① 初二數學必備知識點
學習的三個必要條件是:多觀察、多吃苦、多研究。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等於斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有這種關系,那麼這個三角形是直角三角形。
3、勾股數
滿足的三個正整數,稱為勾股數。
常見的勾股數組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)。
二、證明
1、對事情作出判斷的 句子 ,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內角和定理:三角形三個內角的和等於180度。
(1)證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內角是互為補角。
3、三角形的外角與它不相鄰的內角關系
(1)三角形的一個外角等於和它不相鄰的兩個內角的和。
(2)三角形的一個外角大於任何一個和它不相鄰的內角。
4、證明一個命題是真命題的基本步驟
(1)根據題意,畫出圖形。
(2)根據條件、結論,結合圖形,寫出已知、求證。
(3)經過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據。如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。
八年級 下冊數學復習資料
【零指數冪與負整指數冪】
重點:冪的性質(指數為全體整數)並會用於計算以及用科學記數法表示一些絕對值較小的數
難點:理解和應用整數指數冪的性質。
一、復習練習:
1、;=;=,=,=。
2、不用計算器計算:÷(—2)2—2-1+
二、指數的范圍擴大到了全體整數.
1、探索
現在,我們已經引進了零指數冪和負整數冪,指數的范圍已經擴大到了全體整數.那麼,在「冪的運算」中所學的冪的性質是否還成立呢?與同學們討論並交流一下,判斷下列式子是否成立.
(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2
2、概括:指數的范圍已經擴大到了全體整數後,冪的運演算法則仍然成立。
3、例1計算(2mn2)-3(mn-2)-5並且把結果化為只含有正整數指數冪的形式。
解:原式=2-3m-3n-6×m-5n10=m-8n4=
4練習:計算下列各式,並且把結果化為只含有正整數指數冪的形式:
(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.
三、科學記數法
1、回憶:在之前的學習中,我們曾用科學記數法表示一些絕對值較大的數,即利用10的正整數次冪,把一個絕對值大於10的數表示成a×10n的形式,其中n是正整數,1≤∣a∣<10.例如,864000可以寫成8.64×105.
2、類似地,我們可以利用10的負整數次冪,用科學記數法表示一些絕對值較小的數,即將它們表示成a×10-n的形式,其中n是正整數,1≤∣a∣<10.
3、探索:
10-1=0.1
10-2=
10-3=
10-4=
10-5=
歸納:10-n=
例如,上面例2(2)中的0.000021可以表示成2.1×10-5.
4、例2、一個納米粒子的直徑是35納米,它等於多少米?請用科學記數法表示.
分析我們知道:1納米=米.由=10-9可知,1納米=10-9米.
所以35納米=35×10-9米.
而35×10-9=(3.5×10)×10-9
=35×101+(-9)=3.5×10-8,
所以這個納米粒子的直徑為3.5×10-8米.
5、練習
①用科學記數法表示:
(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.
②用科學記數法填空:
(1)1秒是1微秒的1000000倍,則1微秒=_________秒;
(2)1毫克=_________千克;
(3)1微米=_________米;(4)1納米=_________微米;
(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.
初二數學復習提綱方法
一、克服心理疲勞
第一,要有明確的學習目的。學習就像從河裡抽水,動力越足,水流量越大。動力來源於目的,只有樹立正確的學習目的,才會產生強大的學習動力;第二,要培養濃厚的學習興趣。興趣的形成與大腦皮層的興奮中心相聯系,並伴有愉快、喜悅、積極的情緒體驗。而心理疲勞的產生正是大腦皮層抵制的消極情緒引起的。因此,培養自己的學習興趣,是克服心理疲勞的關鍵所在。有了興趣,學習才會有積極性、自覺性、主動性,才能使心理處於一種良好的競技狀態;第三,要注意學習的多樣化,書本學習本身就是枯燥單調的,如果多次重復學習某門課程或章節內容,易使大腦皮層產生抑制,出現心理飽和,產生厭倦情緒。所以考生不妨將各門課程交替起來進行復習。
二、戰勝高原現象
復習中的高原現象,是指在復習到一定時期時,往往停滯不前,不僅復習不見進步,反而有退步的現象。在高原期內,並非學習毫無進步,而是某部分進步,另外一些部分則退步,兩者相抵,致使復習成效未從根本上發生變化,因而使人灰心失望。當考生在復習迎考過程中遭遇高原期時,切忌急躁或喪失信心,應找出學習方法、學習積極性等方面的原因。及時調整復習進度,在科學用腦、提高復習效率上多下功夫。
三、重視復習「錯誤」
如果在復習中不善於從錯誤中走出來,缺陷和漏洞就會越來越多,任其下去,最終就會蟻穴潰堤。在備考期間,要想降低錯誤率,除了及時訂正、全面扎實復習之外,非常關鍵的問題就是找出原因,不斷復習錯誤。即定期翻閱錯題,回想錯誤的原因,並對各種錯題及錯誤原因進行分類整理。對其中那些反復錯誤的問題還可考慮再做一遍,以絕「後患」。錯誤原因大致有:概念理解上的問題、粗心大意帶來的問題以及書寫潦草凌亂給自己帶來的錯覺問題等,從而有效地避免在考試時再犯同一類型的錯誤。
四、把握心理特點搞好考前復習
實踐證明,一個人在氣質、性格、心理穩定程度等因素也會影響考前復習。考生在復習迎考過程中,應根據自己的心理特點來制訂復習迎考計劃,根據自己的心態來調整復習的進度,選擇與運用的復習方式方法,使自己的考前復習達到預期的效果。
1、課本不容忽視
對於初二的學生來說,都在學習新課,課本是大家都容易忽視的一個重要的復習資料。平時在學校的課堂上大家都會隨堂記筆記,課本基本不會翻看,建議同學們在翻看筆記的同時,對照課本,把學過的知識點反復閱讀、理解,並對照課後練習里的習題進行反復思考、琢磨、融會貫通,加深對知識點的理解。對於課本上的重點內容、重點例題也要著重記憶。
2、錯題本
相信學習習慣好的學生都應該有一本錯題本,把每次習題、作業、測試中的錯題抄錄下來,明確答案,找到錯誤原因,發現自己知識和能力上的薄弱點,經常拿出來翻看,遇到反復做錯的題目,要主動和同學商量,向老師請教,徹底把題目弄懂、弄透,以免再犯同類錯誤。
初二數學必備知識點相關 文章 :
★ 初二數學重要知識點
★ 初二數學基礎知識點歸納
★ 初二數學知識點歸納梳理
★ 初二數學知識點歸納整理
★ 初二數學知識點整理
★ 初二數學知識點復習整理
★ 初二數學知識點整理歸納
★ 初二數學知識點歸納上冊人教版
★ 初二數學知識點歸納
★ 初二數學課文知識點
② 初二數學下冊知識點總結歸納
初二是個很關鍵的時期,尤其是數學的學習!!勾股定理、四邊形、函數,可謂重點重重,這些知識點一定要掌握牢固!下面是我分享給大家的初二數學下冊知識點,希望大家喜歡!
初二數學下冊知識點一
一、函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有唯一確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法:用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接
正比例函數和一次函數
1、正比例函數和一次函數的概念
一般地,如果
2、一次函數的圖像
所有一次函數的圖像都是一條直線。
3、一次函數、正比例函數圖像的主要特徵:
一次函數y=kx+b的圖像是經過點(0,b)的直線;正比例函數y=kx的圖像是經過原點(0,0)的直線。(如下圖)
4. 正比例函數的性質
一般地,正比例函數y=kx有下列性質:
(1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;
(2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。
5、一次函數的性質
一般地,一次函數y=kx+b有下列性質:
(1)當k>0時,y隨x的增大而增大
(2)當k<0時,y隨x的增大而減小
6、正比例函數和一次函數解析式的確定
確定一個正比例函數,就是要確定正比例函數定義式y=kx(k≠0)中的常數k。確定一個一次函數,需要確定一次函數定義式y=kx+b(k≠0)中的常數k和b。解這類問題的一般方法是待定系數法。
圖像分析:
k>0,b>0,圖像經過一、二、三象限,y隨x的增大而增大。
k>0,b<0,圖像經過一、三、四象限,y隨x的增大而增大。
k<0,b>0, 圖像經過一、二、四象限,y隨x的增大而減小
k<0,b<0,圖像經過二、三、四象限,y隨x的增大而減小。
註:當b=0時,一次函數變為正比例函數,正比例函數是一次函數的特例。
初二數學下冊知識點二
四邊形
基本概念:
四邊形,四邊形的內角,四邊形的外角,多邊形,平行線間的距離,平行四邊形,矩形,菱形,正方形,中心對稱,中心對稱圖形,梯形,等腰梯形,直角梯形,三角形中位線,梯形中位線.
定理:中心對稱的有關定理
1.關於中心對稱的兩個圖形是全等形.
2.關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,被對稱中心平分.
3.如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱.
公式:
1.S菱形 =1/2ab=ch.(a、b為菱形的對角線 ,c為菱形的邊長 ,h為c邊上的高)
2.S平行四邊形 =ah. a為平行四邊形的邊,h為a上的高)
3.S梯形 =1/2(a+b)h=Lh.(a、b為梯形的底,h為梯形的高,L為梯形的中位線)
常識:
1.若n是多邊形的邊數,則對角線條數公式是:n(n-3)/2
2.規則圖形折疊一般“出一對全等,一對相似”.
3.如圖:平行四邊形、矩形、菱形、正方形的從屬關系.
4.常見圖形中,
僅是軸對稱圖形的有:角、等腰三角形、等邊三角形、正奇邊形、等腰梯形…… ;
僅是中心對稱圖形的有:平行四邊形 …… ;
是雙對稱圖形的有:線段、矩形、菱形、正方形、正偶邊形、圓 …… .
注意:線段有兩條對稱軸.
初二數學下冊知識點三
函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有唯一確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
猜你喜歡:
1. 八年級下冊政治知識點整理歸納
2. 初二歷史下冊知識點歸納梳理
3. 八年級下冊歷史每課知識點歸納
4. 初中數學重點知識點
5. 初中數學知識點全總結
③ 八年級數學知識點總結
學會整合知識點。把需要學習的信息、掌握的知識分類,做成 思維導圖 或知識點卡片,會讓你的大腦、思維條理清醒,方便記憶、溫習、掌握。同時,要學會把新知識和已學知識聯系起來,不斷糅合、完善你的知識體系。這樣能夠促進理解,加深記憶。接下來是我為大家整理的 八年級 數學知識點 總結 ,希望大家喜歡!
八年級數學知識點總結一
等腰三角形判定
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,並且它們的交點與底邊兩端點距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那麼這個三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,並且它們的交點到底邊兩端點的距離相等。
1、如果三角形的頂角平分線垂直於這個角的對邊(平分對邊),那麼這個三角形是等腰三角形;
2、三角形中兩個角的平分線相等,那麼這個三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,並且它們的交點和底邊兩端點距離相等。
1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那麼這個三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
八年級數學知識點總結二
函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的 方法 叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
八年級數學知識點總結三
因式分解
1. 因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.
2.因式分解的方法:常用「提取公因式法」、「公式法」、「分組分解法」、「十字相乘法」.
3.公因式的確定:系數的公約數?相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最後結果要求分解到每一個因式都不能分解為止;
(4)因式分解的最後結果要求每一個因式的首項符號為正;
(5)因式分解的最後結果要求加以整理;
(6)因式分解的最後結果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括弧或去括弧整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數系數;(9)展開部分括弧或全部括弧;(10)拆項或補項.
7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對於二次三項式x2+px+q, 有「 x2+px+q是完全平方式 ? 」.
分式
1.分式:一般地,用A、B表示兩個整式,A÷B就可以表示為 的形式,如果B中含有字母,式子 叫做分式.
2.有理式:整式與分式統稱有理式;即 .
3.對於分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.
4.分式的基本性質與應用:
(1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;
(2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;
即
(3)繁分式化簡時,採用分子分母同乘小分母的最小公倍數的方法,比較簡單.
5.分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經常需要先因式分解.
6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最後結果要求化為最簡分式.
7.分式的乘除法法則: .
8.分式的乘方: .
9.負整指數計演算法則:
(1)公式: a0=1(a≠0), a-n= (a≠0);
(2)正整指數的運演算法則都可用於負整指數計算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡公分母.
11.最簡公分母的確定:系數的最小公倍數?相同因式的次冪.
12.同分母與異分母的分式加減法法則: .
13.含有字母系數的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數,a和b是用字母表示的已知數,對x來說,字母a是x的系數,叫做字母系數,字母b是常數項,我們稱它為含有字母系數的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數,用x、y、z等表示未知數.
14.公式變形:把一個公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質就是解含有字母系數的方程.特別要注意:字母方程兩邊同時乘以含字母的代數式時,一般需要先確認這個代數式的值不為0.
15.分式方程:分母里含有未知數的方程叫做分式方程;注意:以前學過的,分母里不含未知數的方程是整式方程.
16.分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數的代數式,所以可能產生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數的代數式,因為可能丟根.
17.分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數的值可能是原方程的增根.
18.分式方程的應用:列分式方程解應用題與列整式方程解應用題的方法一樣,但需要增加「驗增根」的程序.
八年級數學知識點總結四
1全等三角形的對應邊、對應角相等
2邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
3角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
5邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
6斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
7定理1在角的平分線上的點到這個角的兩邊的距離相等
8定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
9角的平分線是到角的兩邊距離相等的所有點的集合
10等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
21推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊
22等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
23推論3等邊三角形的各角都相等,並且每一個角都等於60°
24等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
25推論1三個角都相等的三角形是等邊三角形
26推論2有一個角等於60°的等腰三角形是等邊三角形
27在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
28直角三角形斜邊上的中線等於斜邊上的一半
29定理線段垂直平分線上的點和這條線段兩個端點的距離相等
30逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
八年級數學知識點總結五
第十一章全等三角形
一.知識框架
二.知識概念
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.全等三角形的性質:全等三角形的對應角相等、對應邊相等。
3.三角形全等的判定公理及推論有:
(1)「邊角邊」簡稱「SAS」
(2)「角邊角」簡稱「ASA」
(3)「邊邊邊」簡稱「SSS」
(4)「角角邊」簡稱「AAS」
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。
第十二章軸對稱
一.知識框架
二.知識概念
1.對稱軸:如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質:(1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等於60°,
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等於斜邊的一半。
9.直角三角形斜邊上的中線等於斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。
第十三章實數
一.知識框架
二.知識概念
1.算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
3.正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。
4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。
5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0
實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。
第十四章一次函數
一.知識框架
二.知識概念
1.一次函數:若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
2.正比例函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。
3.正比例函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
4.已知兩點坐標求函數解析式:待定系數法
一次函數是初中學生學習函數的開始,也是今後學習 其它 函數知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變數,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重於理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。
第十五章整式的乘除與分解因式
一.知識概念
1.同底數冪的乘法法則:(m,n都是正數)
2..冪的乘方法則:(m,n都是正數)
3.整式的乘法
(1)單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
(3).多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6.同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即(a≠0,m、n都是正數,且m>n).
在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即,如,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即(a≠0,p是正整數),而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的;當a<0時,a-p的值可能是正也可能是負的,如,
④運算要注意運算順序.
7.整式的除法
單項式除法單項式:單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
多項式除以單項式:多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.
8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
分解因式的一般方法:1.提公共因式法2.運用公式法3.十字相乘法
分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多准備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。
八年級數學知識點總結相關 文章 :
1. 八年級數學知識點總計歸納
2. 初二數學上冊知識點總結
3. 人教版八年級數學上冊知識點總結
4. 八年級上冊數學知識點總結
5. 八年級數學上冊知識點歸納
6. 八年級上冊數學知識點總結與八年級數學學習技巧
7. 八年級上冊數學的知識點歸納
8. 八年級下冊數學知識點整理
④ 初二數學知識點歸納整理
學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二下冊數學知識點歸納
第一章一元一次不等式和一元一次不等式組
一、不等關系
1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式.
2、要區別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系.
3、准確"翻譯"不等式,正確理解"非負數"、"不小於"等數學術語.
非負數<===>大於等於0(≥0)<===>0和正數<===>不小於0
非正數<===>小於等於0(≤0)<===>0和負數<===>不大於0
二、不等式的基本性質
1、掌握不等式的基本性質,並會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c,a-c>b-c.
(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc,.
(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac
2、比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a
即:
a>b<===>a-b>0
a=b<===>a-b=0
aa-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
三、不等式的解集:
1、能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.
2、不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.
3、不等式的解集在數軸上的表示:
用數軸表示不等式的解集時,要確定邊界和方向:
①邊界:有等號的是實心圓圈,無等號的是空心圓圈;
②方向:大向右,小向左
八年級 上冊期末數學復習資料
第一章勾股定理
1.勾股定理:直角三角形兩直角邊的平方和等於斜邊的平方;即。
2.勾股定理的證明:用三個正方形的面積關系進行證明(兩種方法)。
3.勾股定理逆定理:如果三角形的三邊長,,滿足,那麼這個三角形是直角三角形。滿足的三個正整數稱為勾股數。
第二章實數
1.平方根和算術平方根的概念及其性質:
(1)概念:如果,那麼是的平方根,記作:;其中叫做的算術平方根。
(2)性質:①當≥0時,≥0;當<0時,無意義;②=;③。
2.立方根的概念及其性質:
(1)概念:若,那麼是的立方根,記作:;
(2)性質:①;②;③=
3.實數的概念及其分類:
(1)概念:實數是有理數和無理數的統稱;
(2)分類:按定義分為有理數可分為整數的分數;按性質分為正數、負數和零。無理數就是無限不循環小數;小數可分為有限小數、無限循環小數和無限不循環小數;其中有限小數和無限循環小數稱為分數。
4.與實數有關的概念:在實數范圍內,相反數,倒數,絕對值的意義與有理數范圍內的意義完全一致;在實數范圍內,有理數的運演算法則和運算律同樣成立。每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都表示一個實數,即實數和數軸上的點是一一對應的。因此,數軸正好可以被實數填滿。
5.算術平方根的運算律:(≥0,≥0);(≥0,>0)。
第三章圖形的平移與旋轉
1.平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形大小和形狀,改變了圖形的位置;經過平移,對應點所連的線段平行且相等;對應線段平行且相等,對應角相等。
2.旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。這點定點稱為旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形大小和形狀,改變了圖形的位置;經過旋轉,圖形點的每一個點都繞旋轉中心沿相同方向轉動了相同和角度;任意一對對應點與旋轉中心的連線所成的角都是旋轉角;對應點到旋轉中心的距離相等。
3.作平移圖與旋轉圖。
八年級數學 學習方法技巧
自學能力的培養是深化學習的必由之路
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。
因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。
學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。
自信才能自強
在考試中,總是看見有些同學的試卷出現許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數學題都不是一眼就能看出它的解法和結果的。要去分析、探索、比比畫畫、寫寫算算,經過迂迴曲折的推理或演算,才顯露出條件和結論之間的某種聯系,整個思路才會明朗清晰起來。
具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數學的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學老師講過的題會做, 其它 的題就不會做,只會依樣畫瓢,題目有些小的變化就乾瞪眼,無從下手。
數學題目是無限的,但數學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數學思想和方法,就能順利地對付那無限的題目。題目並不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養起良好的數學思維習慣,有沒有掌握正確的數學解題方法。
解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關,迎來屬於自己的春天。
初二數學知識點歸納整理相關 文章 :
★ 初二數學知識點復習整理
★ 初二數學知識點歸納
★ 初二數學知識點歸納上冊人教版
★ 八年級數學知識點整理歸納
★ 八年級下冊數學知識點整理
★ 初二數學上冊知識點總結
★ 初二數學知識點整理
★ 初二數學重點知識歸納整理
★ 初二數學知識點歸納總結
★ 初二數學知識點整理歸納
⑤ 八年級數學知識點梳理總結
沒有加倍的勤奮,就沒有才能,也沒有天才。天才其實就是可以持之以恆的人。勤能補拙是良訓,一分辛苦一分才,勤奮一直都是學習通向成功的最好捷徑。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
8年級上冊數學知識點 總結 歸納
一、全等形
1、定義:能夠完全重合的兩個圖形叫做全等圖形,簡稱全等形。
2、一個圖形經過翻折、平移和旋轉等變換後所得到的圖形一定與原圖形全等。反之,兩個全等的圖形經過上述變換後一定能夠互相重合。
二、全等多邊形
1、定義:能夠完全重合的多邊形叫做全等多邊形。互相重合的點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
2、性質:
(1)全等多邊形的對應邊相等,對應角相等。
(2)全等多邊形的面積相等。
三、全等三角形
1、全等符號:≌。如圖,不是為:△ABC≌△ABC。讀作:三角形ABC全等於三角形ABC。
2、全等三角形的判定定理:
(1)有兩邊和它們的夾角對應相等的兩三角形全等。(即SAS,邊角邊);
(2)有兩角和它們的夾邊對應相等的兩三角形全等。(即ASA,角邊角)
(3)有兩角和其中一角的對邊對應相等的兩三角形全等。(即AAS,角角邊)
(4)有三邊對應相等的兩三角形全等。(即SSS,邊邊邊)
(5)有斜邊和一條直角邊對應相等的兩直角三角形全等。(即HL,斜邊直角邊)
3、全等三角形的性質:
(1)全等三角形的對應邊相等、對應角相等;
(2)全等三角形的周長相等、面積相等;
(3)全等三角形對應邊上的中線、高,對應角的平分線都相等。
4、全等三角形的作用:
(1)用於直接證明線段相等,角相等。
(2)用於證明直線的平行關系、垂直關系等。
(3)用於測量人不能的到達的路程的長短等。
(4)用於間接證明特殊的圖形。(如證明等腰三角形、等邊三角形、平行四邊形、矩形、菱形、正方形和梯形等)。
(5)用於解決有關等積等問題。
蘇教版8年級上冊數學復習資料
1. 整式的乘法 冪的運算性質: 同底數冪的乘法
冪的乘方
積的乘方
單項式乘以單項式
單項式乘以多項式
多項式乘以多項式
乘法公式
2.整式的除法 冪的運算性質:同底數冪的除法
單項式除以單項式
多項式除以單項式
3.因式分解 提公因式法 公式法
十字相乘法 分組分解法
【練習1】 口答:
(1) x3x2 = (103)5= (-3x)3=
(2) 105.103.10= (am)2 = (-5ab)2=
(3) -y3y4 = -(x4)3 = (xy2)2 =
(4) Xm+2.x3m= (a4)4= (-2xy3z2)4=
【練習2】計算
(1) 5x2y2(-3x2y)
(2) (-2ax2)2.(-3a2x)3
(3) 5b2c.(3ab-2b3)
(4) (4x2-3x+6).2x
(5) 先化簡,再求值:x2(x-1)-x(x2+2x-6), 其中x=2
【練習3】計算
1. x(4x-y)-(2x+y)(2x-y)
2. (a+2b)2+(a-2b)2
3. (a-b)2-(a+b)(a-b)
4. (x+y+z)(x-y-z)
5. (x-y-z)2
【練習4】計算
【練習5】因式分解
1. a2-ab
2. 3a3+12ab2-9a4b3
3. -8x4y+6x3y-2x2y
4. m(4x+y)-2mn(4x+y)
5. 3a(a-2b)2-18b(2b-a)2
6. x2-81
7. x3-4x
8. 25m2-10mn+n2
9. 4(x-y)2+12(y-x)+9
10. x2-4x-5
(蘇科版)八年級下冊數學復習計劃
一、復習目標:
初二數學本學期教學內容多,難度大,導致本次復習時間較短,只有三個周的復習時間。根據實際情況,特作計劃如下:
(一)、整理本學期學過的知識與 方法 :
1.知識要點綜合復習,加入適當的練習。課堂上逐一對易錯題進行講解,多強調有針對性的解題方法。最後針對平時練習中存在的問題,查漏補缺。
2. 考試 熱點 的歸納,要以與課本同步的訓練題型為主,要列表或作圖的,讓學生積極動手操作,並得出結論,有些考試題型學生可能不熟悉,所以教師要講解解題方法和步驟。課堂上教師講評,盡量是精講多練,該動手的要多動手,盡可能的讓學生自己總結出解決問題的常用分析方法。
3.幾何部分。重點是特殊平行四邊形和等腰梯形的性質及其判定定理。所以記住性質是關鍵,學會判定是重點。要學會判定方法的選擇,不同圖形之間的區別和聯系要非常熟悉,掌握常用添加輔助線的方法,形成一個有機整體。對常見的證明題要多練多總結。
(二)、在自己經歷過的解決問題活動中,選擇一個有挑戰問題性的問題,寫下解決它的過程:包括遇到的困難、克服困難的方法與過程及所獲得的體會,並選擇這個問題的原因。
(三)、 進一步培養學生的應用意識,建立數形結合思想、化歸思想、統計思想以及合情推理能力和演繹推理能力。
(四)、通過本學期的數學學習,讓同學總結自己有哪些收獲?有哪些需要改進的地方。
二、 復習方法 :
1、強化訓練
這個學期計算類和證明類的題目較多,在復習中要加強這方面的訓練。特別是分式方程,在復習過程中,重點是解題方法,同時使學生養成檢驗的習慣。還有幾何證明題,要通過針對性練習,力爭少失分,達到證明簡練又嚴謹的效果。
2、加強管理嚴格要求
根據每個學生自身情況、學習水平嚴格要求,對應知應會的內容要反復講解、練習,必須做到學一點會一點,對接受能力差的學生課後要加強輔導,及時糾正出現的錯誤,平時多小測多檢查。對能力較強的學生要引導他們多做課外習題,適當提高做題難度。
3、加強證明題的訓練
通過近階段的學習,我發現學生對證明題掌握不牢,不會找合適的分析方法,部分學生看不懂題意,沒有思路。在今後的復習中我准備拿出一定的時間來專項練習證明題,引導學生如何弄懂題意、怎樣分析、怎樣寫證明過程。力爭讓學生把各種類型題做全並抓住其特點。
4、加強成績不理想學生的輔導
制定詳細的復習計劃,對他們要多表揚多鼓勵,調動他們學習的積極性,利用課余時間對他們進行輔導,輔導時要有耐心,要心平氣和,對不會的知識要多講幾遍,不怕麻煩,直至弄懂弄會。
八年級數學知識點梳理總結相關 文章 :
★ 八年級數學知識點整理歸納
★ 八年級數學知識點歸納總結
★ 人教版八年級數學上冊知識點總結
★ 八年級下冊數學知識點整理
★ 八年級數學知識點總結歸納
★ 初二數學知識點歸納總結
★ 初二數學知識點歸納
★ 初二數學上冊知識點總結
★ 初二上冊數學知識點歸納總結
★ 初二數學知識點整理歸納
⑥ 初二數學基礎知識點歸納總結
失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二數學下冊知識點歸納
一次函數
一、正比例函數與一次函數的概念:
一般地,形如y=kx(k為常數,且k≠0)的函數叫做正比例函數.其中k叫做比例系數。
一般地,形如y=kx+b(k,b為常數,且k≠0)的函數叫做一次函數.
當b=0時,y=kx+b即為y=kx,所以正比例函數,是一次函數的特例.
二、正比例函數的圖象與性質:
(1)圖象:正比例函數y=kx(k是常數,k≠0))的圖象是經過原點的一條直線,我們稱它為直線y=kx。
(2)性質:當k>0時,直線y=kx經過第三,一象限,從左向右上升,即隨著x的增大y也增大;當k0,b>0圖像經過一、二、三象限;
(2)k>0,b<0圖像經過一、三、四象限;
(3)k>0,b=0圖像經過一、三象限;
(4)k<0,b>0圖像經過一、二、四象限;
(5)k<0,b<0圖像經過二、三、四象限;
(6)k<0,b=0圖像經過二、四象限。
一次函數表達式的確定
求一次函數y=kx+b(k、b是常數,k≠0)時,需要由兩個點來確定;求正比例函數y=kx(k≠0)時,只需一個點即可.
5.一次函數與二元一次方程組:
解方程組
從「數」的角度看,自變數(x)為何值時兩個函數的值相等.並
求出這個函數值
解方程組從「形」的角度看,確定兩直線交點的坐標.
數據的分析
數據的代表:平均數、眾數、中位數、極差、方差
八年級 下冊數學期中知識點 總結
1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分。
3.平行四邊形的判定:兩組對邊分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
5.直角三角形斜邊上的中線等於斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。
7.矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理:有一個角是直角的平行四邊形叫做矩形;對角線相等的平行四邊形是矩形;有三個角是直角的四邊形是矩形。
9.菱形的定義:鄰邊相等的平行四邊形。
10.菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
11.菱形的判定定理:一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)
12.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
13.正方形的性質:四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。
14.正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個角是直角的菱形是正方形。
15.梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
16.直角梯形的定義:有一個角是直角的梯形
17.等腰梯形的定義:兩腰相等的梯形。
18.等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
19.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
八年級數學 重要知識點
1.提公共因式法
※1.如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.
如:
※2.概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即:
※3.易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.
2.運用公式法
※1.如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.
※2.主要公式:
(1)平方差公式:
(2)完全平方公式:
¤3.易錯點點評:
因式分解要分解到底.如就沒有分解到底.
※4.運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號.
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍.
3.因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
初二數學 學習 經驗 心得
1好初中數學課前要預習
初中生想要學好數學,那麼就要利用課前的時間將課上老師要講的內容預習一下。初中數學課前的預習是要明白老師在課上大致所講的內容,這樣有利於和方便初中生整理知識結構。
初中生 課前預習 數學還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現溜號和走神的情況。同時課前預習還可以將知識點形成體系,可以幫助初中生建立完整的知識結構。
2學習初中數學課上是關鍵
初中生想要學好學生,在課上就是一個字:跟。上初中數學課時跟住老師,老師講到哪裡一定要跟上,仔細看老師的板書,隨時知道老師講的是哪裡,涉及到的知識點是什麼。有的初中生喜歡記筆記,在這里提醒大家,初中數學課上的時候盡量不要記筆記。
你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課後完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。
3課後可以適當做一些初中數學基礎題
在每學完一課後,初中生可以在課後做一些初中數學的基礎題型,在做這樣的題時,建議大家是,不要出現錯誤的情況,做完題後要學會思考和整理。當你的初中數學基礎題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據解析看題。
但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數學的學習有幫助的,但是如果將重點放在這上面,沒有什麼好處。同時要學會整理,將自己錯題歸納並總結,
數學是由簡單明了的事項一步一步地發展而來,所以,只要學習數學的人老老實實地、一步一步地去理解,並同時記住其要點,以備以後之需用,就一定能理解其全部內容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復地做同一件事,故不管誰都應該會做.
初二數學基礎知識點歸納總結相關 文章 :
★ 初中數學基礎知識點歸納總結
★ 初中數學基礎知識整理歸納
★ 八年級數學知識點整理歸納
★ 初中數學基礎知識點總結
★ 初二數學知識點整理歸納
★ 初二數學知識點復習整理
★ 初二數學知識點歸納
★ 初二數學知識點歸納上冊人教版
★ 初二數學下冊重要知識點總結
★ 初二數學上冊知識點總結歸納
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑦ 初二數學基礎知識點歸納
數學是考試的重點考察科目,數學知識的積累和解題 方法 的掌握,需要科學有效的 復習方法 ,同時需要持之以恆的堅持。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二數學下冊知識點歸納
第一章分式
1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3整數指數冪的加減乘除法
4分式方程及其解法
第二章反比例函數
1反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2反比例函數在實際問題中的應用
第三章勾股定理
1勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方
2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。
第四章四邊形
1平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等於斜邊的一半。
(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
八年級 數學知識點
零指數冪與負整指數冪
重點:冪的性質(指數為全體整數)並會用於計算以及用科學記數法表示一些絕對值較小的數
難點:理解和應用整數指數冪的性質。
一、復習練習:
1、;=;=,=,=。
2、不用計算器計算:÷(—2)2—2-1+
二、指數的范圍擴大到了全體整數.
1、探索
現在,我們已經引進了零指數冪和負整數冪,指數的范圍已經擴大到了全體整數.那麼,在「冪的運算」中所學的冪的性質是否還成立呢?與同學們討論並交流一下,判斷下列式子是否成立.
(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2
2、概括:指數的范圍已經擴大到了全體整數後,冪的運演算法則仍然成立。
3、例1計算(2mn2)-3(mn-2)-5並且把結果化為只含有正整數指數冪的形式。
解:原式=2-3m-3n-6×m-5n10=m-8n4=
4練習:計算下列各式,並且把結果化為只含有正整數指數冪的形式:
(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.
三、科學記數法
1、回憶:在之前的學習中,我們曾用科學記數法表示一些絕對值較大的數,即利用10的正整數次冪,把一個絕對值大於10的數表示成a×10n的形式,其中n是正整數,1≤∣a∣<10.例如,864000可以寫成8.64×105.
2、類似地,我們可以利用10的負整數次冪,用科學記數法表示一些絕對值較小的數,即將它們表示成a×10-n的形式,其中n是正整數,1≤∣a∣<10.
3、探索:
10-1=0.1
10-2=
10-3=
10-4=
10-5=
歸納:10-n=
例如,上面例2(2)中的0.000021可以表示成2.1×10-5.
4、例2、一個納米粒子的直徑是35納米,它等於多少米?請用科學記數法表示.
分析我們知道:1納米=米.由=10-9可知,1納米=10-9米.
所以35納米=35×10-9米.
而35×10-9=(3.5×10)×10-9
=35×101+(-9)=3.5×10-8,
所以這個納米粒子的直徑為3.5×10-8米.
5、練習
①用科學記數法表示:
(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.
②用科學記數法填空:
(1)1秒是1微秒的1000000倍,則1微秒=_________秒;
(2)1毫克=_________千克;
(3)1微米=_________米;(4)1納米=_________微米;
(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.
初二數學復習方法
按部就班
數學是環環相扣的一門學科,哪一個環節脫節都會影響整個學習的進程。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題。
強調理解
概念、定理、公式要在理解的基礎上記憶。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。
基本訓練
學習數學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鑽難題的誤區,要熟悉高考的題型,訓練要做到有的放矢。
重視錯誤
訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復習時,這個錯題本也就成了寶貴的復習資料。
數學的學習有一個循序漸進的過程,妄想一步登天是不現實的。熟記書本內容後將書後習題認真寫好,有些同學可能認為書後習題太簡單不值得做,這種想法是極不可取的,書後習題的作用不僅幫助你將書本內容記牢,還輔助你將書寫格式規范化,從而使自己的解題結構緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。
平時的數學學習:
○1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.
○2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.
○3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.
○4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的 總結 和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.
初二數學基礎知識點歸納相關 文章 :
★ 初中數學基礎知識整理歸納
★ 初二數學知識點歸納整理
★ 初中數學基礎知識點歸納總結
★ 初二數學基礎知識點
★ 初二數學知識點歸納
★ 初二數學知識點復習整理
★ 初二數學知識點歸納梳理
★ 初二數學基礎知識點2021
★ 初二數學知識點整理歸納
★ 部編版初二數學知識點梳理
⑧ 初二數學下冊基礎知識點歸納
初二數學下冊基礎知識點歸納 篇1
一、分解因式
1、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。
2、因式分解與整式乘法是互逆關系。因式分解與整式乘法的區別和聯系:
(1)整式乘法是把幾個整式相乘,化為一個多項式;
(2)因式分解是把一個多項式化為幾個因式相乘。
二、提公共因式法
1、如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式。這種分解因式的方法叫做提公因式法。如: ab+ac=a(b+c)
2、概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即: ma+mb—mc=m(a+b—c)
3、易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉。
三、運用公式法
1、如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
2、主要公式:
4、運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號。
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正可負,且它是前兩項冪的底數乘積的2倍。
5、因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止。
初二數學下冊基礎知識點歸納 篇2
Ⅰ、平行四邊形
(1)平行四邊形性質
1)平行四邊形的定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
2)平行四邊形的性質(包括邊、角、對角線三方面) :
邊:①平行四邊形的兩組對邊分別平行;
②平行四邊形的兩組對邊分別相等;
角:③平行四邊形的兩組對角分別相等;
對角線:④平行四邊形的對角線互相平分。
【補充】平行四邊形的鄰角互補;平行四邊形是中心對稱圖形,對稱中心是對角線的交點。
(2)平行四邊形判定
1)平行四邊形的判定(包括邊、角、對角線三方面):
邊:①兩組對邊分別平行的四邊形是平行四邊形;
②兩組對邊分別相等的.四邊形是平行四邊形;
③一組對邊平行且相等的四邊形是平行四邊形;
角:④兩組對角分別相等的四邊形是平行四邊形;
對角線:⑤對角線互相平分的四邊形是平行四邊形。
2)三角形中位線:連接三角形兩邊中點的線段叫做三角形的中位線。
3)三角形中位線定理:三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
4)平行線間的距離:
兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線間的距離。兩條平行線間的距離處處相等。
Ⅱ、矩形
(1)矩形的性質
1)矩形的定義:有一個角是直角的平行四邊形叫做矩形。
2)矩形的性質:
①矩形具有平行四邊形的所有性質;
②矩形的四個角都是直角;
③矩形的對角線相等;
④矩形既是軸對稱圖形,又是中心對稱圖形,有兩條對稱軸,對稱中心是對角線的交點。
(2)矩形的判定
1)矩形的判定:
①有一個角是直角的平行四邊形是矩形;
②對角線相等的平行四邊形是矩形;
③有三個角是直角的四邊形是矩形。
2)證明一個四邊形是矩形的步驟:
方法一:先證明該四邊形是平行四邊形,再證一角為直角或對角線相等;
方法二:若一個四邊形中的直角較多,則可證三個角為直角。
3)直角三角形斜邊中線定理:(如右圖)
直角三角形斜邊上的中線等於斜邊的一半。
Ⅲ、菱形
(1)菱形的性質
1)菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2)菱形的性質:
①菱形具有平行四邊形的所有性質;
②菱形的四條邊都相等;
③菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角;
④菱形既是軸對稱圖形,又是中心對稱圖形,有兩條對稱軸,對稱中心是對角線交點。
3)菱形的面積公式:
菱形的兩條對角線的長分別為,則
(2)菱形的判定
1)菱形的判定:
①有一組鄰邊相等的平行四邊形是菱形;
②對角線互相垂直的平行四邊形是菱形;
③四條邊都相等的四邊形是菱形。
2)證明一個四邊形是菱形的步驟:
方法一:先證明它是一個平行四邊形,然後證明「一組鄰邊相等」或「對角線互相垂直」;
方法二:直接證明「四條邊相等」。
Ⅳ、正方形
(1)正方形的性質
1)正方形的定義:有一組鄰邊相等且有一個角是直角的平行四邊形叫做正方形。
2)正方形的性質:
正方形具有平行四邊形、矩形、菱形的所有性質,即①正方形的四條邊都相等;②四個角都是直角;③對角線互相垂直平分且相等,並且每條對角線平分一組對角。
3)正方形既是軸對稱圖形,又是中心對稱圖形,它有四條對稱軸,對角線的交點是對稱中心。
(2)正方形的判定
正方形的判定:
①有一組鄰邊相等且有一個角是直角的平行四邊形是正方形;
②有一組鄰邊相等的矩形是正方形;
③對角線互相垂直的矩形是正方形;
④有一個角是直角的菱形是正方形;
⑤對角線相等的菱形是正方形;
⑥對角線互相垂直平分且相等的四邊形是正方形。
初二數學下冊基礎知識點歸納 篇3
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13、公式與性質:
⑴三角形的內角和:三角形的內角和為180°
⑵三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
⑶多邊形內角和公式:邊形的內角和等於·180°
⑷多邊形的外角和:多邊形的外角和為360°。
⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
⑨ 初二數學知識點歸納梳理
學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那隻能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
八年級 數學知識點
數據的收集、整理與描述
一.知識框架
二.知識概念
1.全面調查:考察全體對象的調查方式叫做全面調查.
2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查.
3.總體:要考察的全體對象稱為總體.
4.個體:組成總體的每一個考察對象稱為個體.
5.樣本:被抽取的所有個體組成一個樣本.
6.樣本容量:樣本中個體的數目稱為樣本容量.
7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數.
8.頻率:頻數與數據總數的比為頻率.
9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距.
八年級數學知識點整理
統計的初步認識
1、折線統計圖的特點:能獲取數據變化情況的信息,並進行簡單的預測。
2、折線統計圖的 方法 :在方格紙中,根據所給出的數據把點標出來,再用線將點連接起來,要順次連接。
3、能夠看出折線統計圖所提供的信息,並回答相關的問題。
補充內容:
1、條形統計圖與折線統計圖的不同:條形統計圖用直條表示數量的多少,折線統計圖用折線表示數量的增減變化情況。
2、初步了解復式折線統計圖,能夠從中獲得相應的信息,回答提出的問題。
課後練習
1.統計學的基本涵義是(D)。
A.統計資料
B.統計數字
C.統計活動
D.是一門處理數據的方法和技術的科學,也可以說統計學是一門研究「數據」的科學,任務是如何有效地收集、整理和分析這些數據,探索數據內在的數量規律性,對所觀察的現象做出推斷或預測,直到為採取決策提供依據。
2.要了解某一地區國有工業企業的生產經營情況,則統計總體是(B)。
A.每一個國有工業企業
B.該地區的所有國有工業企業
C.該地區的所有國有工業企業的生產經營情況
D.每一個企業
3.要了解20個學生的學習情況,則總體單位是(C)。
A.20個學生
B.20個學生的學習情況
C.每一個學生
D.每一個學生的學習情況
4.下列各項中屬於數量標志的是(B)。
A.性別
B.年齡
C.職稱
D.健康狀況
5.總體和總體單位不是固定不變的,由於研究目的改變(A)。
A.總體單位有可能變換為總體,總體也有可能變換為總體單位
B.總體只能變換為總體單位,總體單位不能變換為總體
C.總體單位不能變換為總體,總體也不能變換為總體單位
D.任何一對總體和總體單位都可以互相變換
6.以下崗職工為總體,觀察下崗職工的性別構成,此時的標志是(C)。
A.男性職工人數
B.女性職工人數
C.下崗職工的性別
D.性別構成
八年級下冊數學復習資料
零指數冪與負整指數冪
重點:冪的性質(指數為全體整數)並會用於計算以及用科學記數法表示一些絕對值較小的數
難點:理解和應用整數指數冪的性質。
一、復習練習:
1、;=;=,=,=。
2、不用計算器計算:÷(—2)2—2-1+
二、指數的范圍擴大到了全體整數.
1、探索
現在,我們已經引進了零指數冪和負整數冪,指數的范圍已經擴大到了全體整數.那麼,在「冪的運算」中所學的冪的性質是否還成立呢?與同學們討論並交流一下,判斷下列式子是否成立.
(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2
2、概括:指數的范圍已經擴大到了全體整數後,冪的運演算法則仍然成立。
3、例1計算(2mn2)-3(mn-2)-5並且把結果化為只含有正整數指數冪的形式。
解:原式=2-3m-3n-6×m-5n10=m-8n4=
4練習:計算下列各式,並且把結果化為只含有正整數指數冪的形式:
(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.
三、科學記數法
1、回憶:在之前的學習中,我們曾用科學記數法表示一些絕對值較大的數,即利用10的正整數次冪,把一個絕對值大於10的數表示成a×10n的形式,其中n是正整數,1≤∣a∣<10.例如,864000可以寫成8.64×105.
2、類似地,我們可以利用10的負整數次冪,用科學記數法表示一些絕對值較小的數,即將它們表示成a×10-n的形式,其中n是正整數,1≤∣a∣<10.
3、探索:
10-1=0.1
10-2=
10-3=
10-4=
10-5=
歸納:10-n=
例如,上面例2(2)中的0.000021可以表示成2.1×10-5.
4、例2、一個納米粒子的直徑是35納米,它等於多少米?請用科學記數法表示.
分析我們知道:1納米=米.由=10-9可知,1納米=10-9米.
所以35納米=35×10-9米.
而35×10-9=(3.5×10)×10-9
=35×101+(-9)=3.5×10-8,
所以這個納米粒子的直徑為3.5×10-8米.
5、練習
①用科學記數法表示:
(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.
②用科學記數法填空:
(1)1秒是1微秒的1000000倍,則1微秒=_________秒;
(2)1毫克=_________千克;
(3)1微米=_________米;(4)1納米=_________微米;
(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.
初二數學知識點歸納梳理相關 文章 :
★ 初二數學知識點歸納
★ 初二數學知識點整理歸納
★ 八年級數學知識點整理歸納
★ 八年級下冊數學知識點整理
★ 初二數學知識點復習整理
★ 初二數學上冊知識點總結
★ 初二數學知識點歸納上冊人教版
★ 初二數學知識點歸納總結
★ 初二數學重點知識歸納整理
★ 初二數學下冊知識點歸納與數學學習方法
⑩ 八年級數學下冊知識點整理
學習知識要善於思考,思考,再思考。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
數學八年級知識點歸納下冊
公式與性質:
(1)三角形的內角和:三角形的內角和為180°
(2)三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
(3)多邊形內角和公式:邊形的內角和等於?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
位置與坐標
1、確定位置
在平面內,確定一個物體的位置一般需要兩個數據。
2、平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。
⑤在直角坐標系中,對於平面上任意一點,都有的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上的一點與它對應。
八年級數學知識點滬科版
分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
初二下冊數學知識點歸納北師大版
第一章一元一次不等式和一元一次不等式組
一、不等關系
1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式.
2、要區別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系.
3、准確"翻譯"不等式,正確理解"非負數"、"不小於"等數學術語.
非負數<===>大於等於0(≥0)<===>0和正數<===>不小於0
非正數<===>小於等於0(≤0)<===>0和負數<===>不大於0
二、不等式的基本性質
1、掌握不等式的基本性質,並會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c,a-c>b-c.
(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc,.
(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac
2、比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a
即:
a>b<===>a-b>0
a=b<===>a-b=0
aa-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
八年級數學下冊知識點整理相關 文章 :
★ 八年級下冊數學知識點整理
★ 初二數學下冊知識點歸納與數學學習方法
★ 八年級下冊數學知識點歸納
★ 八年級下冊數學知識點總結歸納
★ 八年級下冊數學知識點匯總
★ 八年級下冊數學知識點梳理
★ 八年級下冊數學知識點總復習
★ 人教版八年級下冊數學知識點總結
★ 八年級下冊數學知識點總結
★ 初二數學下冊重點知識總結