① 華師大版八年級數學知識點歸納
天才就是勤奮曾經有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
八年級數學知識點 總結
函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的 方法 叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
初二下冊數學知識點總結
【解一元一次方程】
1.等式與等量:用"="號連接而成的式子叫等式.注意:"等量就能代入"!
2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.
3.方程:含未知數的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:"方程的解就能代入"!
5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.
6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.
7.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).
8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).
9.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解).
10.列一元一次方程解應用題:
(1)讀題分析法:…………多用於"和,差,倍,分問題"
仔細讀題,找出表示相等關系的關鍵字,例如:"大,小,多,少,是,共,合,為,完成,增加,減少,配套-----",利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法:…………多用於"行程問題"
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
初二數學 學習 經驗 心得
學好初中數學課前要預習
初中生想要學好數學,那麼就要利用課前的時間將課上老師要講的內容預習一下。初中數學課前的預習是要明白老師在課上大致所講的內容,這樣有利於和方便初中生整理知識結構。
初中生 課前預習 數學還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現溜號和走神的情況。同時課前預習還可以將知識點形成體系,可以幫助初中生建立完整的知識結構。
學習初中數學課上是關鍵
初中生想要學好學生,在課上就是一個字:跟。上初中數學課時跟住老師,老師講到哪裡一定要跟上,仔細看老師的板書,隨時知道老師講的是哪裡,涉及到的知識點是什麼。有的初中生喜歡記筆記,在這里提醒大家,初中數學課上的時候盡量不要記筆記。
你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課後完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。
課後可以適當做一些初中數學基礎題
在每學完一課後,初中生可以在課後做一些初中數學的基礎題型,在做這樣的題時,建議大家是,不要出現錯誤的情況,做完題後要學會思考和整理。當你的初中數學基礎題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據解析看題。
但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數學的學習有幫助的,但是如果將重點放在這上面,沒有什麼好處。同時要學會整理,將自己錯題歸納並總結,
數學是由簡單明了的事項一步一步地發展而來,所以,只要學習數學的人老老實實地、一步一步地去理解,並同時記住其要點,以備以後之需用,就一定能理解其全部內容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復地做同一件事,故不管誰都應該會做.
華師大版八年級數學知識點歸納相關 文章 :
★ 初二數學華師大版知識點
★ 華師大八年級下數學教學總結
★ 八年級上冊華師版數學思維導圖
★ 八年級數學學習方法指導
★ 八年級下冊數學教案華師大範文3篇
★ 八年級上冊數學教案華東師大版
★ 八年級華師大上冊第十一章數學教案(2)
★ 八年級學習方法指導
★ 八年級華師大上冊第十一章數學教案
★ 八年級數學期末考試質量分析
② 華東師大初二數學上冊知識點
偉大的成績和辛勤勞動是成正比例的,有一分勞動就有一分收獲,積累,從少到多,奇跡就可以創造出來。學習也是一樣的,需要積累,從少變多。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
八年級 數學三角證明知識點
第一章三角形的證明
1、等腰三角形
(1)三角形全等的性質及判定
全等三角形的對應邊相等,對應角也相等判定:SSS、SAS、ASA、AAS、
(2)等腰三角形的判定、性質及推論
性質:等腰三角形的兩個底角相等(等邊對等角)
判定:有兩個角相等的三角形是等腰三角形(等角對等邊)
推論:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合(即「三線合一」)
(3)等邊三角形的性質及判定定理
性質定理:等邊三角形的三個角都相等,並且每個角都等於60度;等邊三角形的三條邊都滿足「三線合一」的性質;等邊三角形是軸對稱圖形,有3條對稱軸。
判定定理:有一個角是60度的等腰三角形是等邊三角形。或者三個角都相等的三角形是等邊三角形。
(4)含30度的直角三角形的邊的性質
定理:在直角三角形中,如果一個銳角等於30度,那麼它所對的直角邊等於斜邊的一半。
2、直角三角形
(1)勾股定理及其逆定理
定理:直角三角形的兩條直角邊的平方和等於斜邊的平方。
逆定理:如果三角形兩邊的平方和等於第三邊的平方,那麼這個三角形是直角三角形。
(2)直角三角形兩個銳角之間的關系
定理:直角三角形兩個銳角互余。
逆定理:有兩個銳角互余的三角形是直角三角形。
(3)含30度的直角三角形的邊的定理
定理:在直角三角形中,如果一個銳角等於30度,那麼它所對的直角邊等於斜邊的一半。
逆定理:在直角三角形中,一條直角邊是斜邊的一半,那麼這條直角邊所對的銳角是30度。
(4)命題與逆命題
命題包括已知和結論兩部分;逆命題是將倒是的已知和結論交換;正確的逆命題就是逆定理。
(5)直角三角形全等的判定定理
定理:斜邊和一條直角邊對應相等的兩個直角三角形全等(HL)
3、線段的垂直平分線
(1)線段垂直平分線的性質及判定
性質:線段垂直平分線上的點到這條線段兩個端點的距離相等。
判定:到一條線段兩個端點距離相等的點在這條線段的垂直平分線上。
(2)三角形三邊的垂直平分線的性質
三角形三條邊的垂直平分線相交於一點,並且這一點到三個頂點的距離相等。(該點稱為三角形的外心)
(3)如何用尺規作圖法作線段的垂直平分線
分別以線段的兩個端點A、B為圓心,以大於AB的一半長為半徑作弧,兩弧交於點M、N;作直線MN,則直線MN就是線段AB的垂直平分線。
4、角平分線
(1)角平分線的性質及判定定理
性質:角平分線上的點到這個角的兩邊的距離相等;
判定:在一個角的內部,且到角的兩邊的距離相等的點,在這個角的平分線上。
(2)三角形三條角平分線的性質定理
性質:三角形的三條角平分線相交於一點,並且這一點到三條邊的距離相等。(該點稱為三角形的內心)
初 二年級數學 復習資料
一、直角三角形
1、角平分線: 角平分線上的點到這個角的兩邊的距離相等
如圖,∵AD是∠BAC的平分線(或∠1=∠2),
PE⊥AC,PF⊥AB
∴PE=PF
2、線段垂直平分線:線段垂直平分線上的點到這條線段兩個端點
的距離相等 。 如圖,∵CD是線段AB的垂直平分線,
∴PA=PB
3、勾股定理及其逆定理
①勾股定理:直角三角形兩直角邊a、b的平方和等於斜邊c的平方,即 。
求斜邊,則 ;求直角邊,則 或 。
②逆定理 如果三角形的三邊長a、b、c有關系 ,那麼這個三角形是直角三角形 。
分別計算「 」和「 」,相等就是 ,不相等就不是 。
4、直角三角形全等
方法 :SAS、ASA、SSS、AAS、HL。
5、 其它 性質
①直角三角形斜邊上的中線等於斜邊上的一半
如圖,在 ABC中,∵CD是斜邊AB的中線,∴CD= 。
②在直角三角形中,如果一個銳角等於30°那麼它所對的直角
邊等於斜邊的一半
如圖,在 ABC中,∵∠A=30°,∴BC= 。
③在直角三角形中,如果一條直角邊等於斜邊的一半,那麼
這條直角邊所對的角等於30°
如圖,在 ABC中,∵BC= ,∴∠A=30°。
④三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
如圖,在⊿ABC中,∵E是AB的中點,F是AC的中點,
∴EF是⊿ABC的中位線 ∴EF‖BC,
二、四邊形
1、多邊形內角和公式:n邊形的內角和=(n-2)?180?
求n邊形的方法:
2、中心對稱:(在直角坐標系中即關於原點對稱,其橫、縱坐標都互為相反數)
成中心對稱的兩個圖形中,對應點得連線經過對稱中心,且被對稱中心平分
會畫與某某圖形成中心對稱圖形
會辨別圖形、實物、漢字、英文字母、撲克等是否中心對稱圖形
3、特殊四邊形的判定
①平行四邊形:
方法1兩組對邊分別平行的四邊形是平行四邊形
如圖,∵ AB‖CD,AD‖BC,∴四邊形ABCD是平行四邊形
方法2 兩組對邊分別相等的四邊形是平行四邊形
如圖,∵ AB=CD,AD=BC,∴四邊形ABCD是平行四邊形
方法3兩組對角分別相等的四邊形是平行四邊形
如圖,∵∠A=∠C,∠B=∠D,∴四邊形ABCD是平行四邊形
方法4一組對邊平行相等的四邊形是平行四邊形
如圖,∵ AB‖CD,AB=CD,∴四邊形ABCD是平行四邊形
或∵AD‖BC,AD=BC,∴四邊形ABCD是平行四邊形
方法5 對角線互相平分的四邊形是平行四邊形
如圖,∵ OA=OC,OB=OD,∴四邊形ABCD是平行四邊形
②矩形:
方法1 有三個角是直角的四邊形是矩形
方法2 對角線相等的平行四邊形是矩形
③菱形:
方法1 四邊都相等的四邊形是菱形
方法2 對角線互相垂直的平行四邊形是菱形
④正方形
方法1 有一個角是直角的菱形是正方形
方法2有一組鄰邊相等的矩形是正方形
4、面積公式
①S平行四邊形=底×高 ②S矩形=長×寬 ③S正方形=邊長×邊長
④S菱形=底×高=? ?×(對角線的積),即:S=(a×b)÷2
初二上冊期末數學復習計劃
一、復習目標
落實知識點,提高學習效率,在復習中做到突出重點,把知識串成線,結成一張張小網,努力做到面向全體學生,照顧到不同層次的學生的學習需要,努力做到扎實有效,避免做無用功。
1.通過單元區塊專題訓練,讓學生體驗成功的快樂,激發其學習數學的興趣;
2.通過綜合訓練使學生進一步探索知識間的關系,明確內在的聯系,培養學生分析問題和解決問題能力,以及計算能力。
二、復習方式
1.總體思想:先分單元專題復習,再綜合練習;
2.單元專題 復習方法 :先做單元試卷,然後教師根據試卷反饋講解,再布置作業查漏補缺;
3.綜合練習:教師及時認真批改,講評時根據學生存在的問題及時輔導,並且給以鞏固訓練。
三、方法和 措施 :
第一階段:知識梳理形成知識網路:
期末復習從27號開始,根據歷年期末調研試卷命題的特點,精心選擇一些新穎的、有代表性的題型編寫到復習講學稿中,前面三章花3天的時間復習結束,最後兩章雖然是剛學的內容准備加強復習.主要把復習的重點放在第11章、第14章、第15章。
12月27日復習第十一章全等三角形
12月28日復習第十二章軸對稱
1月4日復習第十三章實數
1月.5日復習第十四章一次函數
1月8日復習第十四章一次函數、第十五章整式的乘除與因式分解
1月9日復習第十五章整式的乘除與因式分解
實際操作:一節課復習,一節課檢測。一課時講解。
第二階段:綜合訓練(模擬練習)
這一階段,重點是提高學生的綜合解題能力,訓練學生的解題策略,加強解題指導,提高應試能力。做法是:從市調研試卷、其他縣市調研試卷、自編模擬試卷中精選幾份進行訓練,每份的練習要求學生獨立完成,老師及時批改,重點講評。(本階段從10~16號,約5天左右)
四.在復習階段要處理好兩個方面的關系
(1)課內與課外,講與練的關系。在課堂上要注意知識的全面性、系統性,面向全體學生,注意突出基礎知識和基本能力,引導學生提高分析解決問題的思考方法。切忌以講代學,以練代學,顧高不顧低。課外練習要精心設計、精心造題,以有理於消化所學的知識、方法,要留有思考的餘地,讓學生練習中提高對知識和方法的領會和掌握。練習量要兼顧減輕學生的負擔,量要適中。
(2)階段復習與總體提高的關系。復習分二階段完成,但每一階段不是孤立的,而是總體的一個環節。在第一階段復習中,對重要的知識點,在課堂教學與練習中要盡量體現知識間的聯系,學科間的滲透、知識的應用性和時代性,有利於減輕學生復習的壓力,也有利於學生的理解和掌握。通過過程中量的積累達到質的轉變的突破,以提高總體成績。
總之,在數學期末復習中,我力求做到精選精練,指導方法,雙基訓練與能力提高並重。爭取讓學生取得較好的成績。
華東師大初二數學上冊知識點相關 文章 :
★ 初二數學上冊知識點總結
★ 初二數學上冊知識點總結歸納
★ 初二數學上冊知識點總結
★ 八年級上冊數學總復習知識點
★ 初二數學上冊知識點
★ 初二上冊數學知識點歸納總結
★ 數學八年級上冊知識點整理
★ 八年級數學上冊知識點歸納
★ 初二上冊數學知識點總結
★ 初二上學期數學知識點
③ 華師版初二數學上冊知識點
對世界上的一切學問與知識的掌握也並非難事,只要持之以恆地學習,努力掌握規律,達到熟悉的境地,就能融會貫通,運用自如。學習需要持之以恆。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
數學知識點 八年級
抽樣調查
(1)調查樣本是按隨機的原則抽取的,在總體中每一個單位被抽取的機會是均等的,因此,能夠保證被抽中的單位在總體中的均勻分布,不致出現傾向性誤差,代表性強。
(2)是以抽取的全部樣本單位作為一個「代表團」,用整個「代表團」來代表總體。而不是用隨意挑選的個別單位代表總體。
(3)所抽選的調查樣本數量,是根據調查誤差的要求,經過科學的計算確定的,在調查樣本的數量上有可靠的保證。
(4)抽樣調查的誤差,是在調查前就可以根據調查樣本數量和總體中各單位之間的差異程度進行計算,並控制在允許范圍以內,調查結果的准確程度較高。
課後練習
1.抽樣成數是一個(A)
A.結構相對數B.比例相對數C.比較相對數D.強度相對數
2.成數和成數方差的關系是(C)
A.成數越接近於0,成數方差越大B.成數越接近於1,成數方差越大
C.成數越接近於0.5,成數方差越大D.成數越接近於0.25,成數方差越大
3.整群抽樣是對被抽中的群作全面調查,所以整群抽樣是(B)
A.全面調查B.非全面調查C.一次性調查D.經常性調查
4.對400名大學生抽取19%進行不重復抽樣調查,其中優等生比重為20%,概率保證程度為95.45%,則優等生比重的極限抽樣誤差為(A)
A.40%B.4.13%C.9.18%D.8.26%
5.根據5%抽樣資料表明,甲產品合格率為60%,乙產品合格率為80%,在抽樣產品數相等的條件下,合格率的抽樣誤差是(B)
A.甲產品大B.乙產品大C.相等D.無法判斷
初二數學知識點歸納
四邊形性質探索
定義:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線之間的距離。
平行四邊形:兩組對邊分別平行的四邊形.。對邊相等,對角相等,對角線互相平分。兩組對邊分別平行的四邊形是平行四邊形,兩組對邊分別相等的四邊形是平行四邊形,兩條對角線互相平分的四邊形是平行四邊形,一組對邊平行且相等的四邊形是平行四邊形
菱形:一組鄰邊相等的平行四邊形??(平行四邊形的性質)。四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。一組鄰邊相等的平行四邊形是菱形,對角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。
矩形:有一個內角是直角的平行四邊形??(平行四邊形的性質)。對角線相等,四個角都是直角。有一個內角是直角的平行四邊形是矩形,對角線相等的平行四邊形是矩形。
正方形:一組鄰邊相等的矩形。正方形具有平行四邊形、菱形、矩形的一切性質。一組鄰邊相等的矩形是正方形,一個內角是直角的菱形是正方形。
梯形:一組對邊平行而另一組對邊不平行的四邊形。一組對邊平行而另一組對邊不平行的四邊形是梯形。等腰梯形:兩條腰相等的梯形。同一底上的兩個內角相等,對角線相等。兩腰相等的梯形是等腰梯形,同一底上兩個內角相等的梯形是等腰梯形。
直角梯形:一條腰和底垂直的梯形。一條腰和底垂直的梯形是直角梯形。
多邊形:在平面內,由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內角和等於(n-2)×180
多邊形內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。多邊形的外角和都等於360°。三角形、四邊形和六邊形都可以密鋪。
定義:在平面內,一個圖形繞某個點旋轉180°,如果旋轉前後的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
八年級數學 知識點歸納
1、在同一平面內不相交的兩條直線叫做平行線,也可以說這兩條直線互相平行。例1、1、在同一平面內兩條直線的位置關系為(相交)和(平行)。2、兩條直線相交成直角時,就說這兩條直線互相垂直,其…
平行四邊形矩形菱形正方形梯形等腰梯形圖形兩組對邊分別平行的四邊形。定義用「」表示平行四邊形,例如:ABCD,平行四邊形ABCD記作有一個角是直角的平有一組鄰邊相等的平行四邊形是菱形有一組鄰邊相等且…
第十八章平行四邊形的認識知識點回顧:平行四邊形、特殊平行四邊形的特徵以及彼此之間的關系1.矩形是特殊的平行四邊形,矩形的四個內角都是_____。矩形的對角線___2.菱形是特殊的平行四邊形,菱形是四條邊都__,它的兩條對角線__每條對角線平…
特殊的平行四邊形和一元二次方程的知識點歸納
【菱形】
1.菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2.菱形的性質:
(1)菱形的性質有:①平行四邊形的一切性質;②四條邊都相等;③對角線互相垂直,並且每一條對角線平分一組對角;④菱形是對稱軸圖形,它有2條對稱軸,分別為它的兩條對角線所在的直線。
(2)菱形面積=底×高=對角線乘積的一半。
3.菱形的判定:
(1)用定義判定(即一組鄰邊相等的平行四邊形是菱形)。
(2)對角線互相垂直的平行四邊形是菱形。
(3)四條邊都相等的四邊形是菱形。
綜上可知,判定菱形時常用的思路:
四條邊都相等菱形
菱形四邊形
平行
四邊形有一組鄰邊相等菱形
【矩形】
1.矩形的定義:有一個角是直角的平行四邊形叫做矩形。
2.矩形的性質:(1)具有平行四邊形的一切性質;(2)矩形的四個角都是直角;
(3)矩形的四個角都相等。
4.矩形的判定 方法 :
(1)用定義判定(即有一個角是直角的平行四邊形是矩形);
(2)三個角都是直角的四邊形是矩形;
(3)對角線相等的平行四邊形是矩形。
綜上可知,判定矩形時常用的思路:
華師版初二數學上冊知識點相關 文章 :
★ 八年級上冊華師版數學思維導圖
★ 武漢江漢區及高興區小學升初中對口劃片表
★ 華師大版八年級上冊數學期末試卷及答案
★ 九年級數學教學工作計劃
★ 這些還在火爆的專業你都知道嗎?
④ 八年級數學知識點總結
學會整合知識點。把需要學習的信息、掌握的知識分類,做成 思維導圖 或知識點卡片,會讓你的大腦、思維條理清醒,方便記憶、溫習、掌握。同時,要學會把新知識和已學知識聯系起來,不斷糅合、完善你的知識體系。這樣能夠促進理解,加深記憶。接下來是我為大家整理的 八年級 數學知識點 總結 ,希望大家喜歡!
八年級數學知識點總結一
等腰三角形判定
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,並且它們的交點與底邊兩端點距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那麼這個三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,並且它們的交點到底邊兩端點的距離相等。
1、如果三角形的頂角平分線垂直於這個角的對邊(平分對邊),那麼這個三角形是等腰三角形;
2、三角形中兩個角的平分線相等,那麼這個三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,並且它們的交點和底邊兩端點距離相等。
1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那麼這個三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
八年級數學知識點總結二
函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的 方法 叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
八年級數學知識點總結三
因式分解
1. 因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.
2.因式分解的方法:常用「提取公因式法」、「公式法」、「分組分解法」、「十字相乘法」.
3.公因式的確定:系數的公約數?相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最後結果要求分解到每一個因式都不能分解為止;
(4)因式分解的最後結果要求每一個因式的首項符號為正;
(5)因式分解的最後結果要求加以整理;
(6)因式分解的最後結果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括弧或去括弧整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數系數;(9)展開部分括弧或全部括弧;(10)拆項或補項.
7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對於二次三項式x2+px+q, 有「 x2+px+q是完全平方式 ? 」.
分式
1.分式:一般地,用A、B表示兩個整式,A÷B就可以表示為 的形式,如果B中含有字母,式子 叫做分式.
2.有理式:整式與分式統稱有理式;即 .
3.對於分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.
4.分式的基本性質與應用:
(1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;
(2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;
即
(3)繁分式化簡時,採用分子分母同乘小分母的最小公倍數的方法,比較簡單.
5.分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經常需要先因式分解.
6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最後結果要求化為最簡分式.
7.分式的乘除法法則: .
8.分式的乘方: .
9.負整指數計演算法則:
(1)公式: a0=1(a≠0), a-n= (a≠0);
(2)正整指數的運演算法則都可用於負整指數計算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡公分母.
11.最簡公分母的確定:系數的最小公倍數?相同因式的次冪.
12.同分母與異分母的分式加減法法則: .
13.含有字母系數的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數,a和b是用字母表示的已知數,對x來說,字母a是x的系數,叫做字母系數,字母b是常數項,我們稱它為含有字母系數的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數,用x、y、z等表示未知數.
14.公式變形:把一個公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質就是解含有字母系數的方程.特別要注意:字母方程兩邊同時乘以含字母的代數式時,一般需要先確認這個代數式的值不為0.
15.分式方程:分母里含有未知數的方程叫做分式方程;注意:以前學過的,分母里不含未知數的方程是整式方程.
16.分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數的代數式,所以可能產生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數的代數式,因為可能丟根.
17.分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數的值可能是原方程的增根.
18.分式方程的應用:列分式方程解應用題與列整式方程解應用題的方法一樣,但需要增加「驗增根」的程序.
八年級數學知識點總結四
1全等三角形的對應邊、對應角相等
2邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
3角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
5邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
6斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
7定理1在角的平分線上的點到這個角的兩邊的距離相等
8定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
9角的平分線是到角的兩邊距離相等的所有點的集合
10等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
21推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊
22等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
23推論3等邊三角形的各角都相等,並且每一個角都等於60°
24等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
25推論1三個角都相等的三角形是等邊三角形
26推論2有一個角等於60°的等腰三角形是等邊三角形
27在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
28直角三角形斜邊上的中線等於斜邊上的一半
29定理線段垂直平分線上的點和這條線段兩個端點的距離相等
30逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
八年級數學知識點總結五
第十一章全等三角形
一.知識框架
二.知識概念
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.全等三角形的性質:全等三角形的對應角相等、對應邊相等。
3.三角形全等的判定公理及推論有:
(1)「邊角邊」簡稱「SAS」
(2)「角邊角」簡稱「ASA」
(3)「邊邊邊」簡稱「SSS」
(4)「角角邊」簡稱「AAS」
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。
第十二章軸對稱
一.知識框架
二.知識概念
1.對稱軸:如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質:(1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等於60°,
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等於斜邊的一半。
9.直角三角形斜邊上的中線等於斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。
第十三章實數
一.知識框架
二.知識概念
1.算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。
3.正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。
4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。
5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0
實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。
第十四章一次函數
一.知識框架
二.知識概念
1.一次函數:若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
2.正比例函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。
3.正比例函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
4.已知兩點坐標求函數解析式:待定系數法
一次函數是初中學生學習函數的開始,也是今後學習 其它 函數知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變數,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重於理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。
第十五章整式的乘除與分解因式
一.知識概念
1.同底數冪的乘法法則:(m,n都是正數)
2..冪的乘方法則:(m,n都是正數)
3.整式的乘法
(1)單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
(3).多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6.同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即(a≠0,m、n都是正數,且m>n).
在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即,如,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即(a≠0,p是正整數),而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的;當a<0時,a-p的值可能是正也可能是負的,如,
④運算要注意運算順序.
7.整式的除法
單項式除法單項式:單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
多項式除以單項式:多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.
8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
分解因式的一般方法:1.提公共因式法2.運用公式法3.十字相乘法
分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多准備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。
八年級數學知識點總結相關 文章 :
1. 八年級數學知識點總計歸納
2. 初二數學上冊知識點總結
3. 人教版八年級數學上冊知識點總結
4. 八年級上冊數學知識點總結
5. 八年級數學上冊知識點歸納
6. 八年級上冊數學知識點總結與八年級數學學習技巧
7. 八年級上冊數學的知識點歸納
8. 八年級下冊數學知識點整理
⑤ 初二數學上的知識點
這個肯定行
初二數學(上)應知應會的知識點
因式分解
1. 因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.
2.因式分解的方法:常用「提取公因式法」、「公式法」、「分組分解法」、「十字相乘法」.
3.公因式的確定:系數的最大公約數?相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最後結果要求分解到每一個因式都不能分解為止;
(4)因式分解的最後結果要求每一個因式的首項符號為正;
(5)因式分解的最後結果要求加以整理;
(6)因式分解的最後結果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括弧或去括弧整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數系數;(9)展開部分括弧或全部括弧;(10)拆項或補項.
7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對於二次三項式x2+px+q, 有「 x2+px+q是完全平方式 ? 」.
分式
1.分式:一般地,用A、B表示兩個整式,A÷B就可以表示為 的形式,如果B中含有字母,式子 叫做分式.
2.有理式:整式與分式統稱有理式;即 .
3.對於分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.
4.分式的基本性質與應用:
(1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;
(2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;
即
(3)繁分式化簡時,採用分子分母同乘小分母的最小公倍數的方法,比較簡單.
5.分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經常需要先因式分解.
6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最後結果要求化為最簡分式.
7.分式的乘除法法則: .
8.分式的乘方: .
9.負整指數計演算法則:
(1)公式: a0=1(a≠0), a-n= (a≠0);
(2)正整指數的運演算法則都可用於負整指數計算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡公分母.
11.最簡公分母的確定:系數的最小公倍數?相同因式的最高次冪.
12.同分母與異分母的分式加減法法則: .
13.含有字母系數的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數,a和b是用字母表示的已知數,對x來說,字母a是x的系數,叫做字母系數,字母b是常數項,我們稱它為含有字母系數的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數,用x、y、z等表示未知數.
14.公式變形:把一個公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質就是解含有字母系數的方程.特別要注意:字母方程兩邊同時乘以含字母的代數式時,一般需要先確認這個代數式的值不為0.
15.分式方程:分母里含有未知數的方程叫做分式方程;注意:以前學過的,分母里不含未知數的方程是整式方程.
16.分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數的代數式,所以可能產生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數的代數式,因為可能丟根.
17.分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數的值可能是原方程的增根.
18.分式方程的應用:列分式方程解應用題與列整式方程解應用題的方法一樣,但需要增加「驗增根」的程序.
數的開方
1.平方根的定義:若x2=a,那麼x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方數,(2)已知x求a叫乘方,已知a求x叫開方,乘方與開方互為逆運算.
2.平方根的性質:
(1)正數的平方根是一對相反數;
(2)0的平方根還是0;
(3)負數沒有平方根.
3.平方根的表示方法:a的平方根表示為 和 .注意: 可以看作是一個數,也可以認為是一個數開二次方的運算.
4.算術平方根:正數a的正的平方根叫a的算術平方根,表示為 .注意:0的算術平方根還是0.
5.三個重要非負數: a2≥0 ,|a|≥0 , ≥0 .注意:非負數之和為0,說明它們都是0.
6.兩個重要公式:
(1) ; (a≥0)
(2) .
7.立方根的定義:若x3=a,那麼x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方數;(2)a的立方根表示為 ;即把a開三次方.
8.立方根的性質:
(1)正數的立方根是一個正數;
(2)0的立方根還是0;
(3)負數的立方根是一個負數.
9.立方根的特性: .
10.無理數:無限不循環小數叫做無理數.注意:?和開方開不盡的數是無理數.
11.實數:有理數和無理數統稱實數.
12.實數的分類:(1) (2) .
13.數軸的性質:數軸上的點與實數一一對應.
14.無理數的近似值:實數計算的結果中若含有無理數且題目無近似要求,則結果應該用無理數表示;如果題目有近似要求,則結果應該用無理數的近似值表示.注意:(1)近似計算時,中間過程要多保留一位;(2)要求記憶: .
三角形
幾何A級概念:(要求深刻理解、熟練運用、主要用於幾何證明)
1.三角形的角平分線定義:
三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.(如圖) 幾何表達式舉例:
(1) ∵AD平分∠BAC
∴∠BAD=∠CAD
(2) ∵∠BAD=∠CAD
∴AD是角平分線
2.三角形的中線定義:
在三角形中,連結一個頂點和它的對邊的中點的線段叫做三角形的中線.(如圖)
幾何表達式舉例:
(1) ∵AD是三角形的中線
∴ BD = CD
(2) ∵ BD = CD
∴AD是三角形的中線
3.三角形的高線定義:
從三角形的一個頂點向它的對邊畫垂線,頂點和垂足間的線段叫做三角形的高線.
(如圖)
幾何表達式舉例:
(1) ∵AD是ΔABC的高
∴∠ADB=90°
(2) ∵∠ADB=90°
∴AD是ΔABC的高
※4.三角形的三邊關系定理:
三角形的兩邊之和大於第三邊,三角形的兩邊之差小於第三邊.(如圖)
幾何表達式舉例:
(1) ∵AB+BC>AC
∴……………
(2) ∵ AB-BC<AC
∴……………
5.等腰三角形的定義:
有兩條邊相等的三角形叫做等腰三角形. (如圖)
幾何表達式舉例:
(1) ∵ΔABC是等腰三角形
∴ AB = AC
(2) ∵AB = AC
∴ΔABC是等腰三角形
6.等邊三角形的定義:
有三條邊相等的三角形叫做等邊三角形. (如圖)
幾何表達式舉例:
(1)∵ΔABC是等邊三角形
∴AB=BC=AC
(2) ∵AB=BC=AC
∴ΔABC是等邊三角形
7.三角形的內角和定理及推論:
(1)三角形的內角和180°;(如圖)
(2)直角三角形的兩個銳角互余;(如圖)
(3)三角形的一個外角等於和它不相鄰的兩個內角的和;(如圖)
※(4)三角形的一個外角大於任何一個和它不相鄰的內角.
(1) (2) (3)(4) 幾何表達式舉例:
(1) ∵∠A+∠B+∠C=180°
∴…………………
(2) ∵∠C=90°
∴∠A+∠B=90°
(3) ∵∠ACD=∠A+∠B
∴…………………
(4) ∵∠ACD >∠A
∴…………………
8.直角三角形的定義:
有一個角是直角的三角形叫直角三角形.(如圖)
幾何表達式舉例:
(1) ∵∠C=90°
∴ΔABC是直角三角形
(2) ∵ΔABC是直角三角形
∴∠C=90°
9.等腰直角三角形的定義:
兩條直角邊相等的直角三角形叫等腰直角三角形.(如圖)
幾何表達式舉例:
(1) ∵∠C=90° CA=CB
∴ΔABC是等腰直角三角形
(2) ∵ΔABC是等腰直角三角形
∴∠C=90° CA=CB
10.全等三角形的性質:
(1)全等三角形的對應邊相等;(如圖)
(2)全等三角形的對應角相等.(如圖)
幾何表達式舉例:
(1) ∵ΔABC≌ΔEFG
∴ AB = EF ………
(2) ∵ΔABC≌ΔEFG
∴∠A=∠E ………
11.全等三角形的判定:
「SAS」「ASA」「AAS」「SSS」「HL」. (如圖)
(1)(2)
(3) 幾何表達式舉例:
(1) ∵ AB = EF
∵ ∠B=∠F
又∵ BC = FG
∴ΔABC≌ΔEFG
(2) ………………
(3)在RtΔABC和RtΔEFG中
∵ AB=EF
又∵ AC = EG
∴RtΔABC≌RtΔEFG
12.角平分線的性質定理及逆定理:
(1)在角平分線上的點到角的兩邊距離相等;(如圖)
(2)到角的兩邊距離相等的點在角平分線上.(如圖)
幾何表達式舉例:
(1)∵OC平分∠AOB
又∵CD⊥OA CE⊥OB
∴ CD = CE
(2) ∵CD⊥OA CE⊥OB
又∵CD = CE
∴OC是角平分線
13.線段垂直平分線的定義:
垂直於一條線段且平分這條線段的直線,叫做這條線段的垂直平分線.(如圖)
幾何表達式舉例:
(1) ∵EF垂直平分AB
∴EF⊥AB OA=OB
(2) ∵EF⊥AB OA=OB
∴EF是AB的垂直平分線
14.線段垂直平分線的性質定理及逆定理:
(1)線段垂直平分線上的點和這條線段的兩個端點的距離相等;(如圖)
(2)和一條線段的兩個端點的距離相等的點,在這條線段的垂直平分線上.(如圖)
幾何表達式舉例:
(1) ∵MN是線段AB的垂直平分線
∴ PA = PB
(2) ∵PA = PB
∴點P在線段AB的垂直平分線上
15.等腰三角形的性質定理及推論:
(1)等腰三角形的兩個底角相等;(即等邊對等角)(如圖)
(2)等腰三角形的「頂角平分線、底邊中線、底邊上的高」三線合一;(如圖)
(3)等邊三角形的各角都相等,並且都是60°.(如圖)
(1) (2) (3) 幾何表達式舉例:
(1) ∵AB = AC
∴∠B=∠C
(2) ∵AB = AC
又∵∠BAD=∠CAD
∴BD = CD
AD⊥BC
………………
(3) ∵ΔABC是等邊三角形
∴∠A=∠B=∠C =60°
16.等腰三角形的判定定理及推論:
(1)如果一個三角形有兩個角都相等,那麼這兩個角所對邊也相等;(即等角對等邊)(如圖)
(2)三個角都相等的三角形是等邊三角形;(如圖)
(3)有一個角等於60°的等腰三角形是等邊三角形;(如圖)
(4)在直角三角形中,如果有一個角等於30°,那麼它所對的直角邊是斜邊的一半.(如圖)
(1) (2)(3) (4) 幾何表達式舉例:
(1) ∵∠B=∠C
∴ AB = AC
(2) ∵∠A=∠B=∠C
∴ΔABC是等邊三角形
(3) ∵∠A=60°
又∵AB = AC
∴ΔABC是等邊三角形
(4) ∵∠C=90°∠B=30°
∴AC = AB
17.關於軸對稱的定理
(1)關於某條直線對稱的兩個圖形是全等形;(如圖)
(2)如果兩個圖形關於某條直線對稱,那麼對稱軸是對應點連線的垂直平分線.(如圖)
幾何表達式舉例:
(1) ∵ΔABC、ΔEGF關於MN軸對稱
∴ΔABC≌ΔEGF
(2) ∵ΔABC、ΔEGF關於MN軸對稱
∴OA=OE MN⊥AE
18.勾股定理及逆定理:
(1)直角三角形的兩直角邊a、b的平方和等於斜邊c的平方,即a2+b2=c2;(如圖)
(2)如果三角形的三邊長有下面關系: a2+b2=c2,那麼這個三角形是直角三角形.(如圖)
幾何表達式舉例:
(1) ∵ΔABC是直角三角形
∴a2+b2=c2
(2) ∵a2+b2=c2
∴ΔABC是直角三角形
19.RtΔ斜邊中線定理及逆定理:
(1)直角三角形中,斜邊上的中線是斜邊的一半;(如圖)
(2)如果三角形一邊上的中線是這邊的一半,那麼這個三角形是直角三角形.(如圖)
幾何表達式舉例:
(1) ∵ΔABC是直角三角形
∵D是AB的中點
∴CD = AB
(2) ∵CD=AD=BD
∴ΔABC是直角三角形
幾何B級概念:(要求理解、會講、會用,主要用於填空和選擇題)
一 基本概念:
三角形、不等邊三角形、銳角三角形、鈍角三角形、三角形的外角、全等三角形、角平分線的集合定義、原命題、逆命題、逆定理、尺規作圖、輔助線、線段垂直平分線的集合定義、軸對稱的定義、軸對稱圖形的定義、勾股數.
二 常識:
1.三角形中,第三邊長的判斷: 另兩邊之差<第三邊<另兩邊之和.
2.三角形中,有三條角平分線、三條中線、三條高線,它們都分別交於一點,其中前兩個交點都在三角形內,而第三個交點可在三角形內,三角形上,三角形外.注意:三角形的角平分線、中線、高線都是線段.
3.如圖,三角形中,有一個重要的面積等式,即:若CD⊥AB,BE⊥CA,則CD?AB=BE?CA.
4.三角形能否成立的條件是:最長邊<另兩邊之和.
5.直角三角形能否成立的條件是:最長邊的平方等於另兩邊的平方和.
6.分別含30°、45°、60°的直角三角形是特殊的直角三角形.
7.如圖,雙垂圖形中,有兩個重要的性質,即:
(1) AC?CB=CD?AB ; (2)∠1=∠B ,∠2=∠A .
8.三角形中,最多有一個內角是鈍角,但最少有兩個外角是鈍角.
9.全等三角形中,重合的點是對應頂點,對應頂點所對的角是對應角,對應角所對的邊是對應邊.
10.等邊三角形是特殊的等腰三角形.
11.幾何習題中,「文字敘述題」需要自己畫圖,寫已知、求證、證明.
12.符合「AAA」「SSA」條件的三角形不能判定全等.
13.幾何習題經常用四種方法進行分析:(1)分析綜合法;(2)方程分析法;(3)代入分析法;(4)圖形觀察法.
14.幾何基本作圖分為:(1)作線段等於已知線段;(2)作角等於已知角;(3)作已知角的平分線;(4)過已知點作已知直線的垂線;(5)作線段的中垂線;(6)過已知點作已知直線的平行線.
15.會用尺規完成「SAS」、「ASA」、「AAS」、「SSS」、「HL」、「等腰三角形」、「等邊三角形」、「等腰直角三角形」的作圖.
16.作圖題在分析過程中,首先要畫出草圖並標出字母,然後確定先畫什麼,後畫什麼;注意:每步作圖都應該是幾何基本作圖.
17.幾何畫圖的類型:(1)估畫圖;(2)工具畫圖;(3)尺規畫圖.
※18.幾何重要圖形和輔助線:
(1)選取和作輔助線的原則:
① 構造特殊圖形,使可用的定理增加;
② 一舉多得;
③ 聚合題目中的分散條件,轉移線段,轉移角;
④ 作輔助線必須符合幾何基本作圖.
(2)已知角平分線.(若BD是角平分線)
① 在BA上截取BE=BC構造全等,轉移線段和角;
② 過D點作DE‖BC交AB於E,構造等腰三角形 .
(3)已知三角形中線(若AD是BC的中線)
① 過D點作DE‖AC交AB於E,構造中位線 ;
② 延長AD到E,使DE=AD
連結CE構造全等,轉移線段和角;
③ ∵AD是中線
∴SΔABD= SΔADC
(等底等高的三角形等面積)
(4) 已知等腰三角形ABC中,AB=AC
① 作等腰三角形ABC底邊的中線AD
(頂角的平分線或底邊的高)構造全
等三角形;
② 作等腰三角形ABC一邊的平行線DE,構造
新的等腰三角形.
(5)其它
① 作等邊三角形ABC
一邊 的平行線DE,構造新的等邊三角形;
② 作CE‖AB,轉移角;
③ 延長BD與AC交於E,不規則圖形轉化為規則圖形;
④ 多邊形轉化為三角形;
⑤ 延長BC到D,使CD=BC,連結AD,直角三角形轉化為等腰三角形;
⑥ 若a‖b,AC,BC是角平
分線,則∠C=90°.
參考資料:去谷歌搜索:初二上數學知識點 然後點第一個
⑥ 八年級數學的知識點歸納
學習知識要善於思考,思考,再思考。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
數學知識點八年級
【統計的初步認識】
1、折線統計圖的特點:能獲取數據變化情況的信息,並進行簡單的預測。
2、折線統計圖的方法:在方格紙中,根據所給出的數據把點標出來,再用線將點連接起來,要順次連接。
3、能夠看出折線統計圖所提供的信息,並回答相關的問題。
補充內容:
1、條形統計圖與折線統計圖的不同:條形統計圖用直條表示數量的多少,折線統計圖用折線表示數量的增減變化情況。
2、初步了解復式折線統計圖,能夠從中獲得相應的信息,回答提出的問題。
課後練習
1.統計學的基本涵義是(D)。
A.統計資料
B.統計數字
C.統計活動
D.是一門處理數據的方法和技術的科學,也可以說統計學是一門研究「數據」的科學,任務是如何有效地收集、整理和分析這些數據,探索數據內在的數量規律性,對所觀察的現象做出推斷或預測,直到為採取決策提供依據。
2.要了解某一地區國有工業企業的生產經營情況,則統計總體是(B)。
A.每一個國有工業企業
B.該地區的所有國有工業企業
C.該地區的所有國有工業企業的生產經營情況
D.每一個企業
3.要了解20個學生的學習情況,則總體單位是(C)。
A.20個學生
B.20個學生的學習情況
C.每一個學生
D.每一個學生的學習情況
4.下列各項中屬於數量標志的是(B)。
A.性別
B.年齡
C.職稱
D.健康狀況
初二下冊數學知識點 總結
【抽樣調查】
(1)調查樣本是按隨機的原則抽取的,在總體中每一個單位被抽取的機會是均等的,因此,能夠保證被抽中的單位在總體中的均勻分布,不致出現傾向性誤差,代表性強。
(2)是以抽取的全部樣本單位作為一個「代表團」,用整個「代表團」來代表總體。而不是用隨意挑選的個別單位代表總體。
(3)所抽選的調查樣本數量,是根據調查誤差的要求,經過科學的計算確定的,在調查樣本的數量上有可靠的保證。
(4)抽樣調查的誤差,是在調查前就可以根據調查樣本數量和總體中各單位之間的差異程度進行計算,並控制在允許范圍以內,調查結果的准確程度較高。
課後練習
1.抽樣成數是一個(A)
A.結構相對數B.比例相對數C.比較相對數D.強度相對數
2.成數和成數方差的關系是(C)
A.成數越接近於0,成數方差越大B.成數越接近於1,成數方差越大
C.成數越接近於0.5,成數方差越大D.成數越接近於0.25,成數方差越大
3.整群抽樣是對被抽中的群作全面調查,所以整群抽樣是(B)
A.全面調查B.非全面調查C.一次性調查D.經常性調查
4.對400名大學生抽取19%進行不重復抽樣調查,其中優等生比重為20%,概率保證程度為95.45%,則優等生比重的極限抽樣誤差為(A)
A.40%B.4.13%C.9.18%D.8.26%
5.根據5%抽樣資料表明,甲產品合格率為60%,乙產品合格率為80%,在抽樣產品數相等的條件下,合格率的抽樣誤差是(B)
A.甲產品大B.乙產品大C.相等D.無法判斷
數學知識點八年級
菱形的判定定理
1.一組鄰邊相等的平行四邊形是菱形。
2.對角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)
正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
正方形的性質:四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:
1.鄰邊相等的矩形是正方形。
2.有一個角是直角的菱形是正方形。
梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
直角梯形的定義:有一個角是直角的梯形
等腰梯形的定義:兩腰相等的梯形。
等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
解梯形問題常用的輔助線:如圖
線段的重心就是線段的中點。平行四邊形的重心是它的兩條對角線的交點。三角形的三條中線交於疑點,這一點就是三角形的重心。寬和長的比是-1(約為0.618)的矩形叫做黃金矩形。
八年級數學知識點相關 文章 :
★ 人教版八年級數學上冊知識點總結
★ 八年級數學知識點整理歸納
★ 八年級數學知識點總結
★ 初二數學上冊知識點總結
★ 初二數學知識點歸納
★ 初二數學知識點復習整理
★ 八年級數學上知識點歸納
★ 八年級數學上冊知識點歸納
★ 八年級上冊數學知識點整理
⑦ 八年級數學知識點歸納總結
學習的成功與失敗原因是多方面的,要首先從自己身上找原因,才能受到鼓舞,找出努力的方向。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
八年級數學知識點 總結 北師大版
1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
菱形的定義:鄰邊相等的平行四邊形。
菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
菱形的判定定理:
1.一組鄰邊相等的平行四邊形是菱形。
2.對角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)
正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
正方形的性質:四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:
1.鄰邊相等的矩形是正方形。
2.有一個角是直角的菱形是正方形。
梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
直角梯形的定義:有一個角是直角的梯形
等腰梯形的定義:兩腰相等的梯形。
等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
解梯形問題常用的輔助線:如圖
線段的重心就是線段的中點。平行四邊形的重心是它的兩條對角線的交點。三角形的三條中線交於疑點,這一點就是三角形的重心。寬和長的比是-1(約為0.618)的矩形叫做黃金矩形。
初二下冊數學知識點總結
【統計的初步認識】
1、折線統計圖的特點:能獲取數據變化情況的信息,並進行簡單的預測。
2、折線統計圖的方法:在方格紙中,根據所給出的數據把點標出來,再用線將點連接起來,要順次連接。
3、能夠看出折線統計圖所提供的信息,並回答相關的問題。
補充內容:
1、條形統計圖與折線統計圖的不同:條形統計圖用直條表示數量的多少,折線統計圖用折線表示數量的增減變化情況。
2、初步了解復式折線統計圖,能夠從中獲得相應的信息,回答提出的問題。
課後練習
1.統計學的基本涵義是(D)。
A.統計資料
B.統計數字
C.統計活動
D.是一門處理數據的方法和技術的科學,也可以說統計學是一門研究「數據」的科學,任務是如何有效地收集、整理和分析這些數據,探索數據內在的數量規律性,對所觀察的現象做出推斷或預測,直到為採取決策提供依據。
2.要了解某一地區國有工業企業的生產經營情況,則統計總體是(B)。
A.每一個國有工業企業
B.該地區的所有國有工業企業
C.該地區的所有國有工業企業的生產經營情況
D.每一個企業
3.要了解20個學生的學習情況,則總體單位是(C)。
A.20個學生
B.20個學生的學習情況
C.每一個學生
D.每一個學生的學習情況
4.下列各項中屬於數量標志的是(B)。
A.性別
B.年齡
C.職稱
D.健康狀況
5.總體和總體單位不是固定不變的,由於研究目的改變(A)。
A.總體單位有可能變換為總體,總體也有可能變換為總體單位
B.總體只能變換為總體單位,總體單位不能變換為總體
C.總體單位不能變換為總體,總體也不能變換為總體單位
D.任何一對總體和總體單位都可以互相變換
6.以下崗職工為總體,觀察下崗職工的性別構成,此時的標志是(C)。
A.男性職工人數
B.女性職工人數
C.下崗職工的性別
D.性別構成
初二下冊數學知識點
【抽樣調查】
(1)調查樣本是按隨機的原則抽取的,在總體中每一個單位被抽取的機會是均等的,因此,能夠保證被抽中的單位在總體中的均勻分布,不致出現傾向性誤差,代表性強。
(2)是以抽取的全部樣本單位作為一個「代表團」,用整個「代表團」來代表總體。而不是用隨意挑選的個別單位代表總體。
(3)所抽選的調查樣本數量,是根據調查誤差的要求,經過科學的計算確定的,在調查樣本的數量上有可靠的保證。
(4)抽樣調查的誤差,是在調查前就可以根據調查樣本數量和總體中各單位之間的差異程度進行計算,並控制在允許范圍以內,調查結果的准確程度較高。
課後練習
1.抽樣成數是一個(A)
A.結構相對數B.比例相對數C.比較相對數D.強度相對數
2.成數和成數方差的關系是(C)
A.成數越接近於0,成數方差越大B.成數越接近於1,成數方差越大
C.成數越接近於0.5,成數方差越大D.成數越接近於0.25,成數方差越大
3.整群抽樣是對被抽中的群作全面調查,所以整群抽樣是(B)
A.全面調查B.非全面調查C.一次性調查D.經常性調查
4.對400名大學生抽取19%進行不重復抽樣調查,其中優等生比重為20%,概率保證程度為95.45%,則優等生比重的極限抽樣誤差為(A)
A.40%B.4.13%C.9.18%D.8.26%
5.根據5%抽樣資料表明,甲產品合格率為60%,乙產品合格率為80%,在抽樣產品數相等的條件下,合格率的抽樣誤差是(B)
A.甲產品大B.乙產品大C.相等D.無法判斷
八年級數學知識點歸納總結相關 文章 :
★ 八年級數學知識點整理歸納
★ 人教版八年級數學上冊知識點總結
★ 八年級數學知識點總結
★ 八年級下冊數學知識點整理
★ 八年級數學上知識點總結
★ 八年級上冊數學知識點的總結
★ 初二數學知識點歸納
★ 初二數學上冊知識點總結
★ 初中八年級上冊數學知識點總結歸納
★ 八年級數學上冊知識點歸納
⑧ 八年級數學上冊知識點
只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,數學作為最燒腦的科目之一,需要不斷的練習。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
三角形知識概念
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
13、公式與性質:
(1)三角形的內角和:三角形的內角和為180°
(2)三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
(3)多邊形內角和公式:邊形的內角和等於?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
八年級上冊數學知識
一、在平面內,確定物體的位置一般需要兩個數據。
二、平面直角坐標系及有關概念
1、平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
2、為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬於任何一個象限。
3、點的坐標的概念
對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
4、不同位置的點的坐標的特徵
(1)、各象限內點的坐標的特徵
點P(x,y)在第一象限:x;0,y;0
點P(x,y)在第二象限:x;0,y;0
點P(x,y)在第三象限:x;0,y;0
點P(x,y)在第四象限:x;0,y;0
(2)、坐標軸上的點的特徵
點P(x,y)在x軸上,y=0,x為任意實數
點P(x,y)在y軸上,x=0,y為任意實數
點P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點P坐標為(0,0)即原點
(3)、兩條坐標軸夾角平分線上點的坐標的特徵
點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數
(4)、和坐標軸平行的直線上點的坐標的特徵
位於平行於x軸的直線上的各點的縱坐標相同。
位於平行於y軸的直線上的各點的橫坐標相同。
初二數學 復習方法
一、復習內容:
第一章:勾股定理
第二章:實數第三章:位置與坐標
第四章:一次函數
第五章:二元一次方程組
第六章:數據的分析
第七章:平行線的證明
二、復習目標:
八年級數學本學期知識點多,復習時間又比較短,只有三周的時間。
根據實際情況,應該完成如下目標:
(一)、整理本學期學過的知識與方法:1.第一、七章是幾何部分。這三章的重點是勾股定理的應用以及平行線的性質與判別還有三角形內角和定理及其應用。所以記住性質是關鍵,學會判定是重點,靈活應用是目的。要學會判定方法的選擇,不同圖形之間的區別和聯系要非常熟悉,形成一個有機整體。對常見的證明題要多練多 總結 。2.第四五六章主要是概念的教學,對這幾章的考試題型學生可能都不熟悉,所以要以與課本同步的訓練題型為主,要列表或作圖的,讓學生積極動手操作,並得出結論,課堂上教師講評,盡量是精講多練,該動手的要多動手,盡可能的讓學生自己總結出論證幾何問題的常用分析方法。3.第二章主要是計算,教師提前先把概念、性質、方法綜合復習,加入適當的練習,在練習計算。課堂上逐一對易錯題的講解,多強調解題方法的針對性。最後針對平時練習中存在的問題,查漏補缺。
(二)、在自己經歷過的解決問題活動中,選擇一個有挑戰問題性的問題,寫下解決它的過程:包括遇到的困難、克服困難的方法與過程及所獲得的體會,並選擇這個問題的原因。
(三)、通過本學期的數學學習,讓同學們總結自己有哪些收獲;有哪些需要改進的地方。
三、復習方法:
1、強化訓練,這個學期計算類和證明類的題目較多,在復習中要加強這方面的訓練。特別是一次函數,在復習過程中要分類型練習,重點是解題方法的正確選擇同時使學生養成檢查計算結果的習慣。還有幾何證明題,要通過針對性練習力爭達到少失分,達到證明簡練又嚴謹的效果。
2、加強管理嚴格要求,根據每個學生自身情況、學習水平嚴格要求,對應知應會的內容要反復講解、練習,必須做到學一點會一點,對接受能力差的學生課後要加強輔導,及時糾正出現的錯誤,平時多小測多檢查。對能力較強的學生要引導他們多做課外習題,適當提高做題難度。
3、加強證明題的訓練,通過近階段的學習,我發現學生對證明題掌握不牢,不會找合適的分析方法,部分學生看不懂題意,沒有思路。在今後的復習中我准備拿出一定的時間來專項練習證明題,引導學生如何弄懂題意、怎樣分析、怎樣寫證明過程。力爭讓學生把各種類型題做全並抓住其特點。
4、加強成績不理想學生的輔導,制定詳細的復習計劃,對他們要多表揚多鼓勵,調動他們學習的積極性,利用課余時間對他們進行輔導,輔導時要有耐心,要心平氣和,對不會的知識要多講幾遍,不怕麻煩,直至弄懂弄會。
四、課時安排:
本次復習共三周時間,具體安排如下:第一章1課時第二章2課時第三章1課時第四章2課時第五章2課時第六章1課時第七章2課時模擬測試4課時
五、復習階段採取的 措施 :
1.精心備課上課,針對班級學生出現的錯題及所涉及到的重點問題認真挑選試題。2.對於復習階段作業的布置,少而精,有針對性,並且很抓訂正及改錯。3.在試題的選擇上作到面面俱到,重點難點突出,不重不漏。4.面向全體學生。由於學生在知識、技能方面的發展和興趣、特長等不盡相同,所以要因材施教。在組織教學時,應從大多數學生的實際出發,並兼顧學習有困難的和學有餘力的學生。對學習有困難的學生,要特別予以關心,及時採取有效措施,激發他們學習數學的興趣,指導他們改進學習方法。減緩他們學習中的坡度,使他們經過努力,能夠達到大綱中規定的基本要求。對學有餘力的學生,要通過講授選學內容和組織課外活動等多種形式,滿足他們的學習願望,發展他們的數學才能。5.重視改進 教學方法 ,堅持啟發式,反對注入式。教師在課前先布置學生預習,同時要指導學生預習,提出預習要求,並布置與課本內容相關、難度適中的嘗試題材由學生課前完成,教學中教師應幫助學生梳理學習的知識,指出重點和易錯點,解答學生復習時遇到的問題,使學生在學習中體會成功,調動學習積極性。6.改革作業結構減輕學生負擔。將學生按學習能力分成幾個層次,分別布置難、中、易三檔作業,使每類學生都能在原有基礎上提高。
八年級數學上冊知識點相關 文章 :
★ 人教版八年級數學上冊知識點總結
★ 初二數學上冊知識點總結
★ 八年級數學上冊知識點歸納
★ 八年級數學知識點整理歸納
★ 數學八年級上冊知識點整理
★ 八年級數學上冊知識點北師大版
★ 初二數學上冊知識點總結歸納
★ 初二數學知識點歸納上冊人教版
★ 數學八年級上冊知識點
★ 初二數學上冊知識點