式時,如果常數項q是正數,那麼把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同.
(2)如果常數項q是負數,那麼把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對於分解的兩個因數,還要看它們的和是不是等於一次項系數p.
※4. 易錯點點評:
(1)十字相乘法在對系數分解時易出錯;
(2)分解的結果與原式不等,這時通常採用多項式乘法還原後檢驗分解的是否正確.
第三章 分式
一. 分式
※1. 兩個整數不能整除時,出現了分數;類似地,當兩個整式不能整除時,就出現了分式.
整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那麼稱 為分式,對於任意一個分式,分母都不能為零.
※2. 整式和分式統稱為有理式,即有:
※3. 進行分數的化簡與運算時,常要進行約分和通分,其主要依據是分數的基本性質:
分式的分子與分母都乘以(或除以)同一個不等於零的整式,分式的值不變.
※4. 一個分式的分子、分母有公因式時,可以運用分式的基本性質,把這個分式的分子、分母同時除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.
二. 分式的乘除法
※1. 分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以以分式,把除式的分子、分母顛倒位置後,與被除式相乘.
即: ,
※2. 分式乘方,把分子、分母分別乘方.
即:
逆向運用 ,當n為整數時,仍然有 成立.
※3. 分子與分母沒有公因式的分式,叫做最簡分式.
三. 分式的加減法
※1. 分式與分數類似,也可以通分.根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
※2. 分式的加減法:
分式的加減法與分數的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.
(1)同分母的分式相加減,分母不變,把分子相加減;
上述法則用式子表示是:
(2)異號分母的分式相加減,先通分,變為同分母的分式,然後再加減;
上述法則用式子表示是:
※3. 概念內涵:
通分的關鍵是確定最簡分母,其方法如下:最簡公分母的系數,取各分母系數的最小公倍數;最簡公分母的字母,取各分母所有字母的最高次冪的積,如果分母是多項式,則首先對多項式進行因式分解.
四. 分式方程
※1. 解分式方程的一般步驟:
①在方程的兩邊都乘最簡公分母,約去分母,化成整式方程;
②解這個整式方程;
③把整式方程的根代入最簡公分母,看結果是不是零,使最簡公母為零的根是原方程的增根,必須捨去.
※2. 列分式方程解應用題的一般步驟:
①審清題意;
②設未知數;
③根據題意找相等關系,列出(分式)方程;
④解方程,並驗根;
⑤寫出答案.
第四章 相似圖形
一. 線段的比
※1. 如果選用同一個長度單位量得兩條線段AB, CD的長度分別是m、n,那麼就說這兩條線段的比AB:CD=m:n ,或寫成 .
※2. 四條線段a、b、c、d中,如果a與b的比等於c與d的比,即 ,那麼這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.
※3. 注意點:
①a:b=k,說明a是b的k倍;
②由於線段 a、b的長度都是正數,所以k是正數;
③比與所選線段的長度單位無關,求出時兩條線段的長度單位要一致;
④除了a=b之外,a:b≠b:a, 與 互為倒數;
⑤比例的基本性質:若 , 則ad=bc; 若ad=bc, 則
二. 黃金分割
※1. 如圖1,點C把線段AB分成兩條線段AC和BC,如果 ,那麼稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.
※2.黃金分割點是最優美、最令人賞心悅目的點.
四. 相似多邊形
¤1. 一般地,形狀相同的圖形稱為相似圖形.
※2. 對應角相等、對應邊成比例的兩個多邊形叫做相似多邊形.相似多邊形對應邊的比叫做相似比.
五. 相似三角形
※1. 在相似多邊形中,最為簡簡單的就是相似三角形.
※2. 對應角相等、對應邊成比例的三角形叫做相似三角形.相似三角形對應邊的比叫做相似比.
※3. 全等三角形是相似三角的特例,這時相似比等於1. 注意:證兩個相似三角形,與證兩個全等三角形一樣,應把表示對應頂點的字母寫在對應的位置上.
※4. 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比.
※5. 相似三角形周長的比等於相似比.
※6. 相似三角形面積的比等於相似比的平方.
六.探索三角形相似的條件
※1. 相似三角形的判定方法:
一般三角形 直角三角形
基本定理:平行於三角形的一邊且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形與原三角形相似.
①兩角對應相等;
②兩邊對應成比例,且夾角相等;
③三邊對應成比例. ①一個銳角對應相等;
②兩條邊對應成比例:
a. 兩直角邊對應成比例;
b. 斜邊和一直角邊對應成比例.
※2. 平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.
如圖2, l1 // l2 // l3,則 .
※3. 平行於三角形一邊的直線與其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似.
八. 相似的多邊形的性質
※相似多邊形的周長等於相似比;面積比等於相似比的平方.
九. 圖形的放大與縮小
※1. 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一點,那麼這樣的兩個圖形叫做位似圖形; 這個點叫做位似中心; 這時的相似比又稱為位似比.
※2. 位似圖形上任意一對對應點到位似中心的距離之比等於位似比.
◎3. 位似變換:
①變換後的圖形,不僅與原圖相似,而且對應頂點的連線相交於一點,並且對應點到這一交點的距離成比例.像這種特殊的相似變換叫做位似變換.這個交點叫做位似中心.
②一個圖形經過位似變換後得到另一個圖形,這兩個圖形就叫做位似形.
③利用位似的方法,可以把一個圖形放大或縮小.
第五章 數據的收集與處理
一. 每周幹家務活的時間
※1. 所要考察的對象的全體叫做總體;
把組成總體的每一個考察對象叫做個體;
從總體中取出的一部分個體叫做這個總體的一個樣本.
※2. 為一特定目的而對所有考察對象作的全面調查叫做普查;
為一特定目的而對部分考察對象作的調查叫做抽樣調查.
二. 數據的收集
※1. 抽樣調查的特點: 調查的范圍小、節省時間和人力物力優點.但不如普查得到的調查結果精確,它得到的只是估計值.
而估計值是否接近實際情況還取決於樣本選得是否有代表性.
第六章 證明(一)
二. 定義與命題
※1. 一般地,能明確指出概念含義或特徵的句子,稱為定義.
定義必須是嚴密的.一般避免使用含糊不清的術語,例如「一些」、「大概」、「差不多」等不能在定義中出現.
※2. 可以判斷它是正確的或是錯誤的句子叫做命題.
正確的命題稱為真命題,錯誤的命題稱為假命題.
※3. 數學中有些命題的正確性是人們在長期實踐中總結出來的,並且把它們作為判斷其他命題真假的原始依據,這樣的真命題叫做公理.
※4. 有些命題可以從公理或其他真命題出發,用邏輯推理的方法判斷它們是正確的,並且可以進一步作為判斷其他命題真假的依據,這樣的真命題叫做定理.
¤5. 根據題設、定義以及公理、定理等,經過邏輯推理,來判斷一個命題是否正確,這樣的推理過程叫做證明.
三. 為什麼它們平行
※1. 平行判定公理: 同位角相等,兩直線平行.(並由此得到平行的判定定理)
※2. 平行判定定理: 同旁內互補,兩直線平行.
※3. 平行判定定理: 同錯角相等,兩直線平行.
四. 如果兩條直線平行
※1. 兩條直線平行的性質公理: 兩直線平行,同位角相等;
※2. 兩條直線平行的性質定理: 兩直線平行,內錯角相等;
※3. 兩條直線平行的性質定理: 兩直線平行,同旁內角互補.
五. 三角形和定理的證明
※1. 三角形內角和定理: 三角形三個內角的和等於180°
¤2. 一個三角形中至多隻有一個直角
¤3. 一個三角形中至多隻有一個鈍角
¤4. 一個三角形中至少有兩個銳角
六. 關注三角形的外角
※1. 三角形內角和定理的兩個推論:
推論1: 三角形的一個外角等於和它不相鄰的兩個內角的和;
推論2: 三角形的一個外角大於任何一個和它不相鄰的內角.
(註:※表示重點部分;¤表示了解部分;◎表示僅供參閱部分;)
8. 求北師大版八年級數學上冊知識點總結
北師大版初中數學定理知識點匯總[八年級(上冊)
第一章 勾股定理
※直角三角形兩直角邊的平和等於斜邊的平方。即:
(由直角三角形得到邊的關系),<如圖1所示>
如果三角形的三邊長a,b,c滿足 ,那麼這個三角形是直角三角形。
滿足條件 的三個正整數,稱為勾股數。常見的勾股數組有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)
第二章 實數
※算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作 。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
※平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
※正數有兩個平方根(一正一負);0隻有一個平方根,就是它本身;負數沒有平方根。
※正數的立方根是正數;0的立方根是0;負數的立方根是負數。
第三章 圖形的平移與旋轉
平移:在平面內,將一個圖形沿某個方向移動一定距離,這樣的圖形運動稱為平移。
平移的基本性質:經過平移,對應線段、對應角分別相等;對應點所連的線段平行且相等。
旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。
這個定點叫旋轉中心,轉動的角度叫旋轉角。
旋轉的性質:旋轉後的圖形與原圖形的大小和形狀相同;
旋轉前後兩個圖形的對應點到旋轉中心的距離相等;
對應點到旋轉中心的連線所成的角度彼此相等。
(例:如圖2所示,點D、E、F分別為點A、B、C的對應點,經過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的角度,任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。)
第四章 四平邊形性質探索
※平行四邊的定義:兩線對邊分別平行的四邊形叫做平行四邊形,平行四邊形不相鄰的兩頂點連成的線段叫做它的對角線。
※平行四邊形的性質:平行四邊形的對邊相等,對角相等,對角線互相平分。
※平行四邊形的判別方法:兩組對邊分別平行的四邊形是平行四邊形。
兩組對邊分別相等的四邊形是平行四邊形。
一組對邊平行且相等的四邊形是平行四邊形。
兩條對角線互相平分的四邊形是平行四邊形。
※平行線之間的距離:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等。這個距離稱為平行線之間的距離。
菱形的定義:一組鄰邊相等的平行四邊形叫做菱形。
※菱形的性質:具有平行四邊形的性質,且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。
菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。
※菱形的判別方法:一組鄰邊相等的平行四邊形是菱形。
對角線互相垂直的平行四邊形是菱形。
四條邊都相等的四邊形是菱形。
※矩形的定義:有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
※矩形的性質:具有平行四邊形的性質,且對角線相等,四個角都是直角。(矩形是軸對稱圖形,有兩條對稱軸)
※矩形的判定:有一個內角是直角的平行四邊形叫矩形(根據定義)。
對角線相等的平行四邊形是矩形。
四個角都相等的四邊形是矩形。
※推論:直角三角形斜邊上的中線等於斜邊的一半。
正方形的定義:一組鄰邊相等的矩形叫做正方形。
※正方形的性質:正方形具有平行四邊形、矩形、菱形的一切性質。(正方形是軸對稱圖形,有兩條對稱軸)
※正方形常用的判定:
有一個內角是直角的菱形是正方形;
鄰邊相等的矩形是正方形;
對角線相等的菱形是正方形;
對角線互相垂直的矩形是正方形。
正方形、矩形、菱形和平行邊形四者之間的關系(如圖3所示):
※梯形定義:一組對邊平行且另一組對邊不平行的四邊形叫做梯形。
※兩條腰相等的梯形叫做等腰梯形。
※一條腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性質:等腰梯形同一底上的兩個內角相等,對角線相等。
同一底上的兩個內角相等的梯形是等腰梯形。
※多邊形內角和:n邊形的內角和等於(n-2)•180°
※多邊形的外角和都等於360°
※在平面內,一個圖形繞某個點旋轉180°,如果旋轉前後的圖形互相重合,那麼這個圖開叫做中心對稱圖形。
※中心對稱圖形上的每一對對應點所連成的線段被對稱中心平分。
第五章 位置的確定
※平面直角坐標系概念:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系,水平的數軸叫x軸或橫軸;鉛垂的數軸叫y軸或縱軸,兩數軸的交點O稱為原點。
※點的坐標:在平面內一點P,過P向x軸、y軸分別作垂線,垂足在x軸、y軸上對應的數a、b分別叫P點的橫坐標和縱坐標,則有序實數對(a、b)叫做P點的坐標。
※在直角坐標系中如何根據點的坐標,找出這個點(如圖4所示),方法是由P(a、b),在x軸上找到坐標為a的點A,過A作x軸的垂線,再在y軸上找到坐標為b的點B,過B作y軸的垂線,兩垂線的交點即為所找的P點。
※如何根據已知條件建立適當的直角坐標系?
根據已知條件建立坐標系的要求是盡量使計算方便,一般地沒有明確的方法,但有以下幾條常用的方法:①以某已知點為原點,使它坐標為(0,0);②以圖形中某線段所在直線為x軸(或y軸);③以已知線段中點為原點;④以兩直線交點為原點;⑤利用圖形的軸對稱性以對稱軸為y軸等。
※圖形「縱橫向伸縮」的變化規律:
A、將圖形上各個點的坐標的縱坐標不變,而橫坐標分別變成原來的n倍時,所得的圖形比原來的圖形在橫向:①當n>1時,伸長為原來的n倍;②當0<n<1時,壓縮為原來的n倍。
B、將圖形上各個點的坐標的橫坐標不變,而縱坐標分別變成原來的n倍時,所得的圖形比原來的圖形在縱向:①當n>1時, 伸長為原來的n倍;②當0<n<1時,壓縮為原來的n倍。
※圖形「縱橫向位置」的變化規律:
A、將圖形上各個點的坐標的縱坐標不變,而橫坐標分別加上a,所得的圖形形狀、大小不變,而位置向右(a>0)或向左(a<0)平移了|a|個單位。
B、將圖形上各個點的坐標的橫坐標不變,而縱坐標分別加上b,所得的圖形形狀、大小不變,而位置向上(b>0)或向下(b<0)平移了|b|個單位。
※圖形「倒轉與對稱」的變化規律:
A、將圖形上各個點的橫坐標不變,縱坐標分別乘以-1,所得的圖形與原來的圖形關於x軸對稱。
B、將圖形上各個點的縱坐標不變,橫坐標分別乘以-1,所得的圖形與原來的圖形關於y軸對稱。
※圖形「擴大與縮小」的變化規律:
將圖形上各個點的縱、橫坐標分別變原來的n倍(n>0),所得的圖形與原圖形相比,形狀不變;①當n>1時,對應線段大小擴大到原來的n倍;②當0<n<1時,對應線段大小縮小到原來的n倍。
第六章 一次函數
若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
※正比例函數y=kx的圖象是經過原點(0,0)的一條直線。
※在一次函數y=kx+b中: 當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。
第七章 二元一次方程組
※含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。 兩個一次方程所組成的一組方程叫做二元一次方程組。
※解二元一次方程組:①代入消元法; ②加減消元法(無論是代入消元法還是加減消元法,其目的都是將「二元一次方程」變為「一元一次方程」,所謂之「消元」)
※在利用方程來解應用題時,主要分為兩個步驟:①設未知數(在設未知數時,大多數情況只要設問題為x或y;但也有時也須根據已知條件及等量關系等諸多方面考慮);②尋找等量關系(一般地,題目中會含有一表述等量關系的句子,只須找到此句話即可根據其列出方程)。
※處理問題的過程可以進一步概括為:
第八章 數據的代表
※加權平均數:一組數據 的權分加為 ,則稱 為這n個數的加權平均數。 (如:對某同學的數學、語文、科學三科的考查,成績分別為72,50,88,而三項成績的「權」分別為4、3、1,則加權平均數為: )
※一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。
※一組數據中出現次數最多的那個數據叫做這組數據的眾數。
※眾數著眼於對各數據出現次數的考察,中位數首先要將數據按大小順序排列,而且要注意當數據個數為奇數時,中間的那個數據就是中位數;當數據個數為偶數時,居於中間的兩個數據的平均數才是中位數,特別要注意一組數據的平均數和中位數是唯一的,但眾數則不一定是唯一的。
9. 八年級下冊數學知識點總結
八年級下冊數學知識點總結北師大版
數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果.就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果.下面是我整理的關於數學知識點總結北師大版,歡迎大家參考!
第一章 一元一次不等式和一元一次不等式組
一、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式。
能使不等式成立的未知數的值,叫做不等式的解. 不等式的解不唯一,把所有滿足不等式的解集合在一起,構成不等式的解集. 求不等式解集的過程叫解不等式.
由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集 :一元一次不等式組各個不等式的解集的公共部分。
等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式. 基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式.
二、不等式的基本性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變. (註:移項要變號,但不等號不變。)性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變.不等式的基本性質<1>、 若a>b, 則a+c>b+c;<2>、若a>b, c>0 則ac>bc若c<0, 則ac
不等式的其他性質:反射性:若a>b,則bb,且b>c,則a>c
三、解不等式的步驟:1、去分母; 2、去括弧; 3、移項合並同類項; 4、系數化為1。 四、解不等式組的步驟:1、解出不等式的解集2、在同一數軸表示不等式的解集。 五、列一元一次不等式組解實際問題的`一般步驟:(1) 審題;(2)設未知數,找(不等量)關系式;(3)設元,(根據不等量)關系式列不等式(組)(4)解不等式組;檢驗並作答。
六、常考題型:
1、 求4x-6 7x-12的非負數解.
2、已知3(x-a)=x-a+1r的解適合2(x-5) 8a,求a 的范圍.
3、當m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間。
第二章 分解因式
一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2 二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。
1、把幾個整式的積化成一個多項式的形式,是乘法運算.
2、把一個多項式化成幾個整式的積的形式,是因式分解.
3、ma+mb+mc=m(a+b+c)
4、因式分解與整式乘法是相反方向的變形。
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.
提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式. 找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.
四、分解因式的一般步驟為:
(1)若有"-"先提取"-",若多項式各項有公因式,則再提取公因式.
(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.
(3)每一個多項式都要分解到不能再分解為止.
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式. 分解因式的方法:1、提公因式法。2、運用公式法。
;10. 北師大版八年級數學上冊知識點
遇到學習北師大版 八年級 數學的障礙和難點千萬不能急,也不可硬耗功夫,只求每遍混個臉熟,重復多學幾遍你和那些知識點就是老朋友了。我整理了關於北師大版八年級數學上冊的知識點,希望對大家有幫助!
北師大版八年級數學上冊知識點(一)
實數
定義:任何有限小數或無限循環小數都是有理數。無限不循環小數叫做無理數
(有理數總可以用有限小數或無限循環小數表示)
一般地,如果一個正數x的平方等於a,那麼這個正數x就叫做a的算術平方根。
特別地,我們規定0的算術平方根是0。
一般地,如果一個數x的平方等於a,那麼這個數x就叫做a的平方根(也叫二次方根)
一個正數有兩個平方根;0隻有一個平方根,它是0本身;負數沒有平方根。
求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。
一般地,如果一個數x的立方等於a,那麼這個數x就叫做a的立方根(也叫做三次方根)。
正數的立方根是正數;0的立方根是0;負數的立方根是負數。
求一個數a的立方根的運算,叫做開立方,其中a叫做被開方數。
有理數和無理數統稱為實數,即實數可以分為有理數和無理數。
每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都表示一個實數。即實數和數軸上的點是一一對應的。
在數軸上,右邊的點表示的數比左邊的點表示的數大。
北師大版八年級數學上冊知識點(二)
平方根、算數平方根和立方根
1、算術平方根:一般地,如果一個正數x的平方等於a,即x=a,那麼這個正數x就叫做a的算術平方根。特別地,0的算術平方根是0。 表示 方法 :記作“a”,讀作根號a。
性質:正數和零的算術平方根都只有一個,零的算術平方根是零。
2、平方根:一般地,如果一個數x的平方等於a,即x=a,那麼這個數x就叫做a的平方根(或二次方根)。
表示方法:正數a的平方根記做“22oa”,讀作“正、負根號a”。
性質:一個正數有兩個平方根,它們互為相反數;零的平方根是零;負數沒有平方根。 開平方:求一個數a的平方根的運算,叫做開平方。 a0
注意a的雙重非負性:
a0
3、立方根
一般地,如果一個數x的立方等於a,即x=a那麼這個數x就叫做a 的立方根(或三次方根)。
表示方法:記作a
性質:一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零。 注意:aa,這說明三次根號內的負號可以移到根號外面。
北師大版八年級數學上冊知識點(三)
圖形的平移與旋轉
定義:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形的形狀和大小。
經過平移,對應點所連的線段平行也相等;對應線段平行且相等,對應角相等。
在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形的大小和形狀。