當前位置:首頁 » 基礎知識 » 初中數學基礎知識為零
擴展閱讀
感恩教育知識幼兒園 2025-01-24 20:56:05

初中數學基礎知識為零

發布時間: 2022-09-10 16:39:32

Ⅰ 求救。我上高一了,由於我小學,初中沒好數學,初中數學基礎基本為0。由於小學,初中沒怎麼學過數學,

哈哈,我知道你現在的心情!這個要慢慢來,要發揮男性的優勢.......數學還是可以趕上的,但你必須比別人付出更多的努力去學校,去讓大家都幫你!在這期間你可以買些資料重點了解下初中的數學,或者可以讓其他同學幫你推薦資料,或者想辦法!你能把你的情況如實說出,說明你真的已經有所後悔,但現在就是不知道怎麼辦,不知從何入手!你要知道高考成績是各科的綜合而不是一門!我們高三的語文老師是個就業兩年的語文教師,他說他的英語就是零,但是他說過盡管是零我也要上本科,結果補了一年走了。由於英語不好,只能當教師了........ 但是他的其他各科成績都是相當突出了不然怎麼能上本科?你現在是心有餘而力不足,我很能理解你的心情!盡量慢慢的把自己的心情 把自己的主要內容轉到學校上。無論什麼結果都不要放棄!也不要跟他人比,可能跟別人不是一個層次的!你說呢?有付出就有回報 加油吧......有什麼問題及時發過來

Ⅱ 關於初中數學知識點總結歸納

數學已成為許多國家及地區的 教育 范疇中的一部分。它應用於不同領域中,包括科學、工程、醫學、經濟學和金融學等。這次我給大家整理了初中數學知識點 總結 歸納,供大家閱讀參考。

初中數學知識點總結歸納

一: 數軸

11 有向直線

在科學技術和日常生活中,為了區別一條直線的兩個不同方向,可以規定其中一方向為正向,另一方向為負相

規定了正方向的直線,叫做有向直線,讀作有向直線l

12 數軸

我們把數軸上任意一點所對應的實數稱為點的坐標

對於每一個坐標(實數),在數周上可以找到唯一的點與之對應這就是直線的坐標化

數軸上任意一條有向線段的數量等於它的終點坐標與起點坐標的差任意一條有向線段的長度等於它兩個斷電坐標差的絕對值

二:平面直角坐標系

下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。

平面直角坐標系

平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。

水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合

三個規定:

①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。

③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。

三:平面直角坐標系的構成

對於平面直角坐標系的構成內容,下面我們一起來學習哦。

平面直角坐標系的構成

在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。

四:點的坐標的性質

點的坐標的性質

建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。

五:因式分解的一般步驟

關於數學中因式分解的一般步驟內容學習,我們做下面的知識講解。

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:「一提」、「二套」、「三分組」、「四十字」。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。

六:因式分解

下面是對數學中因式分解內容的知識講解,希望同學們認真學習。

因式分解

因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④

因式分解與整式乘法的關系:m(a+b+c)

公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定 方法 :①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式注意;

①不準丟字母

②不準丟常數項注意查項數

③雙重括弧化成單括弧

④結果按數單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負號放括弧外

⑦括弧內同類項合並。

初中數學知識點

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

(2)有理數的分類: ① ②

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為:或 ;絕對值的問題經常分類討論;

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數> 0,小數-大數< 0.

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼的倒數是;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

18.混合運演算法則:先乘方,後乘除,最後加減.

本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題.

體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。

關於初中數學的知識點

一、平移變換:

1。概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

2。性質:(1)平移前後圖形全等;

(2)對應點連線平行或在同一直線上且相等。

3。平移的作圖步驟和方法:

(1)分清題目要求,確定平移的方向和平移的距離;

(2)分析所作的圖形,找出構成圖形的關健點;

(3)沿一定的方向,按一定的距離平移各個關健點;

(4)連接所作的各個關鍵點,並標上相應的字母;

(5)寫出結論。

二、旋轉變換:

1。概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。

說明:

(1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;

(2)旋轉過程中旋轉中心始終保持不動。

(3)旋轉過程中旋轉的方向是相同的。

(4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。

2。性質:

(1)對應點到旋轉中心的距離相等;

(2)對應點與旋轉中心所連線段的夾角等於旋轉角;

(3)旋轉前、後的圖形全等。

3。旋轉作圖的步驟和方法:

(1)確定旋轉中心及旋轉方向、旋轉角;

(2)找出圖形的關鍵點;

(3)將圖形的關鍵點和旋轉中心連接起來,然後按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;

(4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉後的圖形。

說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。

常見考法

(1)把平移旋轉結合起來證明三角形全等;

(2)利用平移變換與旋轉變換的性質,設計一些題目。

誤區提醒

(1)弄反了坐標平移的上加下減,左減右加的規律;

(2)平移與旋轉的性質沒有掌握。

學好數學的方法

1、上課前要調整好心態,一定不能想,哎,又是數學課,上課時聽講心情就很不好,這樣當然學不好!

2、上課時一定要認真聽講,作到耳到、眼到、手到!這個很重要,一定要學會做筆記,上課時如果老師講的快,一定靜下心來聽,不要記,下課時再整理到 筆記本 上!保持高效率!

3、俗話說興趣是最好的老師,當別人談論最討厭的課時,你要告訴自己,我喜歡數學!

4、保證遇到的每一題都要弄會,弄懂,這個很重要!不會就問,不要不好意思,要學會舉一反三!也就是要靈活運用!作的題不要求多,但要精!

5、要有錯題集,把平時遇到的好題記下來,錯題記下來,並要多看,多思考,不能在同一個地方絆倒!!

總之,學習數學,不要怕難,不要怕累,不要怕問!


初中數學知識點總結歸納相關 文章 :

★ 初中數學基礎知識整理歸納

★ 初中數學知識點總結

★ 初中數學重點知識點的歸納總結

★ 初中數學知識點歸納有哪些

★ 初中數學知識點總結歸納

★ 初中部數學學習方法總結

★ 初中數學圓的知識點歸納

★ 初一數學學習方法總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅲ 初中數學零基礎從哪裡開始學

數學是門非常有趣的學科,但是總有那麼多同學對數學傷腦筋。那麼數學處於零基礎狀態應該怎麼學習呢?下面我為大家詳細盤點一下相關信息,供大家參考。

零基礎應該如何學習數學

1.熟練掌握基本概念,基本規律和基本方法。基礎不牢固,學再多知識,做再多題也沒用。

2.做完題目一定要認真總結。思考這道題考的知識點是什麼?以後再遇到相似的題目就會很輕松的解決。

3.舉一反三。要盡可能掌握題型的多種解題方法,這樣可以發散思維,培養自己的分析習慣。從而找出最優解,最佳答案。

4.分析各章節的內容,使之互相聯系。要將所學知識貫穿在一起,將前後知識融會貫通,連為一體。這樣能幫助我們系統深刻的理解知識體系和內容。

5.利用口訣將相近的概念和規律進行比較,搞清楚它們的相同點,區別和聯系,從而加深理解和記憶。使知識條理化,系統化。

初中數學學習方法

1、課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.

2、讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.

3、課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.

4、單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.

Ⅳ 我高中初中數學知識0基礎,該怎麼辦

建議你上一個一對一的補習班,因為數學不像語文,可以一個知識點一個知識點的掌握,補起來比較方便。其實數學並沒有你想的那麼難,只要你有位良師,它就會成為你的益友。

Ⅳ 假設初中數學知識為零,想要在高中起步,該怎麼做,初中數學知識真的很重要嗎我有黃岡網校為資源。請問

我就是你說的那種人,中考數學45分,高考數學123,就我經驗看來,初中數學和高中數學關系不大,不過初中數學中的配方和和不等式的運算以及函數較重要,高中要學的的以函數為軸出題,你可以從這方面入手!

Ⅵ 初中數學知識點之基礎知識點總結

初中數學知識點之基礎知識點總結

在年少學習的日子裡,很多人都經常追著老師們要知識點吧,知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。想要一份整理好的知識點嗎?下面是我幫大家整理的初中數學知識點之基礎知識點總結,歡迎大家分享。

初中數學知識點之基礎知識點總結1

一、數與代數A、數與式:1、有理數:①整數→正整數/0/負整數②分數→正分數/負分數

數軸:

①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。

②任何一個有理數都可以用數軸上的一個點來表示。

③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。

④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。

絕對值:

①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

有理數的運算:加法:

①同號相加,取相同的符號,把絕對值相加。

②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。

③一個數與0相加不變。

減法:減去一個數,等於加上這個數的相反數。

乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。

除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。

乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。

2、實數無理數:無限不循環小數叫無理數

平方根:

①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。

②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。

③一個正數有2個平方根/0的平方根為0/負數沒有平方根。

④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

立方根:

①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。

②正數的立方根是正數、0的立方根是0、負數的立方根是負數。

③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

實數:

①實數分有理數和無理數。

②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

③每一個實數都可以在數軸上的一個點來表示。

3、代數式

代數式:單獨一個數或者一個字母也是代數式。

合並同類項:

①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。

②把同類項合並成一項就叫做合並同類項。

③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。

4、整式與分式

整式:

①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。

②一個單項式中,所有字母的指數和叫做這個單項式的次數。

③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。

冪的運算:AM+AN=A(M+N)

(AM)N=AMN

(A/B)N=AN/BN除法一樣。

整式的乘法:

①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。

②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

公式兩條:平方差公式/完全平方公式

整式的除法:

①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

方法:提公因式法、運用公式法、分組分解法、十字相乘法。

分式:

①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。

②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。

初中數學知識點:直線的位置與常數的關系

①k>0則直線的傾斜角為銳角

②k<0則直線的傾斜角為鈍角

③圖像越陡,|k|越大

④b>0直線與y軸的`交點在x軸的上方

⑤b<0直線與y軸的交點在x軸的下方

初中數學知識點之基礎知識點總結2

1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。

2.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。

3.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解)。

4.列一元一次方程解應用題:

(1)讀題分析法:多用於「和,差,倍,分問題」

仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套—————」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程。

(2)畫圖分析法:多用於「行程問題」

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。

11.列方程解應用題的常用公式:

(1)行程問題:距離=速度·時間;

(2)工程問題:工作量=工效·工時;

(3)比率問題:部分=全體·比率;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

(5)商品價格問題:售價=定價·折·,利潤=售價—成本,;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

S正方形=a2,S環形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。

本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。

初中數學知識點之基礎知識點總結3

二元二次方程與二元二次方程組以及解法要領的孩子試點已經為大家講完,接下來給大家帶來的知識點內容是數軸,希望同學們了解有向直線和數軸的知識要領了。

數軸

11有向直線

在科學技術和日常生活中,為了區別一條直線的兩個不同方向,可以規定其中一方向為正向,另一方向為負相

規定了正方向的直線,叫做有向直線,讀作有向直線l

12數軸

我們把數軸上任意一點所對應的實數稱為點的坐標

對於每一個坐標(實數),在數周上可以找到唯一的點與之對應這就是直線的坐標化

數軸上任意一條有向線段的數量等於它的終點坐標與起點坐標的差任意一條有向線段的長度等於它兩個斷電坐標差的絕對值

上面的內容是初中數學知識點之數軸,相信同學們看過以後都可以很好的掌握了吧。如果想要了解更多更全的初中數學知識就來關注吧。

初中數學知識點總結:平面直角坐標系

下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。

平面直角坐標系

平面直角坐標系: 在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。

水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合

三個規定:

①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。

③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。

初中數學知識點:平面直角坐標系的構成

對於平面直角坐標系的構成內容,下面我們一起來學習哦。

平面直角坐標系的構成

在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。

初中數學知識點:點的坐標的性質

下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。

點的坐標的性質

建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。

初中數學知識點:因式分解的一般步驟

關於數學中因式分解的一般步驟內容學習,我們做下面的知識講解。

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:「一提」、「二套」、「三分組」、「四十字」。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。

初中數學知識點:因式分解

下面是對數學中因式分解內容的知識講解,希望同學們認真學習。

因式分解

因式分解定義

把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素

①結果必須是整式②結果必須是積的形式③結果是等式④

因式分解與整式乘法的關系:m(a+b+c)

公因式:

一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定方法

①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式注意;

①不準丟字母

②不準丟常數項注意查項數

③雙重括弧化成單括弧

④結果按數單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負號放括弧外

⑦括弧內同類項合並。

通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。

;

Ⅶ 初中數學之基礎知識點總結

有關初中數學之基礎知識點總結

在日常生活或是工作學習中,大家一定都或多或少地接觸過一些化學知識,下面是我為大家收集的有關初中數學之基礎知識點總結相關內容,僅供參考,希望能夠幫助到大家。

一、數與代數

數與式:

1、有理數:①整數→正整數/0/負整數②分數→正分數/負分數

數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。

絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

減法:減去一個數,等於加上這個數的相反數。

乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。

除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。

乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。

2、實數 無理數:無限不循環小數叫無理數

平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。

3、代數式

代數式:單獨一個數或者一個字母也是代數式。

合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。

4、整式與分式

整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。

冪的運算:AM+AN=A(M+N)

(AM)N=AMN

(A/B)N=AN/BN 除法一樣。

整式的.乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

公式兩條:平方差公式/完全平方公式

整式的除法:

①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

方法:提公因式法、運用公式法、分組分解法、十字相乘法。

分式:

①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。

②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。

直線的位置與常數的關系

①k>0則直線的傾斜角為銳角

②k<0則直線的傾斜角為鈍角

③圖像越陡,|k|越大

④b>0直線與y軸的交點在x軸的上方

⑤b<0直線與y軸的交點在x軸的下方

;

Ⅷ 初中數學零基礎高中怎麼辦

高中數學有什麼學習方法?想必大家都很想了解,下面將為您詳細介紹,僅供參考。

數學學習方法

課內重視聽講,課後及時復習

新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。

適當多做題,養成良好的解題習慣

要想學好數學,多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。

調整心態,正確對待考試

首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。

數學學習技巧

1.做好准備,提出問題,多次閱讀課本,查閱相關材料,回答自己提出的問題,並在老師談論新課之前努力掌握盡可能多的知識。如果你不能回答問題,你可以在老師的講座中解答。

2.學會聽課。在初中教學中,教師經常反復講解一個知識點,讓學生通過大量的練習掌握它。但是高中畢業後,老師不會讓學生通過大量的練習掌握知識點,而是通過一些相關的知識來引導學生去理解。這些知識是如何產生的,以及如何利用這些知識來解決一些相關的疑問?如果學生能夠理解,他們可以通過課外練習鞏固自己的知識。同時,學生可以根據教師的指導擴大知識。

3.敢於表達自己的想法。在高中數學學習中,學生會遇到很多解決問題的技巧。也許這個方法對別人來說不是很熟悉,你知道。那麼你需要學生敢於表達自己的想法,這樣你才能掌握更多的技能。它也可以激發學生的學習興趣,如果一個班是滿的。是老師在說話,課堂氣氛很沉悶,學生的學習效率也很低。

Ⅸ 剛升高三,數學基礎為零(從初中到高中數學一直很垃圾),求高效學習方法

想要學好高中數學,一定的數學基礎是必不可少的。這個基礎並不是指你初中,小學的成績要有多少,而是指在看到數學題是能快速的想到一些最簡單的知識。盡管這些知識你在初中時可能都不屑一顧。
要學好高中數學,一定要有很好的空間想像思維。高中數學中的難題,中難題80%以上都是數形結合,純幾何幾乎沒有,純代數則只有不等式和統計,幾何幾種類型,而且不會太難。而面對數形結合的題,當你一拿到題,你必須在腦海中構建出相應的圖形。同時對於圖形中的一些點,線,面,根據題目所考的內容,必須得要在第一時間感覺到,這樣才能快速的把題做出來。在這整個過程中,並不需要太多太難的知識。根據最簡單的知識構建圖形,根據最簡單的圖形了解一批最簡單的知識,根據這些簡單知識,快速的向題目所要求的方向延伸,延伸到一些較難的知識,就算是最難的題當你延伸出足夠的條件時,答案已經出來了。同時還有一些題,只要你對圖形夠敏感,只在腦袋裡想幾秒就可以的出答案,可若是你不能從圖像中得到有效的信息,那麼,恭喜你..........................................................................................................................................
你完了!
對於純幾何題,最簡單的做法是............在腦海中想著圖形,不斷的改變,推論著圖像。不夠如果你的空間思維並不是很好,勸你還是再草稿本上好好的畫圖好了,不然的話,你很有可能唄自己弄暈。
至於純代數題,在老師將課時你一定要記好筆記,尤其是解題的方法和例題,然後下來不斷的練習。不過不用練太多難題,主要是要練習解法。一定要練到你一看見一久條件反射的想到解法,一看到簡單的幾何題就.................................................................................................................
想吐!!!
總之,要靈活運用一切的簡單知識,因為一切高深的知識不是從簡單知識延伸,就是由許多簡單知識為條件而得出的結論。所以,但你學會靈活應用一切的簡單知識,你至少不會是一個差生。
而但你通過不斷練習而擁有了優秀的發散性思維,逆向思維,空間思維時,你已經是一個優秀的學生。若你想考清華,北大這樣的學府時,你應該。。。。。。。。。。。。。。。。。。。。
對不起,這個我不知道。
總之,要學好數學,練題是必不可少的。當然不是妖你進行漫無目的的題海戰術,而是針對自己的不足進行專門的訓練,而且只練簡單的題,不然.......................................................................
呃!這個後果我不敢相象。
同時,你要從一些稍稍有一點難的題中培養你對數學的興趣,這樣才能事倍功半。興趣是最好的老師,若你對數學沒興趣,在好的方法也最多使你成為一個優等生,而不能拔尖。
另外提醒一下,這個方法雖然開始有點枯燥,但當你的數學有了起色後,你會發現就算你不繼續也能多一個優等生,而若你繼續下去,拔尖沒問題。而且這是這樣的學習已經溶入你的生活,變得一點也不枯燥,而是很有趣。
另外說句題外話:想學好數學,一學期准備10個以上草稿本,要學好理科,20個少不了。
(以上皆屬個人觀點,覺得不對你當是有人在放屁;如果你覺得有一些道理,那請你認真閱讀,再結合自身情況多一些修改,畢竟每個人的情況都是不同的。)