當前位置:首頁 » 基礎知識 » 數學知識點過渡語
擴展閱讀
希望就在前方歌詞怎麼找 2024-11-01 18:15:07
兒童熱能消耗有哪些方面 2024-11-01 18:04:20

數學知識點過渡語

發布時間: 2022-11-17 20:36:15

⑴ 初中數學常見的重點知識點歸納

進入初三後最重要的就是提高成績,下面我就為大家來整理一下,初中數學常見的重點知識點歸納僅供參考。

常考的數學知識
1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

4、同角或等角的餘角相等

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連接的所有線段中,垂線段最短

7、平行公理經過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內錯角相等,兩直線平行

11、同旁內角互補,兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內錯角相等

14、兩直線平行,同旁內角互補

15、定理 三角形 兩邊的和大於第三邊
常用的數學公式
乘法與因式分解 a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a

-b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a

X1*X2=c/a 註:韋達定理
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R

註:其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB

註:角B是邊a和邊c的夾角
中數學中考知識重難點分析
1.函數(一次函數、反比例函數、二次函數)中考占總分的15%左右。

特別是 二次函數 是中考的重點,也是中考的難點,在填空、選擇、解答題中均會出現,且知識點多,題型多變。

2.應用題,中考中占總分的30%左右

包括方程(組)應用,一元一次不等式(組)應用,函數應用,解三角形應用,概率與統計應用幾種題型。

一般會出現二至三道解答題(30分左右)及2—3道選擇、填空題(10分—15分),佔中考總分的30%左右。

以上就是我為大家整理的初中數學常見的重點知識點歸納。

⑵ 高中數學知識點順口溜速記口訣

做數學題的時候你會不會有時就把公式定理忘了呢?其實將這些公式定理編為 順口溜 可能會更好記!下面是我整理的高中數學知識點順口溜速記口訣,希望大家喜歡。

函數學習口訣

正比例函數是直線,圖象一定過原點,

k的正負是關鍵,決定直線的象限,

負k經過二四限,x增大y在減,

上下平移k不變,由引得到一次線,

向上加b向下減,圖象經過三個限,

兩點決定一條線,選定系數是關鍵。

反比例函數雙曲線,待定只需一個點,

正k落在一三限,x增大y在減,

圖象上面任意點,矩形面積都不變,

對稱軸是角分線,x、y的順序可交換。

二次函數拋物線,選定需要三個點,

a的正負開口判,c的大小y軸看,

△的符號最簡便,x軸上數交點,

a、b同號軸左邊,拋物線平移a不變,

頂點牽著圖象轉,三種形式可變換,

配 方法 作用最關鍵。

正多邊形訣竅歌

份相等分割圓,n值必須大於三,

依次連接各分點,內接正n邊形在眼前。

經過分點做切線,切線相交n個點。

n個交點做頂點,外切正n邊形便出現。

正n邊形很美觀,它有內接、外切圓,

內接、外切都唯一,兩圓還是同心圓,

它的圖形軸對稱,n條對稱軸 都過圓心點,

如果n值為偶數,中心對稱很方便。

正n邊形做計算,邊心距、半徑是關鍵,

內切、外接圓半徑,邊心距、半徑分別換,

分成直角三角形2n個整,依此計算便簡單。

圓中比例線段

遇等積,改等比,橫找豎找定相似;

不相似,別生氣,等線等比來代替,

遇等比,改等積,引用射影和圓冪,

平行線,轉比例,兩端各自找聯系。

函數與數列

數列函數子母胎,等差等比自成排。

數列求和幾多法?通項遞推思路開;

變數分離無好壞,函數復合有內外。

同增異減定單調,區間挖隱最值來。

二項式定理

二項乘方知多少,萬里源頭通項找;

展開三定項指系,組合系數楊輝角。

整除證明底變妙,二項求和特值巧;

兩端對稱誰最大?主峰一覽眾山小。

立體幾何

多點共線兩面交,多線共面一法巧;

空間三垂優弦大,球面兩點劣弧小。

線線關系線面找,面面成角線線表;

等積轉化連射影,能割善補架通橋。

方程與不等式

函數方程不等根,常使參數范圍生;

一正二定三相等,均值定理最值成。

參數不定比大小,兩式不同三法證;

等與不等無絕對,變數分離方有恆。

根據多年的實踐, 總結 規律繁化簡;

概括知識難變易,高中數學巧記憶。

言簡意賅易上口,結合課本勝一籌。

始生之物形必丑,拋磚引得白玉出。

速記口訣

一、《集合與函數》

內容子交並補集,還有冪指對函數。

性質奇偶與增減,觀察圖象最明顯。

復合函數式出現,性質乘法法則辨,

若要詳細證明它,還須將那定義抓。

指數與對數函數,兩者互為反函數。

底數非1的正數,1兩邊增減變故。

函數定義域好求。分母不能等於0,

偶次方根須非負,零和負數無對數;

正切函數角不直,餘切函數角不平;

其餘函數實數集,多種情況求交集。

兩個互為反函數,單調性質都相同;

圖象互為軸對稱,Y=X是對稱軸;

求解非常有規律,反解換元定義域;

反函數的定義域,原來函數的值域。

冪函數性質易記,指數化既約分數;

函數性質看指數,奇母奇子奇函數,

奇母偶子偶函數,偶母非奇偶函數;

圖象第一象限內,函數增減看正負。

二、《三角函數》

三角函數是函數,象限符號坐標注。

函數圖象單位圓,周期奇偶增減現。

同角關系很重要,化簡證明都需要。

正六邊形頂點處,從上到下弦切割;

中心記上數字1,連結頂點三角形;

向下三角平方和,倒數關系是對角,

頂點任意一函數,等於後面兩根除。

誘導公式就是好,負化正後大化小,

變成稅角好查表,化簡證明少不了。

二的一半整數倍,奇數化余偶不變,

將其後者視銳角,符號原來函數判。

兩角和的餘弦值,化為單角好求值,

餘弦積減正弦積,換角變形眾公式。

和差化積須同名,互餘角度變名稱。

計算證明角先行,注意結構函數名,

保持基本量不變,繁難向著簡易變。

逆反原則作指導,升冪降次和差積。

條件等式的證明,方程思想指路明。

萬能公式不一般,化為有理式居先。

公式順用和逆用,變形運用加巧用;

1加餘弦想餘弦,1減餘弦想正弦,

冪升一次角減半,升冪降次它為范;

三角函數反函數,實質就是求角度,

先求三角函數值,再判角取值范圍;

利用直角三角形,形象直觀好換名,

簡單三角的方程,化為最簡求解集;

三、《不等式》

解不等式的途徑,利用函數的性質。

對指無理不等式,化為有理不等式。

高次向著低次代,步步轉化要等價。

數形之間互轉化,幫助解答作用大。

證不等式的方法,實數性質威力大。

求差與0比大小,作商和1爭高下。

直接困難分析好,思路清晰綜合法。

非負常用基本式,正面難則反證法。

還有重要不等式,以及數學歸納法。

圖形函數來幫助,畫圖建模構造法。

四、《數列》

等差等比兩數列,通項公式N項和。

兩個有限求極限,四則運算順序換。

數列問題多變幻,方程化歸整體算。

數列求和比較難,錯位相消巧轉換,

取長補短高斯法,裂項求和公式算。

歸納思想非常好,編個程序好思考:

一算二看三聯想,猜測證明不可少。

還有數學歸納法,證明步驟程序化:

首先驗證再假定,從K向著K加1,

推論過程須詳盡,歸納原理來肯定。

五、《復數》

虛數單位i一出,數集擴大到復數。

一個復數一對數,橫縱坐標實虛部。

對應復平面上點,原點與它連成箭。

箭桿與X軸正向,所成便是輻角度。

箭桿的長即是模,常將數形來結合。

代數幾何三角式,相互轉化試一試。

代數運算的實質,有i多項式運算。

i的正整數次慕,四個數值周期現。

一些重要的結論,熟記巧用得結果。

虛實互化本領大,復數相等來轉化。

利用方程思想解,注意整體代換術。

幾何運算圖上看,加法平行四邊形,

減法三角法則判;乘法除法的運算,

逆向順向做旋轉,伸縮全年模長短。

三角形式的運算,須將輻角和模辨。

利用棣莫弗公式,乘方開方極方便。

輻角運算很奇特,和差是由積商得。

四條性質離不得,相等和模與共軛,

兩個不會為實數,比較大小要不得。

復數實數很密切,須注意本質區別。

六、排列、組合、二項式定理

加法乘法兩原理,貫穿始終的法則。

與序無關是組合,要求有序是排列。

兩個公式兩性質,兩種思想和方法。

歸納出排列組合,應用問題須轉化。

排列組合在一起,先選後排是常理。

特殊元素和位置,首先注意多考慮。

不重不漏多思考,捆綁插空是技巧。

排列組合恆等式,定義證明建模試。

關於二項式定理,中國楊輝三角形。

兩條性質兩公式,函數賦值變換式。

七、《立體幾何》

點線面三位一體,柱錐 檯球 為代表。

距離都從點出發,角度皆為線線成。

垂直平行是重點,證明須弄清概念。

線線線面和面面、三對之間循環現。

方程思想整體求,化歸意識動割補。

計算之前須證明,畫好移出的圖形。

立體幾何輔助線,常用垂線和平面。

射影概念很重要,對於解題最關鍵。

異面直線二面角,體積射影公式活。

公理性質三垂線,解決問題一大片。

八、《平面解析幾何》

有向線段直線圓,橢圓雙曲拋物線,

參數方程極坐標,數形結合稱典範。

笛卡爾的觀點對,點和有序實數對,

兩者—一來對應,開創幾何新途徑。

兩種思想相輝映,化歸思想打前陣;

都說待定系數法,實為方程組思想。

三種類型集大成,畫出曲線求方程,

給了方程作曲線,曲線位置關系判。

四件工具是法寶,坐標思想參數好;

平面幾何不能丟,旋轉變換復數求。

解析幾何是幾何,得意忘形學不活。

圖形直觀數入微,數學本是數形學。

高中數學知識點順口溜速記口訣相關 文章 :

1. 高中數學函數的學習方法

2. 高中數學重要知識點巧記口訣

3. 高中數學知識點口訣

4. 高中數學常考題型答題技巧與方法及順口溜

5. 十個重要地理口訣記憶規律

6. 高中數學3個解題技巧口訣與數學學習方法

7. 高二數學學習方法之巧記口訣

8. 2017駕考科一的順口溜大全

9. 最新高中物理知識點記憶口訣

⑶ 小學各年級數學知識點總結

貪玩是孩子的天性,大多數孩子缺少自我控制能力,所以需要家長們平時多督促孩子認真完成家庭作業,培養他們良好的作業習慣,寫字姿勢。家長督促他們寫作業,及時檢查他們的作業,發現沒學會的知識要及時給他們講解,每天的作業認真完成是學習的基本保障。下面是我為大家整理的關於小學各年級數學知識點 總結 ,希望對您有所幫助。歡迎大家閱讀參考學習!

一年級的知識點及重難點

(一)數與計算

(1)20以內數的認識。加法和減法。

數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合運算。

(2)100以內數的認識。加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。

兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。

(二)量與計量鍾面的認識(整時)。人民幣的認識和簡單計算。

(三)幾何初步知識

長方體、正方體、圓柱和球的直觀認識。

長方形、正方形、三角形和圓的直觀認識。

(四)應用題

比較容易的加法、減法一步計算的應用題。 多和少的應用題(抓有效信息的能力)

(五)實踐活動

選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。

一年級 數學 學習 方法

1、要培養學生的學習習慣。學習習慣的一方面就是作業的按時完成,作業格式訓練也是學習習慣培養的一個方面。要利用數學練習本讓學生練習寫數和寫算式

2、重視孩子計算能力的培養

口算20以內的加減法是十分重要的基礎知識,孩子必須學好,並能夠達到熟練計算的程度。由於孩子的基礎不同,不同孩子的計算熟練程度和速度也就存在一定差異,要縮小這一差異,僅靠每天一節數學課練習是不客觀的,所以要經常性的練習。一年級要多讓孩子藉助小棒等學具擺一擺、說一說計算思路。

3、依據生活理解數學,讓孩子在游戲中成長

有些數學知識較抽象,容易混淆,我們要注意給孩子創造生活情境,讓孩子在實際體驗中理解知識。如「左右」的認識,分辨左右是孩子本學期學習的一個難點,在生活中強化孩子對左右手的認識,引導孩子藉此來分辨物體間的左右關系。同時還要注意一個參照物的問題,如兩人面對面時,如何判別對面之人的左右邊。

4、重視數學語言發展,讓學生養成積極思維的習慣。 在生活中要多為孩子創設說數學的機會,數學是「思維的 體操 」,如果不積極動腦思考就不可能學好數學。如在學習「10的分與合」時,在復習鋪墊的基礎上,提問:「10可以分成幾和幾呢?」引導學生一邊塗珠算一邊思考,從而自己得出結論。多問幾個「為什麼」比直接告訴學生「是這樣的」要好得多。,學生在相互之間的思維撞擊中學會了知識,獲得了積極的成功體驗。

總之,一年級學生由於特殊的年齡特徵,所以要重視培養學生良好書寫、思維的學習習慣。

二年級的知識點和重難點

(一)數與計算

(1)兩位數加、減兩位數。 ? 兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。

(2)表內乘法和表內除法。 ? 乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。

(3)萬以內數的讀法和寫法。 ? 數數。百位、千位、萬位。數的讀法、寫法和大小比較。

(4)加法和減法。 ?加法,減法。連加法。加法驗算,用加法驗算減法。

(5)混合運算。 ? 先乘除後加減。兩步計算式題。小括弧。

(二)量與計量

時、分、秒的認識。

米、分米、厘米的認識和簡單計算。

千克(公斤)的認識

(三)幾何初步知識

直線和線段的初步認識。 ? 角的初步認識。直角。

(四)應用題

加法和減法一步計算的應用題。 ? 乘法和除法一步計算的應用題。 ?比較容易的兩步計算的應用題。

(五)實踐活動

與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。

二年級數學 學習方法

小學生是以具體形象思維為主,根據二年級學生的特點,應該:

第一:要適度應用學具,例如:在教學乘法的初步認識時,用擺小棒的方法,應按照從一般到特殊的規律,先擺出兩堆不同數目的小棒,再擺出兩份數目相同的,讓學生覺得加法的累贅,再介紹乘法,學生就很容易理解乘法的意義,並且樂意學乘法了。

第二:利用 生活知識 教學。

例如:小紅做了18朵紙花,送給同學們12朵,還剩下多少朵。這是兩位數減兩位數,如果在生活中做一做,學生就明白意思了,所以說,有一些應用題,能從實際生活出發,先用學生的生活 經驗 來解答,再用數學知識來解答,就可以使學生理解題意。

第三:利用社會環境提高數學實際應用能力。例如:在學習統計時,可以帶學生到商城或社會中,利用新學的統計知識,通過觀察、計量、比較,從而收集到有用的信息和知識。

第四:為學生創造機會,使學生去思、去想、去問。比如,二年級教材學習了「角的認識」,對於什麼叫角,角各部分名稱,「角的大小與邊的長短無關」這些內容,學生已經知道了

「還有什麼問題嗎?」學生答道「沒問題」。真的沒問題了嗎?「那我來問個問題」我提出了一個問題:「角的大小為什麼與邊的長短無關呢?」經過討論,大家明白了,角的邊是射線,射線是沒有長短的,所以,角的大小與邊的長短無關。角的大小決定於兩條邊張開的程度。教師從學生的角度示範提問題,久而久之,也就讓學生有了提問題的意識,在引導學生提問題的同時,也培養了學生積極思考問題和解決問題的能力。

三年級知識點和重難點

(一)數與計算

(1)一位數的乘、除法。一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。

(2)兩位數的乘、除法。一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。

(3)四則混合運算。兩步計算的式題。小括弧的使用。

(4)分數的初步認識。分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。

(二)量與計量千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。

(三)幾何初步知識長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。

(四)應用題常見的數量關系。解答兩步計算的應用題。

(五)實踐活動聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。

三年級數學 學習方法

小學三年級學生學習數學的三種數學能力中,影響程度最大的是運用數概念的能力,其次是空間關系的知覺能力,再次是基本能力(概括和推理)。

第一,加強小學三年級學生運用「數概念」的能力培養。

有不少小學數學的教學中,常只重演算法,忽視數概念的掌握和算理的理解。因而只能機械地應用學過的東西,或簡單地模仿做過的例題,不能在變化了情況下遷移;或者只知道一些定義,而不能全面掌握屬於這一概念的東西。

例如,學生能說出什麼是圓的半徑,但在作圖或解題時又常常只能舉出垂直方向上的半徑,不能反轉過來去解決逆向問題,沒有納入到一般的范疇或嵌入數概念體系的認知結構中去。所以在小學數學教學中,不僅要重視演算法和演算過程,尤其要重視數概念的掌握和算理的理解,加強小學生運用數概念的能力培養。三年級數學中,會出現長度單位的認識,什麼千米、毫米、厘米,很多孩子總是無法記清楚,怎麼辦呢?請大家伸出自己的右手,手心面向自己,從小拇指到大拇指,依次為:毫米、厘米、分米、米、千米。兩指之間的距離大小表示進率的大小。你們看,小指、無名指、中指、食指每相臨的兩指間的距離相等,也就表示毫米、厘米、分米、米每相臨兩個單位間的進率相等,都是10。而毫米與分米、厘米與米間的進率為100,毫米與米之間的進率為1000,食指與大拇指之間的距離較大,也是1000。記住單位對應的拇指,這個換算就變得十分簡單而且准確了。

第二,重視和加強發展小學三年級學生「空間關系」的知覺能力。

數和形是不可分開的。因此,學生掌握空間關系的知覺能力也是小學數學能力的重要組成部分。例如三年級下冊如用圓圈圖(韋恩圖)向學生直觀的滲透集合概念。讓他們感知圈內的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。

第三,觀察活動:

所謂觀察是指學生對客觀事物或某種現象的仔細察看,因而是一種有意注意。培養的途徑是:教師提供的「客觀事物或某種現象」特徵有序、背景鮮明,而且要給出一些觀察的思考題。這樣有助於學生明確觀察目標,進而使他們邊觀察,邊思考,邊議論,邊作觀察記錄,以發現數學規律、本質。

「乘法分配律」的教學,根據例證得到三個等式:

(5+3)×2=5×2+3×2

(6+4)×30=6×30+4×30

(25+9)×4=25×4+9×4

教師要求學生結合下面的兩個思考題觀察上面的三個等式都具有什麼相同點(即規律)。①豎里觀察,等式的左邊都有什麼特點?等式右邊又有什麼特徵?②橫里觀察,等式的左邊與右邊有怎樣的關系?

教師再要求學生把記錄的文字:兩個加數的和與一個數相乘,兩個積的和,兩個加數分別與一個數相乘……整理一下就得到了「乘法分配律」。

四年級知識點和重難點

(一)數與計算

(1)億以內數的讀法和寫法。

計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。

(2)加法和減法。

加法,減法。

接近整十、整百數的加、減法的簡便演算法。

加、減法算式中各部分之間的關系。求未知數x。

(3)乘、除數是三位數的乘、除法。

乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。

_乘、除計算的簡單估算。

乘數接近整十、整百的簡便演算法。

乘、除法算式中各部分之間的關系。求未知數x。

(4)四則混合運算。

中括弧。三步計算的式題。

(5)整數及其四則運算的關系和運算定律。

自然數與整數。十進制計數法。讀法和寫法。

四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。

運算定律。簡便運算。

(6)小數的意義、性質,加法和減法。

小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值

加法和減法。加法運算定律推廣到小數。

(註:小數如果分段教學,可以把小數的初步認識安排在前面的適當年級)。

(二)量與計量

年、月、日。平年、閏年。世紀。24時計時法。

角的度量。

面積單位。

(三)幾何初步知識。

直線的測定。測量距離(工具測、步測、目測)。

射線。直角、銳角、鈍角、平角、_周角。垂線。畫垂線。平行線。畫平行線。

三角形的特徵。_三角形的內角和。

(四)統計初步知識

簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。

(五)應用題列綜合算式解答比較容易的三步計算的應用題。

四年級數學 學習方法

四年級的學生思維正處在從直觀思維向抽象 邏輯思維 過渡的階段,因此,通過練習鞏固所學知識只是其中的一個方面,而通過比較、概括、推理、綜合等思維方法的學習運用發展其邏輯思維是這個年齡段學生的一個重要任務,除了注意學生思維方法的掌握,最明顯的表現是培養學生畫概念圖和線段圖,促進其知識系統化和思維能力的發展。)

在數學知識中,數學概念又是數學知識的基礎,數學原理、數學方法也是由數學概念構成。概念的清晰性、穩定性、可辨性以及概念之間的關聯性極大地影響數學知識的質量。概念圖包括節點、連線、層級和命題四個基本要素。根據小學四年級學生思維發展水平,引導學生思考如何更好建構自己的概念圖,掌握這種方法。數學知識就像~張縱橫交錯的網,每個知識點都是一個網點,網點上的一條條知識,連接起了一個個的網點,從而形成一張密密的「知識網」。培養學生自己去「織網」能力應該是新課改對教師的要求之一,而且對於小學四年級的教師來說,在學生思維折的關鍵時期,有意識地通過讓學生畫概念圖的方法來培養思維能力也是行之有效的法之一。

「線段圖」是指由有一定意義的線段、箭頭、數字元號等構成的圖式,它的特點是形象直觀,能夠引起學生的注意和興趣。利用線段圖將題中蘊涵的抽象的數量關系以形象、直觀的方式表達出來,化 抽象思維 為形象思維,符合小學生特別是中高年級學生的認知特點。小學數學各種類型的應用題:如分數應用題、行程問題、工程問題等用線段圖扳書分析數量關系,易化繁為簡,化抽象思維為形象思維。四年級教材中的路程問題(第七冊59—61頁),很容易通過例題中的線段圖理解問題。對於第七冊第64頁的習題5,學生們也能輕松地把情景圖用線段圖表示出來;第八冊「解方程一」(第95頁)的練習2,即使學困生也很容易列出方程,我所教的兩個班的學生能把一些方程用線段圖畫出來,比如97頁的練習l、2,通過這種 思維訓練 ,學生的表徵能力得到提高,實現《標准》提出的「能從具體情境中抽象出數量關系和變化規律,並用符號來表示:理解符號所代表的數量關系和變化規律;會進行符號間的轉換;能選擇適當的程序和方法解決用符號所表達的問題。」

五年級知識點和重難點

小數乘法,小數除法,簡易方程,多邊形的面積,統計與可能性等是本冊教材的重點教學內容。

在數與代數方面,這一冊教材安排了小數乘法、小數除法和簡易方程。小數的乘法和除法在實際生活中和數學學習中都有著廣泛的應用,是小學生應該掌握和形成的基礎知識和基本技能。這部分內容是在前面學習整數四則運算和小數加、減法的基礎上進行教學,繼續培養學生小數的四則運算能力。簡易方程是小學階段集中教學代數初步知識的單元,在這一單元里安排了用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的抽象思維能力,提高解決問題的能力。

在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和經驗的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置;探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想方法,促進學生空間觀念的進一步發展。

在統計與概率方面,本冊教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性;在平均數的基礎上教學中位數,使學生理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。

在用數學解決問題方面,教材一方面結合小數乘法和除法兩個單元,教學用所學的乘除法計算知識解決生活中的簡單問題;另一方面,安排了「數學廣角」的教學內容,通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。培養學生的符號感,及觀察、分析、推理的能力,培養他們探索數學問題的興趣和發現、欣賞數學美的意識。

五年級數學 學習方法

(一)數與代數

1、第一單元「倍數與因數」:結合具體情境,經歷探索數的有關特徵的活動,認識自然數,認識倍數和因數,能在100以內的自然數中找出10以內某個自然數的所有倍數,能找出100以內某個自然數的所有因數,知道質數、合數;經歷 2、3、5的倍數特徵的探索過程,知道2、3、5的倍數的特徵,知道奇數和偶數;能根據解決問題的需要,收集有用的信息,進行歸納、類比與猜測,發展初步的合情推理能力;

2.第三單元「分數」:進一步理解分數的意義,能正確用分數描述圖形或簡單的生活現象;認識真分數、假分數與帶分數,理解分數與除法的關系,會進行分數的大小比較;能找出10以內兩個自然數的公倍數和最小公倍數,能找出兩個自然數的公因數和最大公因數,會正確進行約分和通分;初步了解分數在實際生活中的應用,能運用分數知識解決一些簡單的實際問題。

3.第四單元「分數加減法」:理解異分母分數加減法的算理,並能正確計算;能理解分數加減混合運算的順序,並能正確計算;能把分數化成有限小數,也能把有限小數化成分數;能結合實際情境,解決簡單分數加減法的實際問題。

(二)在學習《空間與圖形》可採用數、形結合的方式,以及類比法等教學

1.第二單元「圖形的面積(一)」:知道比較面積大小方法的多樣性;經歷探索平行四邊形、三角形、梯形面積計算方法的過程,並能運用計算的方法解決生活中一些簡單的問題;在探索圖形面積的計算方法中,獲得探索問題成功的體驗。

2.第五單元「圖形的面積(二)」:在探索活動中,認識組合圖形,並會運用不同的方法計算組合圖形的面積;能正確運用計算組合圖形面積的方法,解決相應的實際問題;能估計不規則圖形的面積大小,並能用不同方法計算面積。

六年級數學

(一)數與計算

(1)分數的乘法和除法。分數乘法的意義。分數乘法。乘法的運算定律推廣到分數。倒數。分數除法的意義。分數除法。

(2)分數四則混合運算。分數四則混合運算。

(3)百分數。百分數的意義和寫法。百分數和分數、小數的互化。

(二)比和比例

比的意義和性質。比例的意義和基本性質。解比例。成正比例的量和成反比例的量。

(三)幾何初步知識

圓的認識。圓周率。畫圓。圓的周長和面積。_扇形的認識。軸對稱圖形的初步認識。圓柱的認識。圓柱的表面積和體積。圓錐的認識。圓錐的體積。球和球的半徑、直徑的初步認識。

(四)統計初步知識

統計表。條形統計圖,折線統計圖,_扇形統計圖。

(五)應用題

分數四則應用題(包括工程問題)。百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算)。比例尺。按比例分配。

(六)實踐活動

聯系學生所接觸到的社會情況組織活動。例如就家中的卧室,畫一個平面圖。

(七)整理和復習

六年級數學學習方法:

進入小學高年級後,科目稍微增加、內容拓寬、知識深化……學生認知結構發生根本變化,許多同學容易忽略老師所講的數學思想、數學方法,而注重題目的解答,其實諸如「化歸」、「數形結合」等思想方法遠遠重要於某道題目的解答。

總結比較,理清思緒

知識點的總結比較。每學完一章都應將本章內容做一個框架圖或在腦中過一遍,整理出它們的關系。對於相似易混淆的知識點應分項歸納比較,有時可用聯想法將其區分開。題目的總結比較。同學們可以建立自己的題庫。

在學習《位置》在用數對確定點的位置,這部分滲透了數形結合的思想,和一一對應的思想。學生可在方格紙上畫畫。

學習分數乘法的意義:1、分數乘整數是求幾個相同加數的和的簡便運算,與整數乘法的意義相同。2、分數乘分數是求一個數的幾分之幾是多少。

例:一小時刷一面牆的1/4,1/5小時刷一面牆的多少?實際上是求1/5的1/4是多少?

這種題型可以利用數形結合的數學思想,畫一畫,折一折。再就是利用:工作效率_工作時間=工作總量

在學習分數除法這一節時,例如:分數、除法和小數之間的關系和區別,以及分數除法應用題無論是 折紙 實驗,還是畫線段圖,都是用圖形語言揭示分數除法計算過程的幾何意義。分數乘除法,比的知識,運用了類比的數學。(相似和變式)

在學習圓這一節時,用逐漸逼近的轉化思想。把一個園等分(偶數份)成的份數越多,拼成的圖像越接近長方形。體現化圓為方,化曲為直的思想,應用轉化思想。在應用中,我們還知道面積相同時,長方形的周長最長,正方形居中,圓周長最短。周長一定時,圓面積最大,正方形居中,長方形面積最小。這題蘊含著一個數學規律,即在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積最大,而長方形的面積則最小。

在學習數學廣角這一章節中,例如,研究古代雞兔同籠的問題,就應用了假設法來教學。這種 思維方式 就是劃歸法。

⑷ 數學的知識點總結

集合的運算也遵循一般的代數式運算規律,也有著自己的法則和定理。下面是我整理的數學集合的知識點總結,歡迎參考閱讀!

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

①.元素的確定性; ②.元素的互異性; ③.元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的分類:

1.有限集 含有有限個元素的集合

2.無限集 含有無限個元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

4、集合的表示:{ } 如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}

1. 用拉丁字母表示集合:A={我校的籃球隊員}B={12345}

2.集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集) 記作:N

正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R

關於屬於的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 aA ,相反,a不屬於集合A 記作 a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的'方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

二、集合間的基本關系

1.包含關系子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之: 集合A不包含於集合B或集合B不包含集合A記作A B或B A

2. 不含任何元素的集合叫做空集,記為

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

3.相等關系(55,且55,則5=5)

實例:設 A={x|x2-1=0} B={-11} 元素相同

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

① 任何一個集合是它本身的子集。A?A

②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)

③如果 A?B B?C 那麼 A?C

④ 如果A?B 同時 B?A 那麼A=B

三、集合的運算

1、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:AB(讀作A並B),即AB={x|xA,或xB}.

2.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.

記作AB(讀作A交B),即AB={x|xA,且xB}.

3、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

記作: CSA 即 CSA ={x ? x?S且 x?A}

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(3)性質:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

4、交集與並集的性質:AA = A A= B = BA,AA = A

A= A AB = BA.

⑸ 數學老師上課時的過渡語言

數學教學中穿插語言的運用原則
斯托利亞爾在《數學教育學》一書中指出:「數學教學也就是數學語言的教學」。〔1〕由於數學語言是一種由數學符號、數學術語和經過改進的自然語言組成的科學語言,因此在數學教學中,教師一般不宜直接使用數學語言作為講授語言,而必須根據學生的知識基礎和心理特徵,將數學語言轉化為容易被學生所接受的語言。即採用數學語言和教學語言融為一體的語言——數學教學語言。又由於教學語言總是伴隨教學過程的一個個環節,以穿插的方式表現出來,因此,穿插語言成為數學教學語言的基本形式,數學教學語言藝術主要是數學教學中穿插語言的藝術。

顧名思義,所謂穿插語言就是指數學語言以及數學課本上明文之外的教學語言。穿插不是「照本宣科」,就每一堂數學課而言,穿插語言總是佔有很大的比重,如按其在教學過程中的不同作用和不同方式,就有導語、闡釋語、問答語、辨析語、點評語、過渡語、應變語、比喻語、幽默語、渲染語等等。

善於運用穿插語言是數學教師的一項十分重要的基本功。怎樣才能運用好穿插語言呢?「教學和教育過程有三個源泉:科學,技巧,和藝術。」(蘇霍姆林斯基語)據此,伴隨教學過程的穿插語言,應按其教學內容、語言技巧和語言藝術三個方面,遵循以下三個原則。

一、科學性原則

課堂教學是知識內容和其語言形式的統一表現,知識的科學性決定了語言的科學性。所以,科學性是各科教學穿插語言所具有的根本屬性。但是,數學教學穿插語言的科學性又有自己獨特的內涵。

(一)數學內容的三維性

現代素質教育觀認為,所謂數學教育就是以數學知識(及其應用)為培養基,從中吸取多種養料以促進學生自我生長的教育。其中,生長主要是指思想方法和求美精神的生長。因為思想和精神得到了良好的生長,人的行為素質自然會隨之而得到改善〔2〕。

數學思想和數學美與數學知識相比,前者呈「隱性」,後者呈「顯性」。但是,很多知識的有效性是短暫的,思想的有效性卻是長期的,能使人「受益終生」;知識存在的形態是呆板的,美的存在形態是活潑的,能使人的心靈「受到召喚」。數學發展的歷史還表明,數學創造往往來自舊數學思想的突破或新數學思想的創立;數學發現往往起因於思維的樂趣或數學美的召喚。正如數學家喬治·波利亞所說:「完善的思想方法猶如北極星,許多人通過它而找到正確的道路。」法國大數學家彭加勒指出:「能夠作出數學發現的人是具有感受數學中的秩序、和諧、對稱、整齊和神秘美等能力的人,而且只限於這種人。」

因此,就數學教學而言,「知識誠可貴,思想價更高,若為創造故,求美不可拋」。其穿插語言的內容必須體現三維性:以數學知識為主體,以挖掘、展現由其反映出來的數學思想方法和數學美學因素為兩翼。俗話說:「沒有翅膀,鳥兒是飛不起來的。」思想方法貧乏和美學因素欠缺的數學教學,則是刻板而不健全的教學。穿插內容的三維性是充分體現數學教學語言功力的保證。這樣做,既能把知識與思想的種子播種在學生的心田,又能把學生領進華美的數學殿堂,使學生自然而然地達到對數學思想方法的領悟,受到數學美的熏陶,從而從根本上培養其認知能力和創造能力。

(二)語言範式的二重性

斯托利亞爾指出:「數學教學是數學思維(活動)的教學。」數學教師的語言要在有效地培養學生的思維能力上下功夫,首先必須對數學思維這一概念有一個完整的辯證的認識。數學思維是極其復雜的心理現象,就其構成成分而言,有邏輯思維和非邏輯思維(即形象思維和直覺思維);就其推理種類而言,有演繹推理(又稱合理推理)和非演繹推理(又稱合情推理,包括歸納推理和類比推理)。它們在數學研究或數學教學中的作用總是互相補充、相輔相成的。彭加勒說:「邏輯用於論證,直覺可用於發明。」事實上,在數學思維活動中邏輯演繹和非邏輯演繹缺一不可。如同人在迷霧中探索前進既要用眼睛辨明方向、尋求道路,又要靠雙腿邁向目的地一樣,非邏輯演繹好比眼睛,起向導和領路作用;邏輯演繹猶如雙腿,沒有邏輯演繹就不可能到達目的地。〔3〕

但是,長期以來由於數學的「邏輯嚴謹性」的影響以及教科書系統結構所呈現的邏輯演繹特徵的影響,更由於邏輯演繹具有規范的程式,所以,教師容易偏重邏輯演繹,甚至誤以為「精確、嚴謹,符合邏輯要求」是數學教學語言合乎科學性的惟一範式,實際上,這是忽視或低估數學思維具有上述二重性的表現。

「語言是思維的外衣。」數學思維的二重性決定了數學教學語言範式的二重性,即針對學生的年齡特點,既要講究嚴謹的邏輯演繹,又要適時地穿插能引導學生進行聯想、想像、猜想、類比、歸納及洞察、領悟等活動的非邏輯的語言,力求邏輯演繹和非邏輯演繹兩種語言完美結合、高度統一,從而使學生全面地認識和理解數學,積極主動地去發現和創造數學。

二、技巧性原則「話有三說,巧說為妙。」

說話技巧即口才,它反映了一個人的表達能力。在數學教學中,穿插語言的技巧突出地表現在以下兩方面。

(一)語言組織的有序性

教學是按照一定的程序展開的過程,教材、學生、教師是構成教學過程的三要素。因此,仔細考察數學教學過程便會發現,它融進了三種教學程序,並因而呈現了三條教學線索。

一是教材內容的邏輯順序。即根據教材的編排體系,系統地分析知識之間的內在聯系,以教學目的和典型訓練為中心,把基本概念、基本原理和基本方法等邏輯地串聯起來的程序。這是教學中的一條「主線」,有了它講起課來條理清晰、貫通流暢、前後呼應、一脈相承。

二是教師設計的教學程序。即根據學生的認識規律,由淺入深、循序漸進地設計出一種「階梯型」的講課程序。這是教學中的一條「斜線」,有了它講課時到底從哪裡講起,到哪裡爬坡,在哪裡突破,哪裡應該詳講,哪裡可以略講,哪裡需要急促,哪裡可以舒緩;怎樣循循善誘,怎樣闡發引申,怎樣承接轉折,教師心裡自有其數。

三是學生認知的思維程序。即以數學思想方法為指導,引導學生通過舊知識對新知識的同化和新知識對舊知識的順應這兩種認知方式,建構起新的數學認知結構的思維活動程序。這是教學中的一條「紅線」,有了它講課中可以抓住教材的本質,充分展現和暴露思維活動過程,使「數學教學是數學思維活動的教學」落到實處。能否沿著上述三種程序也即三條線索,有機地組織一連串穿插語言,構成一個指向明確、思路清晰、具有內在邏輯的「語言鏈」,是檢驗數學教師語言技巧的一塊試金石。

(二)課堂穿插的機智性

在課堂教學中,由於學生的智力因素和非智力因素多方面的差異性、復雜性,學生的信息反饋呈現多樣性和隨機性。其中某些穩定的因素(如數學內容和學生原有知識水平等)是可以預知的,有些則是難以預料的。因此,教師必須隨時從學生的反饋信息出發,及時地運用和發揮穿插語言的功能和作用,進行有效調控,使課堂教學始終處於最佳狀態。

課堂穿插的機智性首先表現在教師要善於猜測和判斷學生的思維動向,把握和捕捉啟發的時機,創設憤悱情境,以求啟而得法、啟而能發;其次表現在對學生的種種反應(答問情況、學習情緒、思維表情、課堂紀律等),甚至意外情況(意想不到的疑問、教師講解的疏漏、學生中異乎尋常的舉動等),必須機敏而及時地進行調節,化平淡為新奇,化消極為積極,促成教學的和諧進行。

馬卡連柯說,教育技巧的必要特徵之一,就是要有隨機應變的能力。課堂上語言的穿插需要深思熟慮的預見和高超非凡的應變技巧。

三、藝術性原則

數學是一門科學,但是數學教學卻是一門藝術。誇美紐斯說過:「教育人是藝術中的藝術,教育人使用的語言是藝術的語言。」數學教師的語言特別要講究藝術性,真要像劇作者在劇本中斟詞酌句、演員在舞台上處理台詞一樣,使用藝術性很強的語言,給學生以美的享受、精神的愉悅及豐碩的學習成果。

(一)生動直觀的形象性

萬物皆有形,形象性是藝術的外顯特徵。

數學盡管具有高度的抽象性和嚴密的邏輯性,但其構成內容——空間形式及其數量關系卻總以一定的「形」存在著。一般地說,數學中的形象有兩種:感知形象(單憑人的感官就能感知的形象)和理想形象(超越人的感官所能感知的限度,通過抽象思維而產生的形象)。在數學教學中,形象化語言的運用是以數學的高度抽象性和學生愛用形式、聲音、色彩和感覺等進行形象思維這兩個特點為依據的,並且又是聯系兩者的中介。當然,所謂中小學教學中的形象性主要是直接訓練感官的感知能力。教師把教學內容及其形象融為一體,引導學生在具體可感的形象中完成從生動的直觀向抽象思維的轉變。

形象化語言是聽覺和視覺互相結合的語言藝術。它要求教師必須對教學內容進行深刻的感受、理解、想像、體驗,通過恰當的比喻、通俗的語言展現教學內容的形象,以形象加深理解和記憶,以形象促進學生抽象思維的發展,以獲取教學的藝術效果。

(二)訴諸心靈的情感性

「情感是一切藝術之母。」情感性是藝術的內隱特徵。

「感人心者,莫先乎情,莫始乎言,莫切乎聲,莫切乎義。」唐代大詩人白居易的這段話,言簡意賅,發人深剩它告訴人們:語言、語聲、語義可以通向情感,情感又可以接觸心靈,即富有情感性的語言,不但能作用於學生的感官,而且可直接訴諸他們的心靈;「情、言、聲、義」是增強教師語言感染力的四字要訣。

「情」就是教師要用自己熾熱的教學情感激勵學生積極的學習情感;「言」就是教師要用趣味性、激勵性、懸念性、幽默性、文學性的語言喚起學生的學習興趣;「聲」就是教師的語言穿插要伴隨教學內容和教學情境配上相應的語聲、語調,發聲圓潤、嘹亮明快,吐字准確清晰、自然和諧;張弛有序富有旋律感,調控有度富有節奏感,力求和學生的思維始終保持協調合拍,使學生的學習情緒不斷地受到鼓舞;「義」就是教師要通過鑽研,把內心的情感融進教學內容,使輸出的教學信息穿上情感的外衣,染上感情的色彩。

1990年美國耶魯大學心理學家彼得·薩洛維提出了「情感智力說」。之後,許多專家認為:智力源於情感,情感支配智力,對於人的成功而言,情感智力(又稱情商)比通常所說的智商更重要。情感性語言在數學教學中的功能不僅是一種氣氛的渲染和對學生心靈的呼喚,而且對於促進學生心智活動的進行和智力水平的提高,具有特別重要的意義,這是其他任何語言所無法替代的。

⑹ 小學數學拓展題之前的過渡語怎麼說

「我們來看看哪位同學做的又快又好」「同學們,你們都明白了嗎?接下來就是你們表現給老師看的時候嘍」「為了了解同學們知識掌握的情況,同學們把下面的題做一做好嗎?我會請同學來回答的哦」

⑺ 初二數學知識點歸納整理

學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。

初二下冊數學知識點歸納

第一章一元一次不等式和一元一次不等式組

一、不等關系

1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式.

2、要區別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系.

3、准確"翻譯"不等式,正確理解"非負數"、"不小於"等數學術語.

非負數<===>大於等於0(≥0)<===>0和正數<===>不小於0

非正數<===>小於等於0(≤0)<===>0和負數<===>不大於0

二、不等式的基本性質

1、掌握不等式的基本性質,並會靈活運用:

(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:

如果a>b,那麼a+c>b+c,a-c>b-c.

(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即

如果a>b,並且c>0,那麼ac>bc,.

(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:

如果a>b,並且c<0,那麼ac

2、比較大小:(a、b分別表示兩個實數或整式)

一般地:

如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;

如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;

如果a

即:

a>b<===>a-b>0

a=b<===>a-b=0

aa-b<0

(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.

三、不等式的解集:

1、能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.

2、不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.

3、不等式的解集在數軸上的表示:

用數軸表示不等式的解集時,要確定邊界和方向:

①邊界:有等號的是實心圓圈,無等號的是空心圓圈;

②方向:大向右,小向左

八年級 上冊期末數學復習資料

第一章勾股定理

1.勾股定理:直角三角形兩直角邊的平方和等於斜邊的平方;即。

2.勾股定理的證明:用三個正方形的面積關系進行證明(兩種方法)。

3.勾股定理逆定理:如果三角形的三邊長,,滿足,那麼這個三角形是直角三角形。滿足的三個正整數稱為勾股數。

第二章實數

1.平方根和算術平方根的概念及其性質:

(1)概念:如果,那麼是的平方根,記作:;其中叫做的算術平方根。

(2)性質:①當≥0時,≥0;當<0時,無意義;②=;③。

2.立方根的概念及其性質:

(1)概念:若,那麼是的立方根,記作:;

(2)性質:①;②;③=

3.實數的概念及其分類:

(1)概念:實數是有理數和無理數的統稱;

(2)分類:按定義分為有理數可分為整數的分數;按性質分為正數、負數和零。無理數就是無限不循環小數;小數可分為有限小數、無限循環小數和無限不循環小數;其中有限小數和無限循環小數稱為分數。

4.與實數有關的概念:在實數范圍內,相反數,倒數,絕對值的意義與有理數范圍內的意義完全一致;在實數范圍內,有理數的運演算法則和運算律同樣成立。每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都表示一個實數,即實數和數軸上的點是一一對應的。因此,數軸正好可以被實數填滿。

5.算術平方根的運算律:(≥0,≥0);(≥0,>0)。

第三章圖形的平移與旋轉

1.平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形大小和形狀,改變了圖形的位置;經過平移,對應點所連的線段平行且相等;對應線段平行且相等,對應角相等。

2.旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。這點定點稱為旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形大小和形狀,改變了圖形的位置;經過旋轉,圖形點的每一個點都繞旋轉中心沿相同方向轉動了相同和角度;任意一對對應點與旋轉中心的連線所成的角都是旋轉角;對應點到旋轉中心的距離相等。

3.作平移圖與旋轉圖。

八年級數學 學習方法技巧

自學能力的培養是深化學習的必由之路

在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。

我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。

自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。

因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。

學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。

自信才能自強

在考試中,總是看見有些同學的試卷出現許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數學題都不是一眼就能看出它的解法和結果的。要去分析、探索、比比畫畫、寫寫算算,經過迂迴曲折的推理或演算,才顯露出條件和結論之間的某種聯系,整個思路才會明朗清晰起來。

具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數學的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學老師講過的題會做, 其它 的題就不會做,只會依樣畫瓢,題目有些小的變化就乾瞪眼,無從下手。

數學題目是無限的,但數學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數學思想和方法,就能順利地對付那無限的題目。題目並不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養起良好的數學思維習慣,有沒有掌握正確的數學解題方法。

解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關,迎來屬於自己的春天。


初二數學知識點歸納整理相關 文章 :

★ 初二數學知識點復習整理

★ 初二數學知識點歸納

★ 初二數學知識點歸納上冊人教版

★ 八年級數學知識點整理歸納

★ 八年級下冊數學知識點整理

★ 初二數學上冊知識點總結

★ 初二數學知識點整理

★ 初二數學重點知識歸納整理

★ 初二數學知識點歸納總結

★ 初二數學知識點整理歸納

⑻ 如何搞好高初中數學教學銜接

數學過渡的應對策略一

1.高一數學教師應做好內容上的過渡

充分掌握初中教學大綱和教材,了解學生對初中知識的真實把握情況。把初中數學教材刪掉而高中數學必要的知識點,可以通過校本課程的形式向學生的開放。比如:「十字相乘法、三角形重心性質、根與系數的關系」等。在高一教學過程中,不能盲目的追求進度,使學生平穩的渡過這一艱難時期。但是按照課標要求,高一上學期要完成兩個模塊的教學。而我們大多數都是完成必修1、必修2。這兩個模塊對於剛剛進入高一的學生來講,難度較大。我認為高一可以適當的調整所上內容。比如第一模塊我們可以考慮學習必修3。這一模塊主要是統計案例、演算法初步。尤其統計學生在小學、初中都有所涉及,容易過渡。

2.重視學法指導,培養學生反思總結能力

高中數學知識具有抽象性強、邏輯思維比較明顯等特點.因此,我們應該在教學中進行對學生學法的指導.尤其是對教學的基本方法的指導,適當的進行非常規方法的滲透.例如,在每一個單元教學結束時,就要求學生開展自我歸納、自我反思活動;在解一道數學題後,就幫助學生反思自己的解題思路與計算步驟,並對數學思想方法進行深入的總結.從而提高學生的反思能力,促使其養成良好的學習習慣,擴大自己的知識面,從而提高了學習的效率.在初中數學教學中,教師可以適時的開展專題教學,幫助學生攻克教學中的難點知識,系統的總結某一類知識,找出解決相關問題的方法與規律.這樣,在潛移默化中向學生滲透了數學思想方法.如,數學中很多概念、公式、定理等,學生往往會感到枯燥與無味,時間長了學生容易產生懼怕的心理.所以,我們可以對學生進行學法指導,使他們盡快的識記並學會如何正確的運用.

3.遵循認知規律,防止急躁冒進

知識的積累和運用是需要過程的,教師應該遵循教學規律,不能貪大求多,有些教師在剛進入函數教學時就拿高考題給學生做練習,讓學生求函數的值域,這是高考的重點也是難點,但是讓剛進入高中的學生來做顯然難度太大。教師在教學時應該「分步走」,而不是「一步到位」。高中數學教學也應該注意情境的創設,盡量做到問題的提出、內容的引入和拓寬生動自然,並能引導學生去思考、嘗試和探索,在數學問題的不斷解決中,讓學生隨時享受到由於自己的艱苦努力而得到成功的喜悅,從而促使學生的學習興趣持久化,並能達到對知識的理解和記憶的效果。

數學過渡的應對策略二

1.明確初中、高中教材內容的斷層

高中數學教材內容要求學生掌握初中數學基礎知識。因此,教師要提早讓學生了解初中、高中數學教材內容的不同,重視數學敘述完整性和論證嚴密性,在教課時摻加一些高中數學內容。初中數學知識和日常生活聯系緊密,數學語言趣味性、直觀性、形象性較強,學生很容易接受和理解。而高中數學概念比較抽象,習題多較多,解題需要靈活的技巧。為了彌補初、高中數學教材內容的斷層,初三教師應當注意問題的創設情境,要詳細敘述數學問題的引入、提出和拓展。引導學生嘗試和思考。學生解決數學問題時,可能會出現偏差。教師要積極引導,促使學生學習有著持久的興趣和熱情。教師在講述重要的數學定理時,盡量創設情境,達到師生互動。

2.加大師生的互動交流

數學教學是師生彼此交流的雙邊活動,教師教學和學生學習是相互的。升入高中之後,學生要端正學習態度,尋找適合自己的學習方法。學習方法是初、高中數學過渡銜接的關鍵。教師可將作業講評、知識講解和試卷分析融入教學活動內,便於學生接受。課堂上,教師和學生進行互動,解決學生學習上的困惑。在數學難點上,教師可降低要求,做到循序漸進。

3.培養學生良好的學習習慣

許多學生有著良好的學習習慣,上課專心、勤學好問、及時復習、獨立做作業。上課專心聽講並不代表學生懂了。教師要引導學生處理數學知識的「聽」、「思」、「記」之間的關系。學生要制定合理的學習計劃,並安排好時間。聽課過程中,要了解數學知識的重點和難點,有選擇記筆記。解題後要總結和反思。在良好的學習習慣下,學生會自行擬定提綱,並在課前做好預習,課後做好總結。

數學過渡的`應對策略三

1.培養學生主動預習的習慣。教師應在開學之初就有意培養學生的預習習慣,教會學生有效的預習方法,一步領先,步步領先――良好的超前學習是學習成功的一半。預習時學生不必把這節課要學的內容吃透,只要知道這節課將要學哪些內容,學哪個知識點,以及本節課在整個課堂任務中處於哪個環節、有何重要性即可,帶著本節課的定位和疑問去學習知識,為聽課「鋪」平了道路,形成期待老師解析的心理定勢。這種需求心理定勢必將調動起同學們的學習熱情和高度集中的注意力。這樣就能使課前准備與課堂吸收有機結合起來,使學與教更有效地滲透,這樣便可大大提高課堂學習的效率。

2.認真聽課。聽老師講課是獲取知識的最佳捷徑。為了提高課堂效率,聽課時應保持精力旺盛,頭腦清醒,這是學好知識的前提條件。課堂上,注意力集中十分關鍵,思想不要開小差。在講課過程中,老師為了引入一個數學概念或解釋數學定理,可能會從不同的角度切入教學內容或自己講解,或者提問學生。學生則不能簡單地看熱鬧,而要和老師的思維融為一體,仔細觀察、思考老師這樣做的目的?我從中發現什麼?得到什麼結論等等。「知己知彼,百戰百勝,」所以,學生只有更快,更好地了解老師,適應了老師的教學方法,才能更有效的學好數學。然而有的同學聽課時,往往忽視老師講課的開頭和結尾,這是錯誤的。開頭,老師往往只是寥寥數語,但卻是全堂講課的綱。只要抓住這個綱去聽課,下面的內容才會眉目清楚。結尾的話雖也不多,但卻是對一節課精要的提煉和復習提示。

3.有效復習和練習。高中復習在於平時,考前的「臨時抱佛腳」是不起作用的。復習可這樣進行:課後回憶,即在聽課基礎上把所學內容回憶一遍;精讀教材,對教材理解得越透徹,掌握得越牢靠,學習效率也就越高。整理筆記;看參考書,這是補充課外知識的好方法;查缺補漏,系統掌握知識結構;循環復習,將甲復習完後復習乙,在復習完乙後對甲再進行復習,這種循環復習利於增強記憶,鞏固知識體系。在訓練過程中,要注重分析解題過程、歸納學習方法,並注重一題多解、一題多變、舉一反三、靈活變通的解題方法技巧的培養,加強練習,學會歸納總結,養成良好的學習習慣,習題不在多,而在於精,在於典型、針對性強;每做一道題,都要用心揣摩這一類題目的特點,考查的是哪個知識點,用到了哪些方法與技巧。要善於發現不同題型、不同知識點之間的共性和聯系,把學過的知識系統化。

數學過渡的應對策略四

1.合理鋪墊:教新課的過程中對初中知識進行復習鞏固,主要是因式分解、絕對值與根式、代數式的恆等變形、函數、方程與不等式,為學生學習打下堅實基礎。

2.注重引入:好的開始是成功的一半,在講函數問題時,值域(或最值)、單調性等,以學生認識較清楚的一次函數、反比例函數等入手,使學生不覺得是個又新又難的問題。

3.數形結合:華羅庚先生指出,數缺形時少直覺,形少數時難入微。對數學問題從數形聯繫上著眼,用數形結合解題,能使抽象的數學問題形象化,把呆板的數學式子賦予生動的幾何意義,如把方程的解集轉化為曲線的交點,解決連續數集的問題用數軸,解決離散數集問題用文氏圖,概念的講解用文字語言、數學語言、圖形語言相互轉化等。在講反函數之後我又加了一節,主要講圖像,讓學生了解:y=f(x)與y=(x+k)、y=f(x)與y=f(x)+h、y=f(x)與y=(-x)、y=f(x)與y=-f(x)間的關系。對後面的求函數值域、單調區間及學習指數函數起到了積極的作用。

4.注重數學思維方法的培養:數學課堂不僅是傳授必須的數學知識,更重要的是教會學生思想方法,它不僅能使學生站在一定的高度理解數學問題而且數學的思維在生活中常常用到,這是使學生終生受益的事:如加強化歸思想方法的訓練,培養學生聯想轉化的能力,把一個復雜的問題轉化成一個簡單熟知的問題加以解決,這是一個重要的數學思想方法,這種方法在數學中的應用十分廣泛。

⑼ 初一數學知識點

第一章 有理數

1.1 正數與負數

在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。

與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。

1.2 有理數

正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。

整數和分數統稱有理數(rational number)。

通常用一條直線上的點表示數,這條直線叫數軸(number axis)。

數軸三要素:原點、正方向、單位長度。

在直線上任取一個點表示數0,這個點叫做原點(origin)。

只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)

數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。

一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法

有理數加法法則:

1.同號兩數相加,取相同的符號,並把絕對值相加。

2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

3.一個數同0相加,仍得這個數。

有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法

有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

乘積是1的兩個數互為倒數。

有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì

求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。

負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。

把一個大於10的數表示成a×10的n次方的形式,用的就是科學計數法。

從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。

第二章 一元一次方程

2.1 從算式到方程

方程是含有未知數的等式。

方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。

等式的性質:

1.等式兩邊加(或減)同一個數(或式子),結果仍相等。

2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

2.2 從古老的代數書說起——一元一次方程的討論(1)

把等式一邊的某項變號後移到另一邊,叫做移項。

第三章 圖形認識初步

3.1 多姿多彩的圖形

幾何體也簡稱體(solid)。包圍著體的是面(surface)。

3.2 直線、射線、線段

線段公理:兩點的所有連線中,線段最短(兩點之間,線段最短)。

連接兩點間的線段的長度,叫做這兩點的距離。

3.3 角的度量

1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比較與運算

如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。

如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。

等角(同角)的補角相等。

等角(同角)的餘角相等。

第四章 數據的收集與整理

收集、整理、描述和分析數據是數據處理的基本過程。

第五章 相交線與平行線

5.1 相交線

對頂角(vertical angles)相等。

過一點有且只有一條直線與已知直線垂直(perpendicular)。

連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。

5.2 平行線

經過直線外一點,有且只有一條直線與這條直線平行(parallel)。

如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

直線平行的條件:

兩條直線被第三條直線所截,如果同位角相等,那麼兩直線平行。

兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行。

兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行。

5.3 平行線的性質

兩條平行線被第三條直線所截,同位角相等。

兩條平行線被第三條直線所截,內錯角相等。

兩條平行線被第三條直線所截,同旁內角互補。

判斷一件事情的語句,叫做命題(proposition)。

第六章 平面直角坐標系

6.1 平面直角坐標系

含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義,我們把這種有順序的兩個數a和b組成的數對,叫做有序數對(ordered pair)。

第七章 三角形

7.1 與三角形有關的線段

三角形(triangle)具有穩定性。

7.2 與三角形有關的角

三角形的內角和等於180度。

三角形的一個外角等於與它不相鄰的兩個內角的和。

三角形的一個外角大於與它不相鄰的任何一個內角

7.3 多邊形及其內角和

n邊形內角和等於:(n-2)?180度

多邊形(polygon)的外角和等於360度。

第八章 二元一次方程組

8.1 二元一次方程組

方程中含有兩個未知數(x和y),並且未知數的指數都是1,像這樣的方程叫做二元一次方程(linear equations of two unknowns) 。

把兩個二元一次方程合在一起,就組成了一個二元一次方程組(system of linear equations of two unknowns)。

使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。

二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。

8.2 消元

將未知數的個數由多化少、逐一解決的想法,叫做消元思想。

第九章 不等式與不等式組

9.1 不等式

用小於號或大於號表示大小關系的式子,叫做不等式(inequality)。

使不等式成立的未知數的值叫做不等式的解。

能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。

含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

不等式的性質:

不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。

不等式兩邊乘(或除以)同一個正數,不等號的方向不變。

不等式兩邊乘(或除以)同一個負數,不等號的方向改變。

三角形中任意兩邊之差小於第三邊。

三角形中任意兩邊之和大於第三邊。

9.3 一元一次不等式組

把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組(linear inequalities of one unknown)。

第十章 實數

10.1 平方根

如果一個正數x的平方等於a,那麼這個正數x叫做a的算術平方根(arithmetic square root),2是根指數。

a的算術平方根讀作「根號a」,a叫做被開方數(radicand)。

0的算術平方根是0。

如果一個數的平方等於a,那麼這個數叫做a的平方根或二次方根(square root) 。

求一個數a的平方根的運算,叫做開平方(extraction of square root)。

10.2 立方根

如果一個數的立方等於a,那麼這個數叫做a的立方根或三次方根(cube root)。

求一個數的立方根的運算,叫做開立方(extraction of cube root)。

10.3 實數

無限不循環小數又叫做無理數(irrational number)。

有理數和無理數統稱實數(real number)。

拓展: 初一語文上知識點

一、敘述人稱(三種人稱):

1、第一人稱(「第一人稱」能給人親切自然、真實的感受。用「第一人稱」寫「我」,最適宜於寫人物的心理活動,所見、所聞、所為、所感,都可以通過心理活動描寫表現出來的。用第一人稱寫「他」時,最適宜寫人物的外貌、語言、行動,因為用「我」的觀感來寫「他」的這些,較為客觀。「第一人稱」寫「我」的外貌,寫「他」的心理活動,必須加上摹擬的話,才能讓讀者心悅誠服。寫「我」的外貌,可以這樣寫:「你們可以想像,我那時的臉是多麼紅。」寫「他」的心理活動,可以這樣寫:「心裡很輕松似的。」)

2、第二人稱(作用:增強文章的抒情性和親切感,便於感情交流。)

3、第三人稱(作用:能比較直接客觀地展現豐富多彩的生活,不受時間和空間限制,反映現實比較靈活自由。)

二、敘述方式(或者說「記敘的順序」)(三種):

1、順敘——按時間發生的先後順序所作的敘述。順敘型的結構模式是:總敘+分敘(分敘1+分敘2+分敘3+分敘n)+結尾。作用:條理清楚地進行記敘。

2、倒敘——把事件的結局或其發展過程中的某一重要斷面提到文章前面,寫完結局或斷面,然後才按時間順序寫。作用:這種筆法能造成懸念,吸引讀者。

3、插敘( 補敘屬於插敘一種)——對全文來說,插敘僅是一個片斷,插敘完後,文章仍回到原來的事件敘述上來。這種插敘不是敘述的主體部分,一般不發生在主流的時間范圍內。若把這種插敘刪去,雖會削弱主體的深刻性,但不明顯影響主要情節的完整性。作用:使情節更加完整,結構更加嚴密,內容更加充實豐滿。補敘作用:對上文內容加以補充解釋,對下文做某些交代。

(有一種不常用的,叫「平敘」,即:俗稱「花開兩枝,各表一朵」,(指敘述兩件或多件同時發生的事)使頭緒清楚,照應得體。)

三、描寫:

總體來說,描寫有以下一些作用:①再現自然風光。②描繪人物的外貌及內心世界。③交代人物活動的自然及社會環境。

1、五種人物的描寫方法:肖像(外貌)描寫、語言描寫、動作描寫、心理描寫、神態描寫。

作用:更好展現人物的內心世界、性格特徵。刻畫人物性格,反映人物心理活動,促進故事情節的發展。等等。具體回答的時候要說明白是什麼性格、什麼心理等。

2、二種環境描寫:自然環境描寫——具體描寫自然風光,營造一種氣氛,烘託人物的情感和思想。烘託人物心情,渲染氣氛等。

社會環境描寫——交代人物活動的(時代)背景,寫明事件發生的時間和地點,渲染氣氛,更好地表現人物。

3、正面描寫、側面描寫:正面直接表現人物、事物;側面烘托突出人物、事物。

4、細節描寫:刻畫人物性格,反映人物心理活動,促進故事情節的發展。也可描摹人物的.語態,收到一種特殊的效果。

四、修辭:

1、比喻:使語言形象生動,增加語言色彩。化平淡為生動,化深奧為淺顯,化抽象為具體形象。

2、擬人:把事物當人寫,使語言形象生動。給物賦予人的形態情感(指擬人),描寫生動形象,表意豐富。

3、排比:增強語言氣勢,加強表達效果。敘事透闢,條分縷析;長於抒情。

4、誇張:突出某一事物或強調某一感受。烘托氣氛,增強感染力,增強聯想;創造氣氛,揭示本質,給人以啟示。

5、反問:起強調作用,增強肯定(否定)語氣。

6、設問:自問自答,提出問題,引發讀者的注意、思考。

7、對偶:使語言簡練工整、有音樂感;抒情酣暢;便於吟誦,易於記憶。

8、反復:多次強調,給人以深刻的印象;寫景抒情感染力強;承上啟下,分清層次。

註:上面只是簡要給出各種修辭手法(方法)的作用,在回答問題的時候,一定要結合具體的內容具體來回答,避免空洞。

五、結構安排:

布局謀篇的技巧:開門見山、首尾呼應、卒章顯志、伏筆照應、層層深入、過度鋪墊、設置線索;結構嚴密,完整勻稱;烘托鋪墊,前後照應;設置懸念,製造波瀾,起承轉合,曲折有致。材料和中心的關系的處理,主次詳略是否得當;材料是否典型、真實、新穎、有力。

記敘文常以時間推移、空間轉換、情景變化、思維邏輯順序等來安排層次。散文構思的線索,一般常見的有如下幾種:以情為線索;以理為線索;以物為線索;以空間位置為線索。

從結構上明確不同位置的句子在文中所起的作用:

1、首句——統領全文、提綱挈領、引出下文,為後文做鋪墊、埋下伏筆;

2、尾句——總結全文,深化主題,照應上文,前後呼應,言有盡而意無窮,回味深長。

3、轉承句——承上啟下,過渡,承接上文,引出下文;

4、中心句——點明中心、揭示主旨;

5、點睛句——點明全文中心,統領全文;句子含義深刻,耐人尋味,讀後能給人以啟迪。

6、情感句——抒發強烈內在情感,直抒胸臆;

7、矛盾句——從字面上看自相矛盾,但作者卻寄寓了深刻的用意。揭示深刻內涵,表達深刻見解。

(1)記敘文(散文)的結構特點

①按時間順序或事件發生、發展的順序組織材料。

②按觀察點的變換安排材料,如《我的空中樓閣》。

③按場面的安排安排材料,如《內蒙訪古》。

④按材料性質歸類安排結構,如《瑣憶》。

⑤按作者認識的過程或感情的變化安排材料。如《荔枝蜜》。

⑥按作者的所見所聞所感所思作為行文線索安排材料。

六、表達方式入手分析句意:

五種表達方式:記敘、 描寫、 說明、 抒情、 議論。

解釋:用語言文字表情達意時,有一個方法或手段問題,人們習慣上將它稱為表達方式。

比如:記敘文是以敘述、描寫、抒情為主要表達方式,議論文是以議論為主要表達方式,而說明文則以說明為主要表達方式。

1、記敘文中的議論往往起畫龍點睛、揭示記敘目的和意義的作用;

2、議論文中的記敘往往起到例證的作用;

3、說明文中描寫、文藝性筆調起到點染作品使之更加生動形象的作用。

4、夾敘夾議,記敘與議論交叉運用的寫法,使文章在輕松活潑之中,闡發議論,讀來饒有興味,深受教益,文章中的記敘是為議論服務的,而議論又以記敘為基礎,敘為議提供了事實依據,使立論有根有據,具有很強的說服力。

七、標點符號:

1、引號的五種用法:①表引用 ②表諷刺或否定 ③表特定稱謂 ④表強調或著重指出 ⑤特殊含義

2、破折號的五種用法:①表注釋 ②表插說 ③表聲音中斷、延續 ④表話題轉換 ⑤表意思遞進

3、省略號的六種用法:①表內容省略 ②表語言斷續 ③表因搶白話未說完 ④表心情矛盾 ⑤表思維跳躍 ⑥表思索正在進行

八、十種常用寫作手法:

象徵、對比、襯托、烘托、伏筆鋪墊、照應(呼應)、直接(間接)描寫、 揚抑(欲揚先抑、欲抑先揚)、借景抒情、借物喻人。

象徵 通過某一特點的具體形象,表達某種人和某種社會現象的本質特點。例:《海燕》以海燕象徵大智大勇的無產階級革命先驅者的形象。

對比 把兩種相反的事物或一種事物相對立的兩個方面作比較,鮮明的突出主要事物或事物的主要方面的特徵。例:《海燕》以海燕的高大形象與海鴨、海鷗、企鵝的卑怯形象作對比,突出海燕勇猛、敢於斗爭的鮮明特徵。

襯托 以他體從正面、反面兩個角度陪襯本體,突出本體的主要特徵。例:《白楊禮贊》開頭描寫白楊樹的生長環境---西北高原的雄壯,襯托出白楊樹傲然挺立的高大形象。

借景抒情 通過描寫具體生動的自然景象或生活場景,表達作者真摯的思想感情。

例:《從百草園到三味書屋》文章從不同角度不同層次淋漓盡致的描摹百草園聲色趣俱全的景觀和三味書屋枯燥乏味的生活場景,表現作者熱愛大自然,喜歡自由快樂生活和不滿束縛兒童身心發展的封建教育的思想感情。

借物喻人 描寫事物,突出其特點,並以此設喻,表現作者高尚的思想情操。 例:《白楊禮贊》以白楊樹比喻北方軍民,以白楊樹正直、朴質、嚴肅、挺拔、力爭上游的特點比喻北方軍民為我國的解放事業而抗爭、戰斗的頑強精神。

先抑後揚 先否定或貶低事物形象,爾後深入挖掘事物特點及內在意義,再對事物予以肯定、褒揚,更突出地強調事物的特徵。 例:《白楊禮贊》先說白楊樹不是「好女子」,而後稱頌其是「偉丈夫」,更突出的強調了白楊樹的外在形象和內在神韻。

九、試卷題目常見的一些術語(問題):

1、有何作用 回答文章中某一內容的作用可從三個方面考慮,一是內容方面,如深化主題、強調感情等;二是結構方面的,如過渡、呼應等;三是語言方面,如引人入勝、生動活潑等。

2、思想內容——基本是指文章的中心思想或主旨。

3、思想感情——作者或作品中人物所表現出來的思想傾向,如善惡、好惡、褒貶等。

課外閱讀 指課本(教材)之外的閱讀內容。不管是課內讀的還是課外讀的內容。

4、感悟——多指發自內心的感受、理解、領悟等。

5、寫作手法——考生要清楚,狹義的寫作手法即「表達方式」,廣義的是指寫文章的一切手法,諸如表達方式、修辭手法,先抑後揚、象徵、開門見山、托物言志等。

6、表現手法——從廣義上來講也就是作者在行文措辭和表達思想感情時所使用的特殊的語句組織方式。

分析一篇作品,具體地可以由點到面地來抓它的特殊表現方式,首先是字詞、語句上的修辭技巧,種類很多,包括比喻、象徵、誇張、排比、對偶、烘托、擬人、用典等等;從作品的整體上來把握它的表現手法時,就要注意不同文體的作品:抒情散文的表現手法豐富多彩,借景抒情、托物言志、抑揚結合、象徵等手法;記敘文的寫作手法如首尾照應、畫龍點睛、巧用修辭、詳略得當、敘議結合、正側相映等;議論文寫作手法如引經據典、巧譬善喻、逆向求異、正反對比、類比推理等;小說的描寫手法、烘托手法、伏筆和照應、懸念和釋念、實寫與虛寫等。

表現手法的分析是一種很泛的題目,答題時要注意完整地理解題目的答題要求,要簡潔准確地答題,對有些題目如欣賞寫作技巧的題,應結合上下文語境、文章題材與體裁風格等來准確把握,選取其中最主要的一種回答即可,不必面面俱到,如小說塑造人物的種種手法,如散文抒發情感的種種手法等,盡量抓到得分點。

7、註:要了解一些常用程式(句式),如體現了什麼,強調了什麼,強化了什麼,營造了什麼,表現了什麼,還有深化了主題,點明了題旨等等。

十、其他:「一去二三里,煙村四五家。亭台六七座,八九十枝花。」

二種常見敘事線索:物線、情線。

二種語言類型:口語、書面語。(語言特點 一般指口語的通俗易懂,書面語的嚴謹典雅,文學語言的鮮明、生動、富於形象性和充滿感情色彩的特點。分析時,一般從修辭上進行分析。)

二種抒情:1、直接抒情 指作者直接出面就某種事物或情況抒發感情,由於是作者直接出面,直接抒情時的語言往往有強烈的主觀性色彩。 (1)為抒發感情而選擇某種形象 (2)針對形象直接抒情

2、間接抒情 指作者不直接出面,通過其它方式來抒發感情,語言比較冷靜客觀。 (1)借人物之口來抒情。 (2)通過特定的語調來抒情。

三種感情色彩:褒義、 貶義、 中性。

語言運用三原則:簡明(語句簡潔、明了,一般有字數上的限制。)、 連貫、 得體(文明禮貌,人性化。)。

三種說明順序:(1)時間順序、 (2)空間順序、

(3)邏輯順序。邏輯順序包括六種:①一般←到→個別 ②現象←→本質 ③原因←→ 結果④概括←→具體 ⑤部分←→整體 ⑥主要←→次要

四種文學體裁:小說、 詩歌、 戲劇、 散文。

小說三要素:人物(根據能否表現小說主題思想確定主要人物)情節(開端 /發展 /高潮 /結局 ) 環境(自然環境/ 社會環境。)

人物 主要掌握通過適當的描寫方法、角度刻畫人物形象,反映人物思想性格的閱讀技巧。

情節 主要了解各部分的基本內容,以及理解、分析小說情節的方法、技巧。

小說情節四部分:開端、 發展、 高潮、 結局。

開端 交代背景,鋪墊下文。

發展 刻畫人物,反映性格。

高潮 表現沖突,揭示主題。

結局 深化主題,留下思考。

環境 主要理解自然環境和社會環境的作用。

自然環境 描寫自然景觀,渲染氣氛、襯托情感、預示人物命運、揭示社會本質、推動情節發展。

社會環境 描寫社會狀況,交代故事背景,揭示社會本質,鋪墊下文內容。

句子的四種用途:陳述句、 疑問句、 祈使句、 感嘆句。

記敘文六要素:時間、 地點、 人物、 事件的起因、經過和結果。

六種病句類型:①成分殘缺 ②搭配不當 ③關聯詞語使用不恰當 ④前後矛盾 ⑤語序不當 ⑥誤用 濫用虛詞(介詞)

七種說明方法:舉例子、 打比方、 作比較、 列數字、 分類別、 下定義、引用。

初一語文知識點大全,以供同學們學習和參考,希望同學們的語文成績越來越棒!

⑽ 如何才能在小學數學課堂上用好過渡語言

1.不要太拘泥於過渡語言,更不要去硬背死記,這樣上出來的課是不流暢的。
2.過渡語言應該是水到渠成的,注重是你平時積累
3.上好一節課,關鍵不在過渡語言,除非你上的是一節帶表演性質的課,如公開課、賽課,那對於平常的上課是完全不一樣的。