❶ 高中數學知識點重點總結大全
總結 是指社會團體、企業單位和個人對某一階段的學習、它可以給我們下一階段的學習和工作生活做指導,因此十分有必須要寫一份總結哦。下面是我給大家帶來的高中數學知識點重點總結大全,以供大家參考!
高中數學知識點重點總結大全
集合的有關概念
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示 方法 :常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N
子集、交集、並集、補集、空集、全集等概念
1)子集:若對_∈A都有_∈B,則AB(或AB);
2)真子集:AB且存在_0∈B但_0A;記為AB(或,且)
3)交集:A∩B={_|_∈A且_∈B}
4)並集:A∪B={_|_∈A或_∈B}
5)補集:CUA={_|_A但_∈U}
注意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
子集的幾個等價關系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
交、並集運算的性質
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個數:
設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
練習題:
已知集合M={_|_=m+,m∈Z},N={_|_=,n∈Z},P={_|_=,p∈Z},則M,N,P滿足關系()
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{_|_=,m∈Z};對於集合N:{_|_=,n∈Z}
對於集合P:{_|_=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。
人教版 高一數學 知識點整理
考點一、映射的概念
1.了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多
2.映射:設A和B是兩個非空集合,如果按照某種對應關系f,對於集合A中的任意一個元素_,在集合B中都存在的一個元素y與之對應,那麼,就稱對應f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應,簡稱「對一」的對應。包括:一對一多對一
考點二、函數的概念
1.函數:設A和B是兩個非空的數集,如果按照某種確定的對應關系f,對於集合A中的任意一個數_,在集合B中都存在確定的數y與之對應,那麼,就稱對應f:A→B為集合A到集合B的一個函數。記作y=f(_),_A.其中_叫自變數,_的取值范圍A叫函數的定義域;與_的值相對應的y的值函數值,函數值的集合叫做函數的值域。函數是特殊的映射,是非空數集A到非空數集B的映射。
2.函數的三要素:定義域、值域、對應關系。這是判斷兩個函數是否為同一函數的依據。
3.區間的概念:設a,bR,且a
①(a,b)={_a
⑤(a,+∞)={__>a}⑥[a,+∞)={__≥a}⑦(-∞,b)={__
考點三、函數的表示方法
1.函數的三種表示方法列表法圖象法解析法
2.分段函數:定義域的不同部分,有不同的對應法則的函數。注意兩點:①分段函數是一個函數,不要誤認為是幾個函數。②分段函數的定義域是各段定義域的並集,值域是各段值域的並集。
考點四、求定義域的幾種情況
①若f(_)是整式,則函數的定義域是實數集R;
②若f(_)是分式,則函數的定義域是使分母不等於0的實數集;
③若f(_)是二次根式,則函數的定義域是使根號內的式子大於或等於0的實數集合;
④若f(_)是對數函數,真數應大於零。
⑤.因為零的零次冪沒有意義,所以底數和指數不能同時為零。
⑥若f(_)是由幾個部分的數學式子構成的,則函數的定義域是使各部分式子都有意義的實數集合;
⑦若f(_)是由實際問題抽象出來的函數,則函數的定義域應符合實際問題
高一數學知識點歸納大全
圓的方程定義:
圓的標准方程(_—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關系:
1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系。
①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
①dR,直線和圓相離、
2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質
⑴圓心到切線的距離等於圓的半徑;
⑵過切點的半徑垂直於切線;
⑶經過圓心,與切線垂直的直線必經過切點;
⑷經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
高中數學知識點重點總結大全相關 文章 :
★ 高中數學知識點總結及公式大全
★ 高中數學知識點全總結最全版
★ 高中數學知識點全總結
★ 高中數學知識點大全
★ 高一數學知識點匯總大全
★ 高中數學知識要點總結範文
★ 高中數學知識點總結歸納最新
★ 高中數學知識點總結
★ 高一數學知識點總結歸納
★ 高一數學知識點全面總結
❷ 高一數學必修一函數及其表示知識點
高一數學必修一函數及其表示知識點 篇1
高一數學必修一函數及其表示:
函數及其表示
知識點詳解文檔包含函數的概念、映射、函數關系的判斷原則、函數區間、函數的三要素、函數的定義域、求具體或抽象數值的函數值、求函數值域、函數的表示方法等
文檔首頁截圖如下:
1。函數與映射的區別:
2。求函數定義域
常見的用解析式表示的函數f(x)的定義域可以歸納如下:
①當f(x)為整式時,函數的定義域為R。
②當f(x)為分式時,函數的定義域為使分式分母不為零的實數集合。
③當f(x)為偶次根式時,函數的定義域是使被開方數不小於0的實數集合。
④當f(x)為對數式時,函數的定義域是使真數為正、底數為正且不為1的實數集合。
⑤如果f(x)是由幾個部分的數學式子構成的,那麼函數定義域是使各部分式子都有意義的實數集合,即求各部分有意義的實數集合的交集。
⑥復合函數的定義域是復合的各基本的函數定義域的交集。
⑦對於由實際問題的背景確定的函數,其定義域除上述外,還要受實際問題的制約。
3。求函數值域
(1)、觀察法:通過對函數定義域、性質的觀察,結合函數的解析式,求得函數的值域;
(2)、配方法;如果一個函數是二次函數或者經過換元可以寫成二次函數的形式,那麼將這個函數的右邊配方,通過自變數的范圍可以求出該函數的值域;
(3)、判別式法:
(4)、數形結合法;通過觀察函數的圖象,運用數形結合的方法得到函數的值域;
(5)、換元法;以新變數代替函數式中的某些量,使函數轉化為以新變數為自變數的函數形式,進而求出值域;
(6)、利用函數的單調性;如果函數在給出的定義域區間上是嚴格單調的,那麼就可以利用端點的函數值來求出值域;
(7)、利用基本不等式:對於一些特殊的分式函數、高於二次的函數可以利用重要不等式求出函數的值域;
(8)、最值法:對於閉區間[a,b]上的連續函數y=f(x),可求出y=f(x)在區間[a,b]內的極值,並與邊界值f(a)。f(b)作比較,求出函數的最值,可得到函數y的值域;
(9)、反函數法:如果函數在其定義域內存在反函數,那麼求函數的值域可以轉化為求反函數的定義域。
高一數學必修一函數及其表示知識點 篇2
知識點總結
本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性和函數的'圖象等知識點。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性是學習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個知識點,函數的圖象就迎刃而解了。
一、函數的單調性
1、函數單調性的定義
2、函數單調性的判斷和證明:
(1)定義法
(2)復合函數分析法
(3)導數證明法
(4)圖象法
二、函數的奇偶性和周期性
1、函數的奇偶性和周期性的定義
2、函數的奇偶性的判定和證明方法
3、函數的周期性的判定方法
三、函數的圖象
1、函數圖象的作法
(1)描點法
(2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。
常見考法
本節是段考和高考必不可少的考查內容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,並且題目難度較大。在解答題中,它可以和高中數學的每一章聯合考查,多屬於拔高題。多考查函數的單調性、最值和圖象等。
誤區提醒
1、求函數的單調區間,必須先求函數的定義域,即遵循「函數問題定義域優先的原則」。
2、單調區間必須用區間來表示,不能用集合或不等式,單調區間一般寫成開區間,不必考慮端點問題。
3、在多個單調區間之間不能用「或」和「 」連接,只能用逗號隔開。
4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關於原點對稱,則函數一定是非奇非偶函數。
5、作函數的圖象,一般是首先化簡解析式,然後確定用描點法或圖象變換法作函數的圖象。
❸ 高中的數學函數為什麼那麼難如何學好高中數學中的函數部分
抽象化函數,便是一類並沒有實際函數函數解析式的函數,一般只能給到函數的一些特性,而同學們要依據自身學過函數知識和函數特性角處理對應的難題。這種題目一般融合導函數的單調性一起考查,多見於選擇填空;這種題目類型同學們需有一定的發散思維,也就是為了掌握普遍函數的求導方式及求導結論,依據題目已知條件復原相對應的函數,
中學數學中函數有四個基本特性:即函數定義域,函數值域,單調性和奇偶性,要想學精這一部分具體內容,一定要緊緊掌握住這四種特性,不管題目如何形變,我覺得說到底或是這四種特性的調查。函數真的是中學數學的關鍵,從近些年高考卷的剖析看得出,在選擇填空題中大部分每一年都是有考查函數的定義(按段函數、函數的函數定義域、函數值域),圖象與特性(單調性、奇偶性、對稱、規律性),有時還獨立考查函數與方程式。函數常與別的知識結合在一起考查,難度系數比較大。
❹ 高一函數知識點總結歸納
高中數學的學習難度主要在於概念的深入和 方法 的抽象。高一是數學學習的起步階段,更是重中之重。今天我在這給大家整理了高一函數知識點 總結 ,接下來隨著我一起來看看吧!
高一函數知識點總結
1 高一數學 函數知識點歸納1、函數:設A、B為非空集合,如果按照某個特定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數,寫作y=f(x),x∈A,其中,x叫做自變數,x的取值范圍A叫做函數的定義域,與x相對應的y的值叫做函數值,函數值的集合B={f(x)∣x∈A }叫做函數的值域。
2、函數定義域的解題思路:
⑴ 若x處於分母位置,則分母x不能為0。
⑵ 偶次方根的被開方數不小於0。
⑶ 對數式的真數必須大於0。
⑷ 指數對數式的底,不得為1,且必須大於0。
⑸ 指數為0時,底數不得為0。
⑹ 如果函數是由一些基本函數通過四則運算結合而成的,那麼,它的定義域是各個部分都有意義的x值組成的集合。
⑺ 實際問題中的函數的定義域還要保證實際問題有意義。
3、相同函數
⑴ 表達式相同:與表示自變數和函數值的字母無關。
⑵ 定義域一致,對應法則一致。
4、函數值域的求法
⑴ 觀察法:適用於初等函數及一些簡單的由初等函數通過四則運算得到的函數。
⑵ 圖像法:適用於易於畫出函數圖像的函數已經分段函數。
⑶ 配方法:主要用於二次函數,配方成 y=(x-a)2+b 的形式。
⑷ 代換法:主要用於由已知值域的函數推測未知函數的值域。
5、函數圖像的變換
⑴ 平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進行加減。
⑵ 伸縮變換:在x前加上系數。
⑶ 對稱變換:高中階段不作要求。
6、映射:設A、B是兩個非空集合,如果按某一個確定的對應法則f,使對於A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對應,那麼就稱對應f:A→B為從集合A到集合B的映射。
⑴ 集合A中的每一個元素,在集合B中都有象,並且象是唯一的。
⑵ 集合A中的不同元素,在集合B中對應的象可以是同一個。
⑶ 不要求集合B中的每一個元素在集合A中都有原象。
7、分段函數
⑴ 在定義域的不同部分上有不同的解析式表達式。
⑵ 各部分自變數和函數值的取值范圍不同。
⑶ 分段函數的定義域是各段定義域的交集,值域是各段值域的並集。
8、復合函數:如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的復合函數。
2高一數學函數的性質1、函數的局部性質——單調性
設函數y=f(x)的定義域為I,如果對應定義域I內的某個區間D內的任意兩個變數x1、x2,當x1< x2時,都有f(x1)<f(x2),那麼y=f(x)在區間d上是增函數,d是函數y=f(x)的單調遞增區間;當x1< x2時,都有f(x1)="">f(x2),那麼那麼y=f(x)在區間D上是減函數,D是函數y=f(x)的單調遞減區間。
⑴函數區間單調性的判斷思路
ⅰ在給出區間內任取x1、x2,則x1、x2∈D,且x1< x2。
ⅱ 做差值f(x1)-f(x2),並進行變形和配方,變為易於判斷正負的形式。
ⅲ判斷變形後的表達式f(x1)-f(x2)的符號,指出單調性。
⑵復合函數的單調性
復合函數y=f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律為「同增異減」;多個函數的復合函數,根據原則「減偶則增,減奇則減」。
⑶注意事項
函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫成並集,如果函數在區間A和B上都遞增,則表示為f(x)的單調遞增區間為A和B,不能表示為A∪B。
2、函數的整體性質——奇偶性
對於函數f(x)定義域內的任意一個x,都有f(x) =f(-x),則f(x)就為偶函數;
對於函數f(x)定義域內的任意一個x,都有f(x) =-f(x),則f(x)就為奇函數。
我推薦:高中數學必考知識點歸納總結
⑴奇函數和偶函數的性質
ⅰ無論函數是奇函數還是偶函數,只要函數具有奇偶性,該函數的定義域一定關於原點對稱。
ⅱ奇函數的圖像關於原點對稱,偶函數的圖像關於y軸對稱。
⑵函數奇偶性判斷思路
ⅰ先確定函數的定義域是否關於原點對稱,若不關於原點對稱,則為非奇非偶函數。
ⅱ確定f(x) 和f(-x)的關系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數為偶函數;
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數為奇函數。
3、函數的最值問題
⑴對於二次函數,利用配方法,將函數化為y=(x-a)2+b的形式,得出函數的最大值或最小值。
⑵對於易於畫出函數圖像的函數,畫出圖像,從圖像中觀察最值。
⑶關於二次函數在閉區間的最值問題
ⅰ判斷二次函數的頂點是否在所求區間內,若在區間內,則接ⅱ,若不在區間內,則接ⅲ。
ⅱ 若二次函數的頂點在所求區間內,則在二次函數y=ax2+bx+c中,a>0時,頂點為最小值,a<0時頂點為最大值;後判斷區間的兩端點距離頂點的遠近,離頂點遠的端點的函數值,即為a>0時的最大值或a<0時的最小值。
ⅲ 若二次函數的頂點不在所求區間內,則判斷函數在該區間的單調性
若函數在[a,b]上遞增,則最小值為f(a),最大值為f(b);
若函數在[a,b]上遞減,則最小值為f(b),最大值為f(a)。
3高一數學基本初等函數1、指數函數:函數y=ax (a>0且a≠1)叫做指數函數
a 的取值 a>1 0<a<1 定義域 x∈R x∈R 值域 y∈(0,+∞) y∈(0,+∞) 單調性 全定義域單調遞增 全定義域單調遞減 奇偶性 非奇非偶函數 非奇非偶函數 過定點 (0,1) (0,1)
注意:⑴由函數的單調性可以看出,在閉區間[a,b]上,指數函數的最值為:
a>1時,最小值f(a),最大值f(b);0<a<1時,最小值f(b),最大值f(a)。< p="">
⑵ 對於任意指數函數y=ax (a>0且a≠1),都有f(1)=a。
2、對數函數:函數y=logax(a>0且a≠1)),叫做對數函數
a 的取值 a>1 0<a<1 定義域 x∈(0,+∞) x∈(0,+∞) 值域 y∈R y∈R 單調性 全定義域單調遞 全定義域單調遞減 奇偶性 非奇非偶函數 非奇非偶函數 過定點 (1,0) (1,0)
3、冪函數:函數y=xa(a∈R),高中階段,冪函數只研究第I象限的情況。
⑴所有冪函數都在(0,+∞)區間內有定義,而且過定點(1,1)。
⑵a>0時,冪函數圖像過原點,且在(0,+∞)區間為增函數,a越大,圖像坡度越大。
⑶a<0時,冪函數在(0,+∞)區間為減函數。
當x從右側無限接近原點時,圖像無限接近y軸正半軸;
當y無限接近正無窮時,圖像無限接近x軸正半軸。
冪函數總圖見下頁。
4、反函數:將原函數y=f(x)的x和y互換即得其反函數x=f-1(y)。
反函數圖像與原函數圖像關於直線y=x對稱。
高中數學怎麼學?
一、數學的學習時間應該佔全部總學科的50%左右;
數學是一個費時費力的學科,無論文理。對於文科和理科來說,數學的高考成績都是重中之重。比如文科,鮮有聽到一個班文綜成績能差60分以上的,但數學別說60,80都能差出來。對於理科,物理,化學都需要大量的運算,數學的學習又是提供一種工具與思維。因此,對於之前的文理科,抑或是現在取消文理以後的偏文,偏理科來說,數學都是非常重要的。
數學在課下學習的時間,大約應該佔到整體學習的50%左右。比如每天晚上學習3個小時,至少有1個半小時要學習數學。為啥需要這么長時間?主要就是因為,很多數學題需要相對長時間的思考與總結。不過,相信我,當你數學成績顯著提高以後,其他學科成績會非常容易提升。同時,你可以做個小小的調查,但凡是數學學習成績非常好,並且成績很穩定的同學,他的數學相關學習時間也基本符合50%這個比例。
二、每一道數學題都值得做三遍;
對於每一道數學題(特別特別簡單的除外),都要做三遍。
第1遍就是正常做,然後對照參考答案與解題思路,更正答案。
第2遍做一般是隔天效果最好,重新再快速地把之前所有的題目全部都重新做一遍,這個「做」不是和第1遍一樣1字不差,從頭到尾地演算。而是要針對關鍵步驟,關鍵思路進行整理。比如之前看到某一個題目的時候,我們的想法是A,結果正確的解題思路是B,A和B相比差異非常大。這個時候我們就需要通過第2遍做,更正我們的思路,糾正我們的 思維方式 ,改變我們的思考習慣。第2遍做的時候,還是出錯的題目,就一定要用星號重點標注,留備復習使用。
第3遍做,最好是7天以後。時隔七天,這個時候再做一遍,你就會有豁然開朗的感覺。對於90%以上的題目,你基本上就是看到題目就知道思路是什麼,解題步驟是什麼,甚至你都能記得每一步之前計算的結果是什麼,錯在了哪裡。對於之前第2遍做錯了,標注星號的題目一定要認認真真,從頭開始再做1次,這個時候如果還感覺不熟練,還是做錯,那麼就需要請出我們的錯題本了。
三、要有一個自己的錯題記錄本;
錯題本的意義,不是把每一道你做錯的題目都謄寫一遍,而是要把那些反復做不對,反復做都有差錯的題目保存下來。錯題本的本質,是對我們思維方式,思考習慣的一個糾正。在這個錯題本上的題目都應該是做了3遍還會出錯的題目。
而錯題本的記錄內容,至少應該包括下面幾個內容。1是完整的題目信息;2是用自己的方式演算出的正確答案(將參考答案照抄一遍沒有任何意義);3是自己對這個題目的評論,需要重點指出關鍵步驟,以及自己最初的想法與正確做法的差異在哪裡。
此外,錯題本需要長期積累,不要1個月1個本,而是要盡量以年為單位進行更換錯題本。每次考試之前,都認認真真地重做一次錯題本上的題目,你會有「涅槃」的感覺,而這些題目的積累將是你學習過程中最寶貴的財富之一。
四、要看課本;
很多人覺得,數學課本可能是中學階段最「水」的課本了,都覺得課本上的習題都簡單的不行,一眼出答案,怎麼就還需要看課本呢?其實,這些人都是知其然而不知其所以然。我們思考一個問題,高考考什麼?高考是一個劃定了考試大綱的考試,也就是所有的考試范圍你是都知道的。那麼什麼是高考的考試大綱范圍?就是我們的課本呀!!!
在經過一段時間的學習以後,比如是一個章節的學習,就一定要拿出數學課本,找一個連貫的時間,靜靜地讀完數學課本里對應章節的每一段話,每一個字,包括所有的補充材料。當然,課後的習題,也都要通讀。在讀完這些內容以後,最後還要翻開課本的目錄,對應這個章節的每一個小標題,靜心回憶一下每一個小標題的最重要的知識點,你最感興趣的內容等等。
五、要構建自己的知識網路;
很多人覺得,數學的學習就是做題,把能做的題目都做了,把能改的錯誤都改了便能學好數學。我個人認為,這樣做確實能夠提高成績,但僅僅是提高了成績,卻沒有學到知識。人的認知是網狀的,而不是線性的,如果想要把一個東西真的弄懂,內化成自己的知識,就一定要有層級結構記憶的概念。最終要有自己對學科的認知。
比如,我對高中數學的認知:方程,函數,不等式,邏輯命題是基礎;數列是離散化的函數;平面解析幾何本質上是通過條件,列方程,解方程;立體幾何屬於獨立部分;除此以外,還有一些其他邊邊角角的小知識點,比如概率論初步,微積分初步等等。
說這么多,就是希望大家最終學到手的知識,一定要總結,一定要內化,一定要嘗試構建自己的認知體系,一定要有高屋建瓴的感覺。不能專注於某一個細節「流連忘返」,而是要不斷的zoom in, zoom out,平衡整體與部分的關系,建立起自己對整個數學學科的理解。
六、大型考試之前的准備工作
考試之前,需要做好3件事情。1是需要認真閱讀課本目錄,目錄中每個標題對應的知識重點;2是需要把錯題本上的所有錯題全部重新過一遍;3是好好休息,沒必要臨時突擊。
只要能做到以上6點,我相信你能夠收獲一個滿意的成績。
高一函數知識點總結相關 文章 :
★ 高一數學知識點總結(考前必看)
★ 高一數學冪函數知識點總結
★ 高一數學知識點總結歸納
★ 高中數學函數知識歸納總結
★ 2020高一數學知識點總結
★ 高一數學公式知識總結歸納
★ 高一數學重點知識點公式總結
★ 高一數學知識點總結期末必備
★ 高一數學知識點總結(人教版)
★ 高一數學必修一知識點匯總
❺ 高二數學關於函數的知識點總結
因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。以下是我給大家整理的 高二數學 關於函數的知識點 總結 ,希望大家能夠喜歡!
高二數學關於函數的知識點總結1
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定 方法 有:定義法(作差比較和作商比較)
導數法(適用於多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關於原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。
判別方法:定義法,圖像法,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區間上的函數解析式。
高二數學關於函數的知識點總結2
(1)定義:
(2)函數存在反函數的條件:
(3)互為反函數的定義域與值域的關系:
(4)求反函數的步驟:①將看成關於的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數的定義域(即的值域)。
(5)互為反函數的圖象間的關系:
(6)原函數與反函數具有相同的單調性;
(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。
七、常用的初等函數:
(1)一元一次函數:
(2)一元二次函數:
一般式
兩點式
頂點式
二次函數求最值問題:首先要採用配方法,化為一般式,
有三個類型題型:
(1)頂點固定,區間也固定。如:
(2)頂點含參數(即頂點變動),區間固定,這時要討論頂點橫坐標何時在區間之內,何時在區間之外。
(3)頂點固定,區間變動,這時要討論區間中的參數.
等價命題在區間上有兩根在區間上有兩根在區間或上有一根
注意:若在閉區間討論方程有實數解的情況,可先利用在開區間上實根分布的情況,得出結果,在令和檢查端點的情況。
(3)反比例函數:
(4)指數函數:
指數函數:y=(a>o,a≠1),圖象恆過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0
(5)對數函數:
對數函數:y=(a>o,a≠1)圖象恆過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0
高二數學關於函數的知識點總結3
銳角三角函數定義
銳角角A的正弦(sin),餘弦(cos)和正切(tan),餘切(cot)以及正割(sec),餘割(csc)都叫做角A的銳角三角函數。
正弦(sin)等於對邊比斜邊;sinA=a/c
餘弦(cos)等於鄰邊比斜邊;cosA=b/c
正切(tan)等於對邊比鄰邊;tanA=a/b
餘切(cot)等於鄰邊比對邊;cotA=b/a
正割(sec)等於斜邊比鄰邊;secA=c/b
餘割(csc)等於斜邊比對邊。cscA=c/a
互餘角的三角函數間的關系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數關系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
銳角三角函數公式
兩角和與差的三角函數:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
三角和的三角函數:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
輔助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半形公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推導公式:
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
其他:
sinα+sin(α+2π/n)+sin(α+2π_2/n)+sin(α+2π_3/n)+……+sin[α+2π_(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π_2/n)+cos(α+2π_3/n)+……+cos[α+2π_(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
函數名正弦餘弦正切餘切正割餘割
在平面直角坐標系xOy中,從點O引出一條射線OP,設旋轉角為θ,設OP=r,P點的坐標為(x,y)有
正弦函數sinθ=y/r
餘弦函數cosθ=x/r
正切函數tanθ=y/x
餘切函數cotθ=x/y
正割函數secθ=r/x
餘割函數cscθ=r/y
正弦(sin):角α的對邊比上斜邊
餘弦(cos):角α的鄰邊比上斜邊
正切(tan):角α的對邊比上鄰邊
餘切(cot):角α的鄰邊比上對邊
正割(sec):角α的斜邊比上鄰邊
餘割(csc):角α的斜邊比上對邊
三角函數萬能公式
萬能公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可
(4)對於任意非直角三角形,總有
tanA+tanB+tanC=tanAtanBtanC
證:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得證
同樣可以得證,當x+y+z=nπ(n∈Z)時,該關系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下結論
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
萬能公式為:
設tan(A/2)=t
sinA=2t/(1+t^2)(A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2)(A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2)(A≠2kπ+π,且A≠kπ+(π/2)k∈Z)
就是說sinA.tanA.cosA都可以用tan(A/2)來表示,當要求一串函數式最值的時候,就可以用萬能公式,推導成只含有一個變數的函數,最值就很好求了.
三角函數關系
倒數關系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscαcα
平方關系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數關系六角形記憶法
構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數關系
對角線上兩個函數互為倒數;
商數關系
六邊形任意一頂點上的函數值等於與它相鄰的兩個頂點上函數值的乘積。(主要是兩條虛線兩端的三角函數值的乘積,下面4個也存在這種關系。)。由此,可得商數關系式。
平方關系
在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等於下面頂點上的三角函數值的平方。
兩角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角的正弦、餘弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α)
高二數學關於函數的知識點總結相關 文章 :
★ 高二數學函數基本性質知識總結
★ 高中數學函數知識歸納總結
★ 高二數學知識點歸納小總結
★ 高二數學必修一函數的概念知識點與學習方法
★ 高二數學知識點總結歸納
★ 高二數學函數公式歸納
★ 高二數學知識點總結(人教版)
★ 高二數學知識點總結詳細
★ 高二數學知識點新總結2020
★ 高二數學知識點總結人教版
❻ 高考數學復合函數知識點歸納
不是任何兩個函數都可以復合成一個復合函數,只有當Mx∩Du≠?時,二者才可以構成一個復合函數。下面是我為大家精心推薦數學復合函數知識點 總結 ,希望能夠對您有所幫助。
高考數學復合函數知識點歸納
1.復合函數定義域
若函數y=f(u)的定義域是B,u=g(x)的定義域是A,則復合函數y=f[g(x)]的定義域是
D={x|x∈A,且g(x)∈B} 綜合考慮各部分的x的取值范圍,取他們的交集。
求函數的定義域主要應考慮以下幾點:
⑴當為整式或奇次根式時,R的值域;
⑵當為偶次根式時,被開方數不小於0(即≥0);
⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數大於0;
⑷當為指數式時,對零指數冪或負整數指數冪,底不為0(如,中)。
⑸當是由一些基本函數通過四則運算結合而成的,它的定義域應是使各部分都有意義的自變數的值組成的集合,即求各部分定義域集合的交集。
⑹分段函數的定義域是各段上自變數的取值集合的並集。
⑺由實際問題建立的函數,除了要考慮使解析式有意義外,還要考慮實際意義對自變數的要求
⑻對於含參數字母的函數,求定義域時一般要對字母的取值情況進行分類討論,並要注意函數的定義域為非空集合。
⑼對數函數的真數必須大於零,底數大於零且不等於1。
⑽三角函數中的切割函數要注意對角變數的限制。
註:設y=f(u)的最小正周期為T1,μ=φ(x)的最小正周期為T2,則y=f(μ)的最小正周期為T1_2,任一周期可表示為k_1_2(k屬於R+)
2.復合函數單調性
依y=f(u),μ=φ(x)的單調性來決定。即「增+增=增;減+減=增;增+減=減;減+增=減」,可以簡化為「同增異減」。
⑴求復合函數的定義域;
⑵將復合函數分解為若干個常見函數(一次、二次、冪、指、對函數);
⑶判斷每個常見函數的單調性;
⑷將中間變數的取值范圍轉化為自變數的取值范圍;
⑸求出復合函數的單調性。
三角函數誘導公式記憶口訣
「奇變偶不變,符號看象限」。「奇、偶」指的是π/2的倍數的奇偶,「變與不變」指的是三角函數的名稱的變化:「變」是指正弦變餘弦,正切變餘切。(反之亦然成立)「符號看象限」的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區間(π/2,π)上小於零,所以右邊符號為負,所以右邊為-sinα。
三角函數誘導公式大全
公式一:設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二:設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α與-α的三角函數值之間的關系(利用原函數奇偶性):
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
推算公式:3π/2±α與α的三角函數值之間的關系:
sin(3π/2+α)=-cosα
sin(3π/2-α)=-cosα
cos(3π/2+α)=sinα
cos(3π/2-α)=-sinα
tan(3π/2+α)=-cotα
tan(3π/2-α)=cotα
cot(3π/2+α)=-tanα
cot(3π/2-α)=tanα
兩角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
二倍角的正弦、餘弦和正切公式
sin2α=2sinαcosα
cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)
tan2α=2tanα/[1-tan2(α)]
tan[(1/2)α]=(sinα)/(1+cosα)=(1-cosα)/sinα
半形的正弦、餘弦和正切公式
sin2(α/2)=(1-cosα)/2
cos2(α/2)=(1+cosα)/2
tan2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
萬能公式
sinα=2tan(α/2)/[1+tan2(α/2)]
cosα=[1-tan2(α/2)]/[1+tan2(α/2)]
tanα=[2tan(α/2)]/[1-tan2(α/2)]
三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin3(α)
cos3α=4cos3(α)-3cosα
tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]
三角函數的和差化積公式
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
三角函數的積化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
高考數學復合函數知識點歸納相關 文章 :
1. 2020高三數學函數知識點歸納
2. 高考數學知識點總結歸納
3. 高考數學必考知識點考點2020大全總結
4. 高考數學易混淆知識點總結精華版
5. 高中數學高考知識點 高中數學高考要點
6. 2017年高考數學函數的單調性必考知識點
7. 高中數學函數知識歸納總結
8. 高考數學必考知識點考點2020
9. 高考數學考點2020總結概括
10. 高考數學知識點口訣
❼ 高一數學必修一函數的概念知識點
高中數學因為知識點多,好多同學聽課能聽懂,但是做題卻不會。因此,經常性的復習是鞏固數學知識點的很好的途徑。以下是我為您整理的關於高一數學必修一函數的概念知識點的相關資料,供您閱讀。
高一數學必修一函數的概念知識點
知識點總結
本節主要包括函數的定義、函數的表示方法、函數的定義域、函數的值域、分段函數及映射等知識點。其中關鍵是函數的概念的理解。
1、映射的定義
2、函數的概念
3、函數的三要素:定義域、值域和對應法則。
4、兩個函數能成為同一函數的條件
當且僅當兩個函數的定義域和對應法則完全相同時,這兩個函數才是同一函數。
5、區間的概念和記號
6、函數的表示方法
函數的表示方法有三種。(1)解析法(2)列表法(3)圖像法
7、分段函數
常見考法
本節是段考和高考必不可少的考查部分,多以選擇題和填空題的形式出現。段考中常考查函數的定義域、值域、對應法則、同一函數、函數的解析式和分段函數。高考中可以和高中數學的大部分章節知識聯合考查,但是難度不大,屬於容易題。多考查函數的定義域、函數的表示方法和分段函數。
誤區提醒
1、映射是一種特殊的函數,映射中的集合A,B可以是數集,也可以是點集或其他集合,這兩個集合有先後順序。A到B的映射與B到A的映射是不同的。而函數是數集到數集的映射,所以函數是特殊的映射,但是映射不一定是函數。
2、函數的問題,要遵循“定義域優先”的原則。無論是簡單的函數,還是復雜的函數,無論是具體的函數,還是抽象的函數,必須優先考慮函數的定義域。之所以要做到這一點,不僅是為了防止出現錯誤,有時還會為解題帶來方便。
❽ 求高中有關函數知識點的總結
高中數學必勝秘籍之函數知識點總結高中數學必勝秘籍之函數知識點總結高中數學必勝秘籍之函數知識點總結高中數學必勝秘籍之函數知識點總結
函:包含
函數;彼此相關的兩個量之一,他們的關系是一個量的諸值與另外一個量的諸值相對應
1.
對於集合,一定要抓住集合的代表元素,及元素的「確定性、互異性、無序性」。
{}{}{}如:集合,,,、、AxyxByyxCxyyxABC======|lg|lg(,)|lg
中元素各表示什麼?
A表示函數y=lgx的定義域,B表示的是值域,而C表示的卻是函數上的點的軌跡
2
進行集合的交、並、補運算時,不要忘記集合本身和空集的特殊情況
注重藉助於數軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,AxxxBxax=−−===||22301
若,則實數的值構成的集合為BAa⊂
(答:,,)−1013
顯然,這里很容易解出A={-1,3}.而B最多隻有一個元素。故B只能是-1或者3。根據條件,可以得到a=-1,a=1/3.
但是,
這里千萬小心,還有一個B為空集的情況,也就是a=0,不要把它搞忘記了。
3.
注意下列性質:
{}()集合,,……,的所有子集的個數是;1212aaann
要知道它的來歷:若B為A的子集,則對於元素a1來說,有2種選擇(在或者不在)。同樣,對於元素a2,
a3,……an,都有2種選擇,所以,總共有2n種選擇,
即集合A有2n個子集。
當然,我們也要注意到,這2n種情況之中,包含了這n個元素全部在何全部不在的情況,故真子集個數為21n−,非空真子集個數為22n−
()若,;2ABABAABB⊆⇔==IU
(3)德摩根定律:
()()()()()()CCCCCCUUUUUUABABABABUIIU==,
有些版本可能是這種寫法,遇到後要能夠看懂
❾ 高中數學函數知識點歸納
知識的確是天空中偉大的太陽,它那萬道光芒投下了生命,投下了力量。下面我給大家分享一些高中數學函數知識點,希望能夠幫助大家,歡迎閱讀!
目錄
一次函數定義與定義式
一次函數的性質
一次函數的圖像及性質
高中數學函數的奇偶性
高中數學函數知識點
高中數學函數知識點大全
一次函數定義與定義式自變數x和因變數y有如下關系:
y=kx+b
則此時稱y是x的一次函數。
特別地,當b=0時,y是x的正比例函數。
即:y=kx(k為常數,k≠0)
1.y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數b取任何實數)
2.當x=0時,b為函數在y軸上的截距。
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,並連成直線即可。(通常找函數圖像與x軸和y軸的交點)
2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)正比例函數的圖像總是過原點。
3.k,b與函數圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b<0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
1.函數的奇偶性
(1)若f(x)是偶函數,那麼f(x)=f(-x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數);
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;
2.復合函數
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。
(2)復合函數的單調性由「同增異減」判定;
3.函數圖像(或方程曲線的對稱性)
(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;
(6)函數y=f(x-a)與y=f(b-x)的圖像關於直線x=對稱;
點擊查看:高中數學知識點 總結
4.函數的周期性
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恆成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;
(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;
(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;
(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;
5.方程k=f(x)有解k∈D(D為f(x)的值域);
6.a≥f(x)恆成立a≥[f(x)]max,;a≤f(x)恆成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符號由口訣「同正異負」記憶;
(4)alogaN=N(a>0,a≠1,N>0);
8.判斷對應是否為映射時,抓住兩點:
(1)A中元素必須都有象且唯一;
(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;
9.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。
10.對於反函數,應掌握以下一些結論:
(1)定義域上的單調函數必有反函數;
(2)奇函數的反函數也是奇函數;
(3)定義域為非單元素集的偶函數不存在反函數;
(4)周期函數不存在反函數;
(5)互為反函數的兩個函數具有相同的單調性;
(6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
11.處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關系;
12.依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題;
13.恆成立問題的處理 方法 :(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解。
奇偶性
注圖:(1)為奇函數(2)為偶函數
1.定義
一般地,對於函數f(x)
(1)如果對於函數定義域內的任意一個x,都有f(-x)=-f(x),那麼函數f(x)就叫做奇函數。
(2)如果對於函數定義域內的任意一個x,都有f(-x)=f(x),那麼函數f(x)就叫做偶函數。
(3)如果對於函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那麼函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。
(4)如果對於函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那麼函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。
說明:①奇、偶性是函數的整體性質,對整個定義域而言
②奇、偶函數的定義域一定關於原點對稱,如果一個函數的定義域不關於原點對稱,則這個函數一定不是奇(或偶)函數。
(分析:判斷函數的奇偶性,首先是檢驗其定義域是否關於原點對稱,然後再嚴格按照奇、偶性的定義經過化簡、整理、再與f(x)比較得出結論)
③判斷或證明函數是否具有奇偶性的根據是定義
2.奇偶函數圖像的特徵:
定理 奇函數的圖像關於原點成中心對稱圖表,偶函數的圖象關於y軸或軸對稱圖形。
f(x)為奇函數《==》f(x)的圖像關於原點對稱
點(x,y)→(-x,-y)
奇函數在某一區間上單調遞增,則在它的對稱區間上也是單調遞增。
偶函數 在某一區間上單調遞增,則在它的對稱區間上單調遞減。
3. 奇偶函數運算
(1) . 兩個偶函數相加所得的和為偶函數.
(2) . 兩個奇函數相加所得的和為奇函數.
(3) . 一個偶函數與一個奇函數相加所得的和為非奇函數與非偶函數.
(4) . 兩個偶函數相乘所得的積為偶函數.
(5) . 兩個奇函數相乘所得的積為偶函數.
(6) . 一個偶函數與一個奇函數相乘所得的積為奇函數.
定義域
(高中函數定義)設A,B是兩個非空的數集,如果按某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A--B為集合A到集合B的一個函數,記作y=f(x),x屬於集合A。其中,x叫作自變數,x的取值范圍A叫作函數的定義域;
值域
名稱定義
函數中,應變數的取值范圍叫做這個函數的值域函數的值域,在數學中是函數在定義域中應變數所有值的集合
常用的求值域的方法
(1)化歸法;(2)圖象法(數形結合),
(3)函數單調性法,
(4)配方法,(5)換元法,(6)反函數法(逆求法),(7)判別式法,(8)復合函數法,(9)三角代換法,(10)基本不等式法等
對數函數
對數函數的一般形式為 ,它實際上就是指數函數 的反函數。因此指數函數里對於a的規定,同樣適用於對數函數。
右圖給出對於不同大小a所表示的函數圖形:
可以看到對數函數的圖形只不過的指數函數的圖形的關於直線y=x的對稱圖形,因為它們互為反函數。
(1)對數函數的定義域為大於0的實數集合。
(2)對數函數的值域為全部實數集合。
(3)函數總是通過(1,0)這點。
(4)a大於1時,為單調遞增函數,並且上凸;a小於1大於0時,函數為單調遞減函數,並且下凹。
(5)顯然對數函數無界。
指數函數
指數函數的一般形式為 ,從上面我們對於冪函數的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得
如圖所示為a的不同大小影響函數圖形的情況。
可以看到:
(1) 指數函數的定義域為所有實數的集合,這里的前提是a大於0,對於a不大於0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。
(2) 指數函數的值域為大於0的實數集合。
(3) 函數圖形都是下凹的。
(4) a大於1,則指數函數單調遞增;a小於1大於0,則為單調遞減的。
(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6) 函數總是在某一個方向上無限趨向於X軸,永不相交。
(7) 函數總是通過(0,1)這點。
(8) 顯然指數函數無界。
高中數學函數知識點歸納相關 文章 :
★ 高中數學函數知識歸納總結
★ 高三數學函數知識點歸納
★ 高一函數知識點總結歸納
★ 高中數學函數知識點
★ 高中數學必考知識點歸納整理
★ 高一數學一次函數知識點總結
★ 高一數學知識點總結歸納
★ 高中數學知識點最新歸納
★ 高中數學知識點大全
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();