Ⅰ 七年級上冊數學第一章《有理數》知識點總結
有理數是「數與代數」領域中的重要內容之一,在現實生活中有廣泛的應用,是繼續學習實數、代數式、方程、不等式、直角坐標系、函數、統計等數學內容以及相關學科知識的基礎。下面是由我為你精心編輯的七年級上冊數學第一章《有理數》知識點總結,歡迎閱讀!
一、正數與負數
1.在實際中表示意義相反的量 上升5米記為5米; -8米則表示下降8米。
2.正數:大於0的數。
3.負數:在正數的前面加上「-」。
4.0的含義:
①既不是正數也不是負數;
②0在計數時表示沒有,比如0元;
③0表示某種量的基準,比如0℃表示溫度的基準
5.有理數的分類
②分數概念
(1)小學學的分數,百分數,有限小數,無限循環小數都可以轉化為分數,現統稱分數;
(2)無限不循環小數不屬於有理數,如:π=3.141592... 2.010010001...
③、「非」的概念
非負數:正數和0 非正分數:負分數
非正數:負數和0 非負分數:正分數
非負整數:正整數和0
非正整數:負整數和0
二、數軸
1.三要素:原點、正方向、單位長度。通常原點用「O」表示,向右的方向為正方向,單位長度為1.
2.如何畫數軸
①畫直線(一般畫成水平的),定原點,標出原點「O」;
②取原點向右的方向為正方向,並標出箭頭;
③選適當的長度為單位長度,並標出-3,-2,-1,1,2,3……各點。
3.數軸上的點與有理數:
(1)數軸上的點與有理數一一對應 (2)左邊的數0>負數;
2.兩個負數比較
①右邊的點表示的數比左邊的點表示的數大。
②絕對值大的反而小。
三、有理數的運算
1.有理數的加法:
加法一般步驟:
①確定符號:同號取相同的符號。
異號取絕對值大的.加數的符號。
②確定絕對值:同號將絕對值相加。
異號用較大的絕對值減去較小的絕對值。
互為相反數的兩個數相加得0。一個數與0相加,仍得這個數。
用字母表示加法的交換律a+b=b+a;加法結合律a+b+c=(a+b)+c=a+(b+c)。
三個或三個以上有理數相加,可以寫成這些數的連加式,對於連加式,根據加法
交換律和加法結合律,可以任意交換加數的位置,也可先把其中的某幾個數相加。
根據算式的特徵,恰當地運用運算律,可以使運算簡便:
①符號相同的數先相加--同號結合法
②互為相反數的先相加--相反數結合法
③分母相同的數先相加--同分母結合法
④正數與正數,小數與小數相加--同形結合法
2.有理數的減法:
減法法則:減去一個數,等於加上這個數的相反數。
加減法混合運算,把減法轉化為加法再計算。
3.代數和:有理數加減混合運算時,將加減法統一成加法運算,轉化為求幾個正數或負數的和。
在一個和式中,可以把各個加數的括弧和括弧前面的加號省略不寫,寫成省略加號的和的形式。
4.有理數的乘法:
乘法步驟:1、確定符號:同號正,異號負。
2、絕對值:求積。
任何數與0相乘,都得0。任何數與-1相乘都得這個數的相反數。
多個有理數相乘的運算:
幾個非0有理數相乘時,當負因數個數是偶數時,積為正;負因數個數是奇數時,積為負;
乘法交換律,乘法結合律,乘法分配律;
5.有理數的除法:
除法步驟:1、確定符號:同號正,異號負。
2、絕對值:相除。
除以一個不等於0的數等於乘上這個數的倒數。
0除以任何一個不等於0的數都得0。
四、倒數
①乘積是1的兩個數叫作互為倒數。
②a的倒數是a分之1(a≠0)
③a與b互為倒數 ab=1
④正數的倒數還是正數,負數的倒數還是負數,0沒有倒數。
五、乘方
①求幾個相同因數的積的運算叫做乘方
a·a·…·a=an
②底數、指數、冪
Ⅱ 七年級數學有理數知識點講解
七年級數學有理數知識點講解
1.正數:比0大的數叫正數。
2.負數:比0小的數叫負數。
3.有理數:
(1)凡能寫成q/p(p,q為整數且p不等於0)形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數。
注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類:
4.數軸:數軸是規定了原點、正方向、單位長度的一條直線。
5.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0等價於a+b=0等價於a、b互為相反數。
6.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;
注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:
絕對值的問題經常分類討論;
7.有理數比大小:
(1)正數的絕對值越大,這個數越大;
(2)正數永遠比0大,負數永遠比0小;
(3)正數大於一切負數;
(4)兩個負數比大小,絕對值大的反而小;
(5)數軸上的兩個數,右邊的數總比左邊的數大;
(6)大數-小數>0,小數-大數<0.
8.互為倒數:乘積為1的兩個數互為倒數;
注意:0沒有倒數;若a≠0,那麼a的倒數是1/a;若ab=1等價於a、b互為倒數;若ab=-1等價於a、b互為負倒數。
9.有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數。
10.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;
(2)加法的結合律:(a+b)+c=a+(b+c)。
七年級數學 整式的加減知識點 講解
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式;數字或字母的乘積叫單項式(單獨的一個數字或字母也是單項式)。
2.系數:單項式中的數字因數叫做這個單項式的系數。所有字母的指數之和叫做這個單項式的`次數。任何一個非零數的零次方等於1。
3.多項式:幾個單項式的和叫多項式。
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。
5.常數項:不含字母的項叫做常數項。
6.多項式的排列
(1)把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。
(2)把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。
7.多項式的排列時注意:
(1)由於單項式的項,包括它前面的性質符號,因此在排列時,仍需把每一項的性質符號看作是這一項的一部分,一起移動。
(2)有兩個或兩個以上字母的多項式,排列時,要注意:
a.先確認按照哪個字母的指數來排列。
b.確定按這個字母向里排列,還是向外排列。
(3)整式:
單項式和多項式統稱為整式。
8.多項式的加法:
多項式的加法,是指多項式的同類項的系數相加(即合並同類項)。
9.同類項:所含字母相同,並且相同字母的次數也分別相同的項叫做同類項。
10.合並同類項:多項式中的同類項可以合並,叫做合並同類項,合並同類項的法則是:同類項的系數相加,所得的結果作為系數,字母與字母的指數不變。
11.掌握同類項的概念時注意:
(1)判斷幾個單項式或項,是否是同類項,就要掌握兩個條件:
①所含字母相同。
②相同字母的次數也相同。
(2)同類項與系數無關,與字母排列的順序也無關。
(3)所有常數項都是同類項。
11.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b)。
12.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
13.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;
(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac。
14.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,即a/0無意義。
15.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n。
16.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
17.科學記數法:
把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。
18.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位。
19.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
20.混合運演算法則:先乘方,後乘除,最後加減。
(參考教材:初中數學七年級人教版)
練習:
1.若密雲水庫的水位比標准水位高出3cm記為+3cm,某月的水位記錄中顯示,1日水位為-5cm,2日水位為-1cm,3日水位為+4cm,則( )
A.1日與2日水位相差6cm
B.1日與3日水位相差1cm
C.2日與3日水位相差5cm
D.均不正確
2.籃球的質量,超過標准質量的克數記為正數,不足標准質量的克數記為負數,檢查的結果如下表:
最接近標准質量的是_________號籃球;質量最大的籃球比質量最小的籃球重____________克.
3.判斷:
1)最小的自然數是1;
2)最小的整數是1;
3)一個有理數的倒數等於它本身,則這個數是1;
七年級數學平面直角坐標系知識點講解
6.1.1有序數對
有順序的兩個數a與b組成的數對,叫做有序數對。
6.1.2平面直角坐標系
平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸取2向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。
平面上的任意一點都可以用一個有序數對來表示。
建立了平面直角坐標系以後,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬於任何象限。
6.2坐標方法的簡單應用
6.2.1用坐標表示地理位置
利用平面直角坐標系繪制區域內一些地點分布情況平面圖的過程如下:
⑴建立坐標系,選擇一個適當的參照點為原點,確定x軸、y軸的正方向;
⑵根據具體問題確定適當的比例尺,在坐標軸上標出單位長度;
⑶在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
6.2.2用坐標表示平移
在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(x-a,y));將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y+b)(或(x,y-b))。
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度。
Ⅲ 初一數學的知識點歸納
學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為主科之一,和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。
初中 一年級數學 上冊知識點
圖形的初步認識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
二、點和線
1、經過兩點有一條直線,並且只有一條直線。
2、兩點之間線段最短。
3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點的射線組成的圖形。
2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
初一下冊數學知識點
1.認識三角形,了解三角形的意義,認識三角形的邊、內角、頂點,能用符號語言表示三角形。
2.經歷度量三角形邊長的實踐活動中,理解三角形三邊不等的關系。
3.懂得判斷三條線段可否構成一個三角形的方法,並能運用它解決有關的問題。
4.三角形的內角和定理,能用平行線的性質推出這一定理。
5.能應用三角形內角和定理解決一些簡單的實際問題。
二、重點
三角形內角和定理;
對三角形有關概念的了解,能用符號語言表示三條形。
三、難點
三角形內角和定理的推理的過程;
在具體的圖形中不重復,且不遺漏地識別所有三角形;
用三角形三邊不等關系判定三條線段可否組成三角形。
四、知識框架
五、知識點、概念 總結
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三角形的分類
3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7.高線、中線、角平分線的意義和做法
8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
9.三角形內角和定理:三角形三個內角的和等於180°
推論1直角三角形的兩個銳角互余;
推論2三角形的一個外角等於和它不相鄰的兩個內角和;
推論3三角形的一個外角大於任何一個和它不相鄰的內角;
初一下學期數學知識點
相交線與平行線
一、知識網路結構
二、知識要點
1、在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是
鄰補角。鄰補角的性質:鄰補角互補。如圖1所示,與互為鄰補角,
與互為鄰補角。+=180°;+=180°;+=180°;
+=180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。如圖1所示,與互為對頂角。=;
=。
5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當a⊥b時,====90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特徵:
①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣
的兩個角叫同位角。圖3中,共有對同位角:與是同位角;
與是同位角;與是同位角;與是同位角。
②在兩條直線(被截線)之間,並且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。
③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。
初一數學第一章知識點相關 文章 :
★ 初一數學上冊第一章知識點歸納
★ 初一數學上冊第一章知識點總結
★ 初一數學第一章知識點總結
★ 初一數學第一章知識點總結歸納
★ 初一數學重要知識點總結
★ 初一數學上冊知識點歸納
★ 初一數學第1章有理數知識點總結
★ 七年級數學上冊知識點總結第一章
★ 初一數學第一單元知識點歸納
★ 初一數學上知識點
Ⅳ 初一數學上冊有理數知識點
初一數學上冊有理數知識點匯總
數學上,有理數是一個整數a和一個正整數b的比,例如3/8,通則為a/b。0也是有理數。有理數是整數和分數的集合,整數也可看做是分母為一的分數。以下是我整理的關於初一數學上冊有理數知識點,希望大家認真閱讀!
一、目標與要求
1.了解正數與負數是從實際需要中產生的。
2.能正確判斷一個數是正數還是負數,明確0既不是正數也不是負數。
3.理解有理數除法的意義,熟練掌握有理數除法法則,會進行有理數的除法運算;
4.了解倒數概念,會求給定有理數的倒數;
5.通過將除法運算轉化為乘法運算,培養學生的轉化的思想;通過有理數的除法
二、重點
正、負數的概念:
正確理解數軸的概念和用數軸上的點表示有理數;
有理數的加法法則;
除法法則和除法運算。
三、難點
負數的概念、正確區分兩種不同意義的量;
數軸的概念和用數軸上的點表示有理數;
異號兩數相加的法則;
根據除法是乘法的逆運算,歸納出除法法則及商的符號的確定。
四、知識框架
初一數學上冊知識點:有理數
五、知識點、概念總結
1.正數:比0大的數叫正數。
2.負數:比0小的數叫負數。
3.有理數:
(1)凡能寫成q/p(p,q為整數且p不等於0)形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數。
注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類:
初一數學上冊知識點:有理數
4.數軸:數軸是規定了原點、正方向、單位長度的一條直線。
5.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0等價於a+b=0等價於a、b互為相反數。
6.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;
注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:
初一數學上冊知識點:有理數
絕對值的問題經常分類討論;
7.有理數比大小:
(1)正數的絕對值越大,這個數越大;
(2)正數永遠比0大,負數永遠比0小;
(3)正數大於一切負數;
(4)兩個負數比大小,絕對值大的反而小;
(5)數軸上的兩個數,右邊的數總比左邊的數大;
(6)大數-小數>0,小數-大數<0.
8.互為倒數:乘積為1的兩個數互為倒數;
注意:0沒有倒數;若a≠0,那麼a的.倒數是1/a;若ab=1等價於a、b互為倒數;若ab=-1等價於a、b互為負倒數。
9. 有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數。
10.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;
(2)加法的結合律:(a+b)+c=a+(b+c)。
11.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b)。
12.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
13. 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;
(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
14.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,即a/0無意義。
15.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n ,當n為正偶數時:(-a)n =an 或(a-b)n=(b-a)n 。
16.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
17.科學記數法:
把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。
18.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位。
19.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
20.混合運演算法則:先乘方,後乘除,最後加減。
;Ⅳ 初一上冊數學重點知識點歸納
數學學習數學不光有做一些習題,還要注重知識點的總結與歸納。下面,我為大家整理一下初一上冊數學重點知識點歸納僅供大家參考。
初一上冊數學重點知識點:有理數
(一)正負數
1.正數:大於0的數。
2.負數:小於0的數。
3.0即不是正數也不是負數。
4.正數大於0,負數小於0,正數大於負數。
( 二)有理數
1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)
2.整數:正整數、0、負整數,統稱整數。
3.分數:正分數、負分數。
(三)數軸
1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2.數軸的三要素:原點、正方向、單位長度。
3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。
(四)有理數的加減法
1.先定符號,再算絕對值。
2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。
4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
5.a-b=a+(-b)減去一個數,等於加這個數的相反數。
絕對值
(1)絕對值的定義:一個數a的絕對值就是數軸上表示數a的點與原點的距離。數a的絕對值記作|a|。(2)正數的絕對值是它本身;負數的絕對值是它的數;0的絕對值是0。?a(a?0)?|a|?0(a?0)??a(a?0)?越來越大或?a(a?0)|a|???a(a?0)-3-2-10123(3)絕對值的性質:①除0外,絕對值為正數的數有兩個,它們互為相反數;②互為相反數的兩數(除0外)的絕對值相等;即:|a|=|b|,則a+b=0③任何數的絕對值總是非負數,即|a|≥0④對任何有理數a,都有|a|=|-a|5.比較兩個負數的大小,絕對值大的反而小。比較兩個負數的大小的步驟如下:①先求出兩個數負數的絕對值;②比較兩個絕對值的大小;③根據「兩個負數,絕對值大的反而小」做出正確的判斷。
以上就是我為大家整理的初一上冊數學重點知識點歸納,希望能幫助到大家,更多中考信息請繼續關注本站!
Ⅵ 初一數學有理數的要點歸納
初一的有理數是重點也是難點,那麼同學們應該如何把握好這個知識點呢?以下是我分享給大家的初一數學有理數的要點,希望可以幫到你!
初一數學有理數的要點
一、知識要點
本章的主要內容可以概括為有理數的概念與有理數的運算兩部分。有理數的概念可以利用數軸來認識、理解,同時,利用數軸又可以把這些概念串在一起。有理數的運算是全章的重點。在具體運算時,要注意四個方面,一是運演算法則,二是運算律,三是運算順序,四是近似計算。
基礎知識:
1、正數(positionnumber):大於0的數叫做正數。
2、負數(negationnumber):在正數前面加上負號"-"的數叫做負數。
3、0既不是正數也不是負數。
4、有理數(rationalnumber):正整數、負整數、0、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數。
5、數軸(numberaxis):通常,用一條直線上的點表示數,這條直線叫做數軸。
數軸滿足以下要求:
(1)在直線上任取一個點表示數0,這個點叫做原點(origin);
(2)通常規定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;
(3)選取適當的長度為單位長度。
6、相反數(oppositenumber):絕對值相等,只有負號不同的兩個數叫做互為相反數。
7、絕對值(absolutevalue)一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。記做|a|。由絕對值的定義可得:|a-b|表示數軸上a點到b點的距離。一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.正數大於0,0大於負數,正數大於負數;兩個負數,絕對值大的反而小。
8、有理數加法法則
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0.
(3)一個數同0相加,仍得這個數。
加法交換律:有理數的加法中,兩個數相加,交換加數的位置,和不變。表達式:a+b=b+a。
加法結合律:有理數的加法中,三個數相加,先把前兩個數相加或者先把後兩個數相加,和不變。
表達式:(a+b)+c=a+(b+c)
9、有理數減法法則:減去一個數,等於加這個數的相反數。表達式:a-b=a+(-b)
10、有理數乘法法則
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數同0相乘,都得0.
乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。表達式:ab=ba
乘法結合律:三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。表達式:(ab)c=a(bc)
乘法分配律:一般地,一個數同兩個的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
表達式:a(b+c)=ab+ac
11、倒數
1除以一個數(零除外)的商,叫做這個數的倒數。如果兩個數互為倒數,那麼這兩個數的積等於1。
12、有理數除法法則:兩數相除,同號得負,異號得正,並把絕對值相除。0除以任何一個不等於0的數,都得0.
13、有理數的乘方:求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(basenumber),n叫做指數(exponent)。
根據有理數的乘法法則可以得出:負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0。
14、有理數的混合運算順序
(1)"先乘方,再乘除,最後加減"的順序進行;
(2)同級運算,從左到右進行;
(3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
15、科學技術法:把一個大於10的數表示成a﹡10n的形式(其中a是整數數位只有一位的數(即016、近似數(approximatenumber):
17、有理數可以寫成m/n(m、n是整數,n≠0)的形式。另一方面,形如m/n(m、n是整數,n≠0)的數都是有理數。所以有理數可以用m/n(m、n是整數,n≠0)表示。
拓展知識:
1、數集:把一些數放在一起,就組成一個數的集合,簡稱數集。
(1)所有有理數組成的數集叫做有理數集;
(2)所有的整數組成的數集叫做整數集。
2、任何有理數都可以用數軸上的一個點來表示,體現了數形結合的數學思想。
3、根據絕對值的幾何意義知道:|a|≥0,即對任何有理數a,它的絕對值是非負數。
4、比較兩個有理數大小的方法有:
(1)根據有理數在數軸上對應的點的位置直接比較;
(2)根據規定進行比較:兩個正數;正數與零;負數與零;正數與負數;兩個負數,體現了分類討論的數學思想;
(3)做差法:a-b>0——a>b;
(4)做商法:a/b>1,b>0——a>b.
初一數學有理數必考要點
(一)正負數
1.正數:大於0的數。
2.負數:小於0的數。
3.0即不是正數也不是負數。
4.正數大於0,負數小於0,正數大於負數。
(二)有理數
1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)
2.整數:正整數、0、負整數,統稱整數。
3.分數:正分數、負分數。
(三)數軸
1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2.數軸的三要素:原點、正方向、單位長度。
3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。
(四)有理數的加減法
1.先定符號,再算絕對值。
2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。
4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
5.a-b=a+(-b)減去一個數,等於加這個數的相反數。
(五)有理數乘法(先定積的符號,再定積的大小)
1.同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
2.乘積是1的兩個數互為倒數。
3.乘法交換律:ab=ba
4.乘法結合律:(ab)c=a(bc)
5.乘法分配律:a(b+c)=ab+ac
(六)有理數除法
1.先將除法化成乘法,然後定符號,最後求結果。
2.除以一個不等於0的數,等於乘這個數的倒數。
3.兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。
(七)乘方
1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)
2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。
3.同底數冪相乘,底不變,指數相加。
4.同底數冪相除,底不變,指數相減。
(八)有理數的加減乘除混合運演算法則
1.先乘方,再乘除,最後加減。
2.同級運算,從左到右進行。
3.如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
(九)科學記數法、近似數、有效數字。
第二章整式(一)整式
1.整式:單項式和多項式的統稱叫整式。
2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。
3.系數;一個單項式中,數字因數叫做這個單項式的系數。
4。次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
5.多項式:幾個單項式的和叫做多項式。
6.項:組成多項式的每個單項式叫做多項式的項。
7.常數項:不含字母的項叫做常數項。
8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。
9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。
10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
(二)整式加減整式加減運算時,如果遇到括弧先去括弧,再合並同類項。
1.去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
2.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變
整理了知識點,我們來看看相關的練習題吧。根據做題的情況分析有哪些知識點是自己還沒有掌握的。
1,從數軸上看,0是()
A,最小整數B,最大的負數C,最小的有理數D最小的非負數
2,一個數的相反數小於它本身,這個數是()
A,非負數B,正數C,0D,負數
3,冬季某天我國三個城市的最高氣溫分別是-10℃,1℃,-7℃,把它們從高到低排列正確的是()
A,-10℃,-7℃,1℃B,-7℃,-10℃,1℃C,1℃,-7℃,-10℃D,1℃,-10℃,-7℃
4,下列說法正確的有()
A,正數和負數統稱為有理數B,有理數是指整數、分數、正有理數、負有理數和0五類C,一個有理數不是整數就是分數D,整數包括正整數和負整數
5,若a、b為有理數,a>0,b<0,且|a|<|b|,那麼下列說法不正確的是()
A,若將數a、b在數軸上表示出來,則a在原點右側,b在原點左側。
B,因正數大於一切負數,所以a>b。
C,若將數a、b在數軸上表示出來,則數a與原點的距離比較b與原點的距離小。
D,在數軸上,表示a,|a|,b的點從左到右依次為a,b,|a|
6,在下列代數式:(1/2)ab,(a+b)/2,ab2+b+1,(3/x)+(2/y),x3+x2-3中,多項式有()A.2個B.3個C.4個D5個
A、-3x2B、(5a-4b)/7C、(3a+2)/5xD、-2005
初一數學上冊重點知識點
實數:
—有理數與無理數統稱為實數。
有理數:
整數和分數統稱為有理數。
無理數:
無理數是指無限不循環小數。
自然數:
表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。
數軸:
規定了圓點、正方向和單位長度的直線叫做數軸。
相反數:
符號不同的兩個數互為相反數。
倒數:
乘積是1的兩個數互為倒數。
絕對值:
數軸上表示數a的點與圓點的距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。
數學定理公式
有理數的運演算法則
⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
⑵減法法則:減去一個數,等於加上這個數的相反數。
⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0。
⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0。
角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。
數學第一章相交線
一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,並且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關系和數量關系的角,即鄰補角一定是補角,但補角不一定是鄰補角。
二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成“把一個角的兩邊反向延長而形成的兩個角叫做對頂角”。
猜你喜歡:
1. 初中數學知識點全總結
2. 最新七年級數學上冊知識點總結
3. 初一數學基本知識點總結
4. 初一數學期末復習題有哪些
5. 初一數學重要知識點總結
Ⅶ 七年級上冊數學知識點總結三篇
學習是每個一個學生的職責,而學習的動力是靠自己的夢想,也可以這樣說沒有自己的夢想就是對自己的一種不責任的表現,也就和人失走肉沒啥兩樣,只是改變命運,同時知識也不是也不是隨意的摘取。要通過自己的努力,要把我自己生命的鑰匙。以下是我為您整理的七年級上冊數學知識點 總結 三篇,供大家學習參考。
七年級上冊數學知識點總結篇一
單項式與多項式
1、沒有加減運算的整式叫做單項式。(數字與字母的積---包括單獨的一個數或字母)
2、幾個單項式的和,叫做多項式。其中每個單項式叫做多項式的項,不含字母的項叫做常數項。
說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。
單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字「1」。
12、單項式的次數僅與字母有關,與單項式的系數無關。
多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式沒有系數的概念,但有次數的概念。
7、多項式中次數的項的次數,叫做這個多項式的次數。
整式
1、單項式和多項式統稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。
七年級上冊數學知識點總結篇二
第一單元有理數
1.1正數和負數
以前學過的0以外的數前面加上負號「-」的書叫做負數。
以前學過的0以外的數叫做正數。
數0既不是正數也不是負數,0是正數與負數的分界。
在同一個問題中,分別用正數和負數表示的量具有相反的意義
1.2有理數
1.2.1有理數
正整數、0、負整數統稱整數,正分數和負分數統稱分數。
整數和分數統稱有理數。
1.2.2數軸
規定了原點、正方向、單位長度的直線叫做數軸。
數軸的作用:所有的有理數都可以用數軸上的點來表達。
注意事項:⑴數軸的原點、正方向、單位長度三要素,缺一不可。
⑵同一根數軸,單位長度不能改變。
一般地,設是一個正數,則數軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度。
1.2.3相反數
只有符號不同的兩個數叫做互為相反數。
數軸上表示相反數的兩個點關於原點對稱。
在任意一個數前面添上「-」號,新的數就表示原數的相反數。
1.2.4絕對值
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。
一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。
在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小於右邊的數。
比較有理數的大小:⑴正數大於0,0大於負數,正數大於負數。
⑵兩個負數,絕對值大的反而小。
1.3有理數的加減法
1.3.1有理數的加法
有理數的加法法則:
⑴同號兩數相加,取相同的符號,並把絕對值相加。
⑵絕對值不相等的餓異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
⑶一個數同0相加,仍得這個數。
兩個數相加,交換加數的位置,和不變。
加法交換律:a+b=b+a
三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變。
加法結合律:(a+b)+c=a+(b+c)
1.3.2有理數的減法
有理數的減法可以轉化為加法來進行。
有理數減法法則:
減去一個數,等於加這個數的相反數。
a-b=a+(-b)
1.4有理數的乘除法
1.4.1有理數的乘法
有理數乘法法則:
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數。
兩個數相乘,交換因數的位置,積相等。
ab=ba
三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。(ab)c=a(bc)
一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。a(b+c)=ab+ac
數字與字母相乘的書寫規范:
⑴數字與字母相乘,乘號要省略,或用「」
⑵數字與字母相乘,當系數是1或-1時,1要省略不寫。
⑶帶分數與字母相乘,帶分數應當化成假分數。
用字母x表示任意一個有理數,2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數。
一般地,合並含有相同字母因數的式子時,只需將它們的系數合並,所得結果作為系數,再乘字母因數,即
ax+bx=(a+b)x
上式中x是字母因數,a與b分別是ax與bx這兩項的系數。
去括弧法則:
括弧前是「+」,把括弧和括弧前的「+」去掉,括弧里各項都不改變符號。括弧前是「-」,把括弧和括弧前的「-」去掉,括弧里各項都改變符號。括弧外的因數是正數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相同;括弧外的因數是負數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相反。
1.4.2有理數的除法
有理數除法法則:
除以一個不等於0的數,等於乘這個數的倒數。
a÷b=a〃1
b(b≠0)
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於
0的數,都得0。
因為有理數的除法可以化為乘法,所以可以利用乘法的運算性質簡化運算。乘除混合運算往往先將除法化成乘法,然後確定積的符號,最後求出結果。
1.5有理數的乘方
1.5.1乘方
求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數,當an看作a的n次方的結果時,也可以讀作a的n次冪。
負數的奇次冪是負數,負數的偶次冪是正數。
正數的任何次冪都是正數,0的任何正整數次冪都是0。
有理數混合運算的運算順序:
⑴先乘方,再乘除,最後加減;
⑵同極運算,從左到右進行;
⑶如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行
1.5.2科學記數法
把一個大於10的數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學記數法。
用科學記數法表示一個n位整數,其中10的指數是n-1。
1.5.3近似數和有效數字
接近實際數目,但與實際數目還有差別的數叫做近似數。
精確度:一個近似數四捨五入到哪一位,就說精確到哪一位。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字。
對於用科學記數法表示的數a×10n,規定它的有效數字就是a中的有效數字。
七年級上冊數學知識點總結篇三
整式的加減
一、代數式
1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。
二、整式
1、單項式:
(1)由數和字母的乘積組成的代數式叫做單項式。
(2)單項式中的數字因數叫做這個單項式的系數。
(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數項。
3、升冪排列與降冪排列
(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。
去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。
2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
合並同類項:
(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。
(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
(3)合並同類項步驟:
a.准確的找出同類項。
b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。
c.寫出合並後的結果。
(4)在掌握合並同類項時注意:
a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.
b.不要漏掉不能合並的項。
c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
說明:合並同類項的關鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
4、代數式求值的一般步驟:
(1)代數式化簡
(2)代入計算
(3)對於某些特殊的代數式,可採用「整體代入」進行計算。
圖形的初步認識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
二、點和線
1、經過兩點有一條直線,並且只有一條直線。
2、兩點之間線段最短。
3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點的射線組成的圖形。
2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
四、角的比較
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
五、餘角和補角
1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。
2、如果兩個角的和等於180(平角),就說這兩個角互為補角。
3、等角的補角相等。
4、等角的餘角相等。
六、相交線
1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
2、注意:
⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
3、畫已知直線的垂線有無數條。
4、過一點有且只有一條直線與已知直線垂直。
5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
七、平行線
1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4、判定兩條直線平行的 方法 :
(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5、平行線的性質
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
相關 文章 :
1. 初一數學復習三篇
2. 初一上冊數學知識點歸納整理
3. 初一數學上冊知識點歸納
4. 初一數學課本知識點總結
Ⅷ 初一數學上冊《有理數》知識匯總
正數和負數
正數和負數的概念
(1) 像3、1.5、1/2、584等大於0的數,叫做正數,在小學學過的數,除0以外都是正數,正數比0大。
(2) 像-3、-1.5、-1/2、-584等在正數前面加“-”(讀作負)號的數,叫做負數。負數比0小。
(3) 零即不是正數也不是負數,零是正數和負數的分界。
注意:
(1) 為了強調,正數前面有時也可以加上“+”(讀作正)號,例如:3、1.5也可以寫作+3、+1.5。
(2) 對於正數和負數的概念,不能簡單理解為:帶“+”號的數是正數,帶“-”號的數是負數。
例如:-a一定是負數嗎?答案是不一定。因為字母a可以表示任意的數,若a表示的是正數,則-a是負數;若a表示的是0,則-a仍是0;當a表示負數時,-a就不是負數了(此時-a是正數)。
正數、負數表示
正數和負數是根據實際需要而產生的,隨著社會的發展,小學學過的自然數、分數和小數已不能滿足實際的需要,比如一些有相反意義的量:收入200元和支出100元、零上6和零下等等,它們不但意義相反,而且表示一定的數量,怎樣表示它們呢?
我們把一種意義的量規定為正的,把另一種和它意義相反的的量規定為負的,這樣就產生了正數和負數。
用正數和負數表示具有相反意義的量時,哪種意義為正,是可以任意選擇的,但習慣把“前進、上升、收入、零上溫度”等規定為正,而把“後退、下降、支出、零下溫度”等規定為負。
有理數
知識點1 有理數的有關概念
有理數:整數和分數統稱為有理數。
註:(1)有時為了研究的需要,整數也可以看作是分母為1的數,這時的分數包括整數。但是本講中的分數不包括分母是1的分數。
(2)因為分數與有限小數和無限循環小數可以互化,上述小數都可以用分數來表示,所以我們把有限小數和無限循環小數都看作分數。
(3)“0”即不是正數,也不是負數,但“0”是整數。
整數包括正整數、零、負整數。例如:1、2、3、0、-1、-2、-3等等。
分數包括正分數和負分數,例如:1/2、0.6、-1/2、-0.6等等。
知識點2 有理數的分類
(1) 按整數、分數的關系分類:
(2) 按正數、負數與0的關系分類:
註:通常把正數和0統稱為非負數,負數和0統稱為非正數,正整數和0稱為非負整數(也叫做自然數),負整數和0統稱為非正整數。
如果用字母表示數,則a>0表明a是正數;a<0表明a是負數;a≥0表明a是非負數;a≤0表明a是非正數。
知識點3 數軸
數軸是理解有理數概念與運算的重要工具,數與表示數的圖形(如數軸)相結合的思想是學習數學的重要思想。正如華羅庚教授詩雲:
數與形,本是相倚依,焉能分作兩邊飛。
數缺形時少直覺,形少數是難入微。
數形結合百般好,隔裂分家萬事非。
切莫忘,幾何代數統一體,永遠聯系,切莫分離!
數與形的第一次聯姻——數軸,使數與直線上的點之間建立了對應關系,揭示了數與形的內在聯系,並由此成為數形結合的基礎。
1.數軸的定義:規定了原點、正方向和單位長度的直線叫做數軸。
數軸的定義包含三層含義:
(1) 數軸是一條直線,可以向兩端無限延伸;
(2) 數軸有三要素——原點、正方向、單位長度,三者缺一不可;
(3) 原點的選定、正方向的取向、單位長度大小的確定,都是根據實際需要“規定”的(通常取向右為正方向)。
2.數軸的畫法:
(1) 畫一條直線(一般畫成水平的直線)。
(2) 在直線上選取一點為原點,並用這點表示零(在原點下面標上“0”)。
(3) 確定正方向(一般規定向右為正),用箭頭表示出來。
(4) 選取適當的長度作為單位長度,從原點向右,每隔一個單位長度取一點,依次表示為1,2,3……;從原點向左,每隔一個單位長度取一點,依次表示為-1,-2,-3……
註:
(1) 原點的位置、單位長度的大小可根據實際情況適當選取;
(2) 確定單位長度時,根據實際情況,有時也可以每隔兩個(或更多的)單位長度取一點,從原點向右,依次表示為2,4,6,……;從原點向左,依次表示為-2,-4,-6,……;
3.數軸上的點與有理數的關系:
所有的有理數都可以用數軸上的點表示。正有理數可以用原點右邊的點表示,負有理數可以用原點左邊的點表示,零用原點表示。
4.利用數軸比較有理數的大小:
在數軸上表示的兩個數,右邊的數總比左邊的數大。正數都大於0;負數都小於0;正數大於一切負數。
知識點4 相反數
1.相反數的定義
(1) 相反數的幾何定義:在數軸上原點的兩旁,到原點距離相等的兩個點所表示的數,叫做互為相反數。如,4與-4互為相反數。
(2) 相反數的代數定義:只有符號不同的兩個數(除了符號不同以外完全相同),我們說其中一個是另一個的相反數。
2.相反數的性質:
任何一個數都有相反數,而且只有一個。正數的相反數是負數,負數的相反數是正數,0的相反數是0。
0是唯一一個相反數等於本身的數。反之,如果a=-a,那麼a一定是0.
3.相反數的特徵:
若a與b互為相反數,則a+b=0(或a=-b)
若a+b=0(或a=-b),則a與b互為相反數。
4.求一個數的相反數的方法:(見書)
5.多重符號的化簡
(1) 在一個數的前面添上一個“+”號,仍然與原數相同,如+5=5,+(-5)=-5。
(2) 在一個數的前面添上一個“-”號,就成為原數的相反數。如-(-3)就是-3的相反數,因此,-(-3)=3。
知識點5 絕對值的概念
1.絕對值的幾何定義:一個數a的絕對值就是數軸上表示數a的點與原點的距離,數a的絕對值記作“丨a丨”
2.絕對值的代數定義:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
知識點6 有理數大小的比較
正數都大於0,負數都小於0,正數大於一切負數,兩個負數,絕對值大的反而小。
利用數軸,在數軸右邊的數永遠大於左邊的數。
有理數的加減法
有理數的加法
把兩個有理數合成一個有理數的運算叫做有理數的加法。
相加的兩個有理數有以下幾種情況:
(1)兩數都是正數;
(2)兩數都是負數;
(3)兩數異號,即一個是正數,一個是負數;
(4)一個是正數,一個是0;
(5)一個是負數,一個是0;
(6)兩個都是0。
知識點2 有理數加法法則
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
知識點3 有理數加法的運算定律
(1)加法交換律:a+b=b+a。
(2)加法結合律:(a+b)+c=a+(b+c)。
知識點4 有理數減法法則
減去一個數,等於加上這個數的相反數,即a-b=a+(-b)。
知識點5 有理數的加減混合運算
1.有理數加減法統一成加法的意義
對於有理數的加減混合運算中的減法,可以根據有理數減法法則將減法轉化為加法。
這樣一來,就將原來的混合運算統一為加法運算。統一成加法以後的式子是幾個正數或負數的和的形式,有時,我們把這樣的式子叫做代數和。
2.有理數加減混合運算的方法
(1) 運用減法法則將有理數混合運算中的減法轉化為加法。
(2) 運用加法法則、加法交換律、加法結合律簡便運算。
有理數的乘除法
知識點1 有理數乘法法則
兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
知識點2 倒數的概念
乘積是1的兩個數互為倒數。
由於a×1/a(a≠0) ,所以當a是不為0的有理數時,a的倒數是1/a。若a、b互為倒數,則ab=1。
知識點3有理數乘法法則的推廣
(1)幾個不等於0的數相乘,積的符號由負因數的個數決定。當負因數有奇數個時,積為負;當負因數有偶數個時,積為正。
(2)幾個數相乘,只要有一個因數為0,積就為0。
知識點4 有理數乘法的運算定律
(1)乘法交換律:ab=ba。
(2)乘法結合律:(ab)c=a(bc)。
(3)分配律:a(b+c)=ab+ac。
知識點5 有理數除法法則
(1) 除以一個數等於乘以這個數的倒數。即a÷b=a×1/b(b≠0)。
(2) 兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
知識點6 有理數的乘除混合運算
除轉乘,確定符號。
知識點7 有理數的四則混合運算
先乘除,後加減,如果有括弧,就先算括弧裡面的。同級運算中,要按照從左到右的順序。
有理數的乘方
知識點1 有理數乘方的意義
知識點2 有理數乘方運算的性質
正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數。0的任何次冪都是0。
知識點3 有理數混合運算的運算順序
先算乘方,再算乘除,最後算加減,如果有括弧,就先算括弧裡面的。
知識點4 科學計數法
知識點5 研究近似數的意義
在生產實踐和實際生活中,不僅存在著大量的准確數,同時也存在著大量的近似數。近似數就是與實際接近的數。
出現近似數的原因有兩點:一是有時候不能得到完全准確的數,如太陽的半徑大約是696 000千米;二是有時也沒有必要弄得完全准確,如買10千克大米,有時可能多一點,有時也可能少一點。
知識點6 有效數字
四捨五入後的近似數,從左邊第一個不為0的數字起,到精確到的數位止,所有的數字,都叫做這個數的有效數字。
方法技巧1:在只含有乘、除法的算式中,可以由“負”號的個數確定結果的符號。“負”號有奇數個時,結果為負;“負”號有偶數個時,結果為正。
方法技巧2:分數、小數乘除混合運算,通常把小數化為分數,帶分數化為假分數。當把乘除都化成乘積的形式時,應先確定積和符號。含有多重括弧,去括弧的一般方法是由內向外,即依次去掉小、中、大括弧,也可以由外到內。在進行混合運算時,要注意兩點:一是運算順序,二是運算符號。
方法技巧3:靈活運用有理數的運演算法則、運算律,適當地添加或去括弧改變運算順序常可達到簡化運算的效果。湊整、分組、拆項、相消、分解相約、整體處理等是有理數運算常用的方法與技巧。
Ⅸ 七年級數學知識點總結
高效的學習,要學會給自己定定目標,這樣學習會有一個方向;然後要學會梳理自身學習情況,以課本為基礎,結合自己做的筆記、試卷、掌握的薄弱環節、存在的問題等,合理的分配時間,有針對性、具體的去一點一點的攻克、落實。本篇 文章 是我為您整理的《 七年級數學 知識點 總結 歸納》,供大家借鑒。
↓↓↓點擊獲取「七年級知識點」↓↓↓
★ 初一數學上冊知識點歸納 ★
★ 七年級下數學知識點總結 ★
★ 初一地理上冊知識點總結 ★
★ 初一下冊歷史知識點歸納 ★
七年級數學知識點總結1
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;
(2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:
絕對值的問題經常分類討論;
(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.
七年級數學知識點總結2
二元一次方程組
1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.
2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡單是關鍵.
※5.一次方程組的應用:
(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;
(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.
一元一次不等式(組)
1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.
2.不等式的基本性質:
不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;
不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;
不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.
3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.
4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.
七年級數學知識點總結3
整式的加減
一、代數式
1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。
二、整式
1、單項式:
(1)由數和字母的乘積組成的代數式叫做單項式。
(2)單項式中的數字因數叫做這個單項式的系數。
(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數項。
3、升冪排列與降冪排列
(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。
去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。
2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
合並同類項:
(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。
(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
(3)合並同類項步驟:
a.准確的找出同類項。
b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。
c.寫出合並後的結果。
(4)在掌握合並同類項時注意:
a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.
b.不要漏掉不能合並的項。
c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
說明:合並同類項的關鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
4、代數式求值的一般步驟:
(1)代數式化簡
(2)代入計算
(3)對於某些特殊的代數式,可採用「整體代入」進行計算。
圖形的初步認識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
二、點和線
1、經過兩點有一條直線,並且只有一條直線。
2、兩點之間線段最短。
3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點的射線組成的圖形。
2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
四、角的比較
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
五、餘角和補角
1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。
2、如果兩個角的和等於180(平角),就說這兩個角互為補角。
3、等角的補角相等。
4、等角的餘角相等。
六、相交線
1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
2、注意:
⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
3、畫已知直線的垂線有無數條。
4、過一點有且只有一條直線與已知直線垂直。
5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
七、平行線
1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4、判定兩條直線平行的 方法 :
(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5、平行線的性質
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
七年級數學知識點總結相關文章:
★ 七年級數學知識點整理大全
★ 2017年中考初中數學知識點總結
★ 初中數學圓的知識點歸納
★ 初中部數學學習方法總結
★ 初一數學的知識點歸納
★ 初中數學分式知識點總結
★ 初一數學基礎知識點梳理
★ 七年級數學單元知識點
★ 初一數學知識點歸納與學習方法
★ 初一數學知識點歸納華師版
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();Ⅹ 七年級數學知識點有哪些
七年級數學知識點如下:
1、數學中規定:在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小於右邊的數。
2、具有原點,正方向,單位長度的直線叫數軸。
3、加法交換律:兩個數相加,交換加數的位置,和不變。
4、數與數相乘,仍應使用「×」乘,不用「· 」乘,也不能省略乘號。
5、a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a。