當前位置:首頁 » 基礎知識 » 高中數學必修4簡單點的知識點總結
擴展閱讀
卡夫卡經典的小說是什麼 2025-01-24 13:19:50
女生張嘴動漫怎麼畫 2025-01-24 13:19:49
幼兒園中班幼兒春季知識 2025-01-24 13:12:07

高中數學必修4簡單點的知識點總結

發布時間: 2022-09-10 05:04:40

1. 數學必修4向量公式歸納

在數學中,向量(也稱為歐幾里得向量、幾何向量、矢量),指具有大小(magnitude)和方向的量,它可以形象化地表示為帶箭頭的線段。下面我給大家帶來數學必修4向量公式,希望對你有幫助。

目錄

高中數學必修4向量公式

高中數學必修4目錄

高中數學學習方法

高中數學必修4向量公式

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0

AB-AC=CB. 即「共同起點,指向被減」

a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

3、向量的的數量積

定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

向量的數量積的坐標表示:a·b=x·x'+y·y'。

向量的數量積的運算率

a·b=b·a(交換率);

(a+b)·c=a·c+b·c(分配率);

向量的數量積的性質

a·a=|a|的平方。

a⊥b 〈=〉a·b=0。

|a·b|≤|a|·|b|。

向量的數量積與實數運算的主要不同點

1、向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。

2、向量的數量積不滿足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。

3、|a·b|≠|a|·|b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

4、數乘向量

實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

當λ>0時,λa與a同方向;

當λ<0時,λa與a反方向;

當λ=0時,λa=0,方向任意。

當a=0時,對於任意實數λ,都有λa=0。

註:按定義知,如果λa=0,那麼λ=0或a=0。

實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

數與向量的乘法滿足下面的運算律

結合律:(λa)·b=λ(a·b)=(a·λb)。

向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.

數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.

數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。

<<<

高中數學必修4目錄

第一章 三角函數

1.1 任意角和弧度制

1.2 任意角的三角函數

1.3 三角函數的誘導公式

1.4 三角函數的圖象與性質

1.5 函數y=Asin(ωx ψ)

1.6 三角函數模型的簡單應用

本章綜合

第二章 平面向量

2.1 平面向量的實際背景及基本概念

2.2 平面向量的線性運算

2.3 平面向量的基本定理及坐標表示

2.4 平面向量的數量積

2.5 平面向量應用舉例

本章綜合

第三章 三角恆等變換

3.1 兩角和與差的正弦、餘弦和正切公式

3.2 簡單的三角恆等變換

本章綜合

<<<

高中 數學 學習 方法

(1)記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。

(2)建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。

(3)熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。

(4)經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。

(5)閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。

(6)及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏固,消滅前學後忘。

(7)學會從多角度、多層次地進行 總結 歸類。如:①從數學思想分類②從解題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。

(8)經常在做題後進行一定的「 反思 」,思考一下本題所用的基礎知識,數學思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解 其它 問題時,是否也用到過。

(9)無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學好數學的重要問題。

<<<


數學必修4向量公式歸納相關 文章 :

★ 數學必修4向量公式歸納

★ 數學必修4平面向量公式總結

★ 高中數學必修4平面向量知識點總結

★ 高一數學必修4平面向量知識點總結

★ 高中數學必修4平面向量知識點

★ 人教版高二數學上向量的三角形不等式歸納

★ 高二數學必修4向量模的計算知識點

★ 高一數學必修4第二章平面向量基本定理及坐標表示知識點

★ 高一數學必修4第二章平面向量基本定理及坐標表示知識點(2)

★ 高一數學必修4知識點總結(人教版)

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

2. 高一數學必修4函數知識點總結

§1.2.1、函數的概念
1、 設A、B是非空的數集,如果按照某種確定的對應關系,使對於集合A中的任意一個數,在集合B中都有惟一確定的數和它對應,那麼就稱為集合A到集合B的一個函數,記作:.
2、 一個函數的構成要素為:定義域、對應關系、值域.如果兩個函數的定義域相同,並且對應關系完全一致,則稱這兩個函數相等.

§1.2.2、函數的表示法
1、 函數的三種表示方法:解析法、圖象法、列表法.
§1.3.1、單調性與最大(小)值
1、 注意函數單調性證明的一般格式:
§1.3.2、奇偶性
1、 一般地,如果對於函數的定義域內任意一個,都有,那麼就稱函數為偶函數.偶函數圖象關於軸對稱.
2、 一般地,如果對於函數的定義域內任意一個,都有,那麼就稱函數為奇函數.奇函數圖象關於原點對稱.
第二章、基本初等函數(Ⅰ)
§2.1.1、指數與指數冪的運算
1、 一般地,如果,那麼叫做 的次方根。其中.
若需要可以發郵箱

3. 高中數學必修知識點

書籍是最有耐心、最能忍耐和最令人愉快的夥伴。在任何艱難困苦的時刻,它都不會拋棄你。下面我給大家分享一些高中數學必修知識點,希望能夠幫助大家,歡迎閱讀!

高中數學必修知識點1

必修1

【第一章】集合和函數的基本概念這一章的易錯點,都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就會丟分。次一級的知識點就是集合的韋恩圖、會畫圖,掌握了這些,集合的「並、補、交、非」也就解決了。

還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,最好的 方法 是寫在 筆記本 上,每天至少看上一遍。

【第二章】基本初等函數——指數、對數、冪函數三大函數的運算性質及圖像函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關於這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。

函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對於冪函數還要搞清楚當指數冪大於一和小於一時圖像的不同及函數值的大小關系,這也是常考點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。

【第三章】函數的應用這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關於證明零點的方法,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題

高中數學必修知識點2

必修2

【第一章】空間幾何三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。

在做題時結合草圖是有必要的,不能單憑想像。後面的錐體、柱體、台體的表面積和體積,把公式記牢問題就不大。

【第二章】點、直線、平面之間的位置關系這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規范性問題。

關於這一章的內容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在於二面角這個概念,大多同學即使知道有這個概念,也無法理解怎麼在二面裡面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什麼捷徑可走。

【第三章】直線與方程這一章主要講斜率與直線的位置關系,只要搞清楚直線平行、垂直的斜率表示問題就錯不了。需要注意的是當直線垂直時斜率不存在的情況是考試中的常考點。另外直線方程的幾種形式所涉及到的一般公式,會用就行,要求不高。點與點的距離、點與直線的距離、直線與直線的距離,只要直接套用公式就行,沒什麼難點。

【第四章】圓與方程能熟練的把一般式方程轉化為標准方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方後定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。

高中數學必修知識點3

必修3

總的來說這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計算。 程序框圖與三種演算法語句的結合,及框圖的演算法表示,不要用常規的語言來理解,否則你會在這樣的題型中栽跟頭。 秦九韶演算法是重點,要牢記演算法的公式。 統計就是對一堆數據的處理,考試也是以計算為主,會從條形圖中計算出中位數等數字特徵,對於回歸問題,只要記住公式,也就是個計算問題。 概率,主要就只幾何概型、古典概型。幾何概型只要會找表示所求事件的長度面積等,古典概型只要能表示出全部事件就可以。

高中數學必修知識點4

必修4

【第一章】三角函數考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恆等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。

【第二章】平面向量向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要「同起點的向量」這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。

【第三章】三角恆等變換這一章公式特別多,像差倍半形公式這類內容常會出現,所以必須要記牢。由於量比較大,記憶難度大,所以建議用紙寫好後貼在桌子上,天天都要看。要提一點,就是三角恆等變換是有一定規律的,記憶的時候可以集合三角函數去記。

高中數學必修知識點5

必修5

【第一章】解三角形掌握正弦、餘弦公式及其變式、推論、三角面積公式即可。 【第二章】數列等差、等比數列的通項公式、前n項及一些性質常出現於填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到後要帶有目的的去推導就沒問題了。

【第三章】不等式這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然後再根據實際問題的限制要求來求最值。


高中數學必修知識點相關 文章 :

★ 高一數學必修一知識點匯總

★ 高中數學必修二知識點總結

★ 高中數學必修一知識點總結

★ 高一數學必修4知識點總結(人教版)

★ 知識點高中數學必修一

★ 高中數學必修一知識點總結

★ 高一數學必修4知識點

★ 高中數學必修一復習提綱

★ 高一數學必修1知識點

4. 高一數學必修4的知識點的總結

同角三角函數基本關系

⒈同角三角函數的基本關系式
倒數關系:
tanα •cotα=1
sinα •cscα=1
cosα •secα=1
商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)

同角三角函數關系六角形記憶法

六角形記憶法:(參看圖片或參考資料鏈接)
構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
(1)倒數關系:對角線上兩個函數互為倒數;
(2)商數關系:六邊形任意一頂點上的函數值等於與它相鄰的兩個頂點上函數值的乘積。
(主要是兩條虛線兩端的三角函數值的乘積)。由此,可得商數關系式。
(3)平方關系:在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等於下面頂點上的三角函數值的平方。

兩角和差公式

⒉兩角和與差的三角函數公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ
tan(α+β)=——————
1-tanα •tanβ

tanα-tanβ
tan(α-β)=——————
1+tanα •tanβ

倍角公式

⒊二倍角的正弦、餘弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

2tanα
tan2α=—————
1-tan^2(α)

半形公式

⒋半形的正弦、餘弦和正切公式(降冪擴角公式)

1-cosα
sin^2(α/2)=—————
2

1+cosα
cos^2(α/2)=—————
2

1-cosα
tan^2(α/2)=—————
1+cosα

萬能公式

⒌萬能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)

1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)

2tan(α/2)
tanα=——————
1-tan^2(α/2)

萬能公式推導

附推導:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因為cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然後用α/2代替α即可。
同理可推導餘弦的萬能公式。正切的萬能公式可通過正弦比餘弦得到。

三倍角公式

⒍三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα

3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)

三倍角公式推導

附推導:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα

三倍角公式聯想記憶

記憶方法:諧音、聯想
正弦三倍角:3元 減 4元3角(欠債了(被減成負數),所以要「掙錢」(音似「正弦」))
餘弦三倍角:4元3角 減 3元(減完之後還有「余」)
☆☆注意函數名,即正弦的三倍角都用正弦表示,餘弦的三倍角都用餘弦表示。

和差化積公式

⒎三角函數的和差化積公式

α+β α-β
sinα+sinβ=2sin—----•cos—---
2 2

α+β α-β
sinα-sinβ=2cos—----•sin—----
2 2

α+β α-β
cosα+cosβ=2cos—-----•cos—-----
2 2

α+β α-β
cosα-cosβ=-2sin—-----•sin—-----
2 2

積化和差公式

⒏三角函數的積化和差公式
sinα •cosβ=0.5[sin(α+β)+sin(α-β)]
cosα •sinβ=0.5[sin(α+β)-sin(α-β)]
cosα •cosβ=0.5[cos(α+β)+cos(α-β)]
sinα •sinβ=- 0.5[cos(α+β)-cos(α-β)]

5. 高一數學必修四知識點梳理

要盡快適應高中學習,同學們必須在了解高中學習特點的基礎上,掌握科學的 學習 方法 。掌握科學的學習方法,應做到主動預習、正確聽課、有效復習。以下是我給大家整理的 高一數學 必修四知識點梳理,希望能幫助到你!

高一數學必修四知識點梳理1

【公式一】

設α為任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

【公式二】

設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

【公式三】

任意角α與-α的三角函數值之間的關系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

【公式四】

利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

【公式五】

利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

【公式六】

π/2±α及3π/2±α與α的三角函數值之間的關系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

高一數學必修四知識點梳理2

問題提出

1.函數是研究兩個變數之間的依存關系的一種數量形式.對於兩個變數,如果當一個變數的取值一定時,另一個變數的取值被惟一確定,則這兩個變數之間的關系就是一個函數關系.

2.在中學校園里,有這樣一種說法:「如果你的數學成績好,那麼你的物理學習就不會有什麼大問題.」按照這種說法,似乎學生的物理成績與數學成績之間存在著某種關系,我們把數學成績和物理成績看成是兩個變數,那麼這兩個變數之間的關系是函數關系嗎?

3.我們不能通過一個人的數學成績是多少就准確地斷定其物理成績能達到多少,學習興趣、學習時間、教學水平等,也是影響物理成績的一些因素,但這兩個變數是有一定關系的,它們之間是一種不確定性的關系.類似於這樣的兩個變數之間的關系,有必要從理論上作些探討,如果能通過數學成績對物理成績進行合理估計,將有著非常重要的現實意義.

知識探究(一):變數之間的相關關系

思考1:考察下列問題中兩個變數之間的關系:

(1)商品銷售收入與 廣告 支出經費;

(2)糧食產量與施肥量;

(3)人體內的脂肪含量與年齡.

這些問題中兩個變數之間的關系是函數關系嗎?

思考2:「名師出高徒」可以解釋為教師的水平越高,學生的水平就越高,那麼學生的學業成績與教師的教學水平之間的關系是函數關系嗎?你能舉出類似的描述生活中兩個變數之間的這種關系的 成語 嗎?

思考3:上述兩個變數之間的關系是一種非確定性關系,稱之為相關關系,那麼相關關系的含義如何?

自變數取值一定時,因變數的取值帶有一定隨機性的兩個變數之間的關系,叫做相關關系.

1、球的體積和球的半徑具有()

A函數關系B相關關系

C不確定關系D無任何關系

2、下列兩個變數之間的關系不是

函數關系的是()

A角的度數和正弦值

B速度一定時,距離和時間的關系

C正方體的棱長和體積

D日照時間和水稻的畝產量AD練:知識探究(二):散點圖

【問題】在一次對人體脂肪含量和年齡關系的研究中,研究人員獲得了一組樣本數據:

其中各年齡對應的脂肪數據是這個年齡人群脂肪含量的樣本平均數.

思考1:對某一個人來說,他的體內脂肪含量不一定隨年齡增長而增加或減少,但是如果把很多個體放在一起,就可能表現出一定的規律性.觀察上表中的數據,大體上看,隨著年齡的增加,人體脂肪含量怎樣變化?

思考2:為了確定年齡和人體脂肪含量之間的更明確的關系,我們需要對數據進行分析,通過作圖可以對兩個變數之間的關系有一個直觀的印象.以x軸表示年齡,y軸表示脂肪含量,你能在直角坐標系中描出樣本數據對應的圖形嗎?

思考3:上圖叫做散點圖,你能描述一下散點圖的含義嗎?

在平面直角坐標系中,表示具有相關關系的兩個變數的一組數據圖形,稱為散點圖.

思考4:觀察散點圖的大致趨勢,人的年齡的與人體脂肪含量具有什麼相關關系?

思考5:在上面的散點圖中,這些點散布在從左下角到右上角的區域,對於兩個變數的這種相關關系,我們將它稱為正相關.一般地,如果兩個變數成正相關,那麼這兩個變數的變化趨勢如何?

思考6:如果兩個變數成負相關,從整體上看這兩個變數的變化趨勢如何?其散點圖有什麼特點?

一個變數隨另一個變數的變大而變小,散點圖中的點散布在從左上角到右下角的區域.

一般情況下兩個變數之間的相關關系成正相關或負相關,類似於函數的單調性.

知識探究(一):回歸直線

思考1:一組樣本數據的平均數是樣本數據的中心,那麼散點圖中樣本點的中心如何確定?它一定是散點圖中的點嗎?

思考2:在各種各樣的散點圖中,有些散點圖中的點是雜亂分布的,有些散點圖中的點的分布有一定的規律性,年齡和人體脂肪含量的樣本數據的散點圖中的點的分布有什麼特點?

這些點大致分布在一條直線附近.

思考3:如果散點圖中的點的分布,從整體上看大致在一條直線附近,則稱這兩個變數之間具有線性相關關系,這條直線叫做回歸直線.對具有線性相關關系的兩個變數,其回歸直線一定通過樣本點的中心嗎?

思考4:對一組具有線性相關關系的樣本數據,你認為其回歸直線是一條還是幾條?

思考5:在樣本數據的散點圖中,能否用直尺准確畫出回歸直線?藉助計算機怎樣畫出回歸直線?

知識探究(二):回歸方程

在直角坐標系中,任何一條直線都有相應的方程,回歸直線的方程稱為回歸方程.對一組具有線性相關關系的樣本數據,如果能夠求出它的回歸方程,那麼我們就可以比較具體、清楚地了解兩個相關變數的內在聯系,並根據回歸方程對總體進行估計.

思考1:回歸直線與散點圖中各點的位置應具有怎樣的關系?

整體上最接近

思考2:對於求回歸直線方程,你有哪些想法?

思考4:為了從整體上反映n個樣本數據與回歸直線的接近程度,你認為選用哪個數量關系來刻畫比較合適?20.9%某小賣部為了了解熱茶銷售量與氣溫

之間的關系,隨機統計並製作了某6天

賣出熱茶的杯數與當天氣溫的對照表:

如果某天的氣溫是-50C,你能根據這些

數據預測這天小賣部賣出熱茶的杯數嗎?

實例探究

為了了解熱茶銷量與

氣溫的大致關系,我們

以橫坐標x表示氣溫,

縱坐標y表示熱茶銷量,

建立直角坐標系.將表

中數據構成的6個數對

表示的點在坐標系內

標出,得到下圖。

你發現這些點有什麼規律?

今後我們稱這樣的圖為散點圖(scatterplot).

建構數學

所以,我們用類似於估計平均數時的

思想,考慮離差的平方和

當x=-5時,熱茶銷量約為66杯

線性回歸方程:

一般地,設有n個觀察數據如下:當a,b使2.三點(3,10),(7,20),(11,24)的

線性回歸方程是()D11.69

二、求線性回歸方程

例2:觀察兩相關變數得如下表:

求兩變數間的回歸方程解1:列表:

閱讀課本P73例1

EXCEL作散點圖

利用線性回歸方程解題步驟:

1、先畫出所給數據對應的散點圖;

2、觀察散點,如果在一條直線附近,則說明所給量具有線性相關關系

3、根據公式求出線性回歸方程,並解決其他問題。

(1)如果x=3,e=1,分別求兩個模型中y的值;(2)分別說明以上兩個模型是確定性

模型還是隨機模型.

模型1:y=6+4x;模型2:y=6+4x+e.

解(1)模型1:y=6+4x=6+4×3=18;

模型2:y=6+4x+e=6+4×3+1=19.C線性相關與線性回歸方程小結1、變數間相關關系的散點圖

2、如何利用「最小二乘法」思想求直線的回歸方程

3、學會用回歸思想考察現實生活中變數之間的相關關系

高一數學必修四知識點梳理3

定義:

形如y=x^a(a為常數)的函數,即以底數為自變數冪為因變數,指數為常量的函數稱為冪函數。

定義域和值域:

當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大於0時,函數的值域總是大於0的實數。在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域

性質:

對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:

排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

總結 起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:

如果a為任意實數,則函數的定義域為大於0的所有實數;

如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0的所有實數。

在x大於0時,函數的值域總是大於0的實數。

在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。

而只有a為正數,0才進入函數的值域。

由於x大於0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當a大於0時,冪函數為單調遞增的,而a小於0時,冪函數為單調遞減函數。

(3)當a大於1時,冪函數圖形下凹;當a小於1大於0時,冪函數圖形上凸。

(4)當a小於0時,a越小,圖形傾斜程度越大。

(5)a大於0,函數過(0,0);a小於0,函數不過(0,0)點。

(6)顯然冪函數_。


高一數學必修四知識點梳理相關 文章 :

★ 高一數學必修4知識點總結(人教版)

★ 高一數學必修4知識點

★ 高中數學必修四第一章知識點總結

★ 高中數學必修四三角函數萬能公式歸納

★ 高中數學必修四公式總結

★ 高中必修4數學三角函數知識點歸納

★ 高中數學必修4目錄

★ 高一數學必修一知識點匯總

★ 高一數學知識點匯總大全

★ 高一數學知識點總結歸納

6. 高一數學平面向量知識點總結

平面向量是高中數學中基本內容,也是聯系代數與幾何的一種工具,為高考的重點內容。下面我給大家帶來 高一數學 平面向量知識點,希望對你有幫助。

目錄

高一數學平面向量知識點

高一數學知識點

高一數學學習方法

高一數學平面向量知識點

向量:既有大小,又有方向的量.

數量:只有大小,沒有方向的量.

有向線段的三要素:起點、方向、長度.

零向量:長度為的向量.

單位向量:長度等於個單位的向量.

相等向量:長度相等且方向相同的向量

&向量的運算

加法運算

AB+BC=AC,這種計演算法則叫做向量加法的三角形法則。

已知兩個從同一點O出發的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計演算法則叫做向量加法的平行四邊形法則。

對於零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法滿足所有的加法運算定律。

減法運算

與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

數乘運算

實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ< 0時,λa的方向和a的方向相反,當λ = 0時,λa = 0。

設λ、μ是實數,那麼:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法運算、減法運算、數乘運算統稱線性運算。

向量的數量積

已知兩個非零向量a、b,那麼|a||b|cos θ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。

a.b的幾何意義:數量積a.b等於a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。

兩個向量的數量積等於它們對應坐標的乘積的和。

<<<

高一數學知識點

1、柱、錐、台、球的結構特徵

(1)稜柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標准分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底 面相 似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標准分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

<<<

高一 數學 學習 方法

認真聽課做筆記

在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。科學的記筆記可以提高45分鍾課堂效益。

把握教材去理解

要提高數學能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學習高一數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。

提高思維敏捷力

如果數學課沒有一定的速度,那是一種無效學習。慢騰騰的學習是訓練不出思維速度,訓練不出思維的敏捷性,是培養不出數學能力的,這就要求在數學學習中一定要有節奏,這樣久而久之,思維的敏捷性和數學能力會逐步提高。

避免遺留問題

在數學課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對於那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結症遺留下來,甚至沉澱下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。

<<<


高一數學平面向量知識點 總結 相關 文章 :

★ 高一數學平面向量知識點總結

★ 高一數學平面向量知識點

★ 高中數學必修4平面向量知識點總結

★ 數學必修4向量公式歸納

★ 高一數學平面向量知識點分析

★ 高中高一數學知識點總結

★ 數學必修4平面向量公式總結

★ 高中數學必修4平面向量知識點

★ 高一數學知識點總結歸納

★ 高中數學平面解析幾何知識點歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

7. 高一數學必修四知識點

高中階段學科知識交叉多、綜合性強,以理解和應用為主,要求學生要有更強的分析、概括、綜合、實踐的能力。在高中階段,不能只局限於知識的學習,而要重視觀察、思維、分析、閱讀、動手等能力的培養。下面是我給大家帶來的 高一數學 知識點,希望大家能夠喜歡!

高一數學知識點匯總

空間幾何體表面積體積公式:

1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

3、a-邊長,S=6a2,V=a3

4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

5、稜柱S-h-高V=Sh

6、棱錐S-h-高V=Sh/3

7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

11、r-底半徑h-高V=πr^2h/3

12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台r1和r2-球台上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4

17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

練習題:

1.正四棱錐P—ABCD的側棱長和底面邊長都等於,有兩個正四面體的棱長也都等於.當這兩個正四面體各有一個面與正四棱錐的側面PAD,側面PBC完全重合時,得到一個新的多面體,該多面體是()

(A)五面體

(B)七面體

(C)九面體

(D)十一面體

2.正四面體的四個頂點都在一個球面上,且正四面體的高為4,則球的表面積為()

(A)9

(B)18

(C)36

(D)64

3.下列說法正確的是()

A.稜柱的側面可以是三角形

B.正方體和長方體都是特殊的四稜柱

C.所有的幾何體的表面都能展成平面圖形

D.稜柱的各條棱都相等

高一數學知識點 總結

一)兩角和差公式 (寫的都要記)

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA ?

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

二)用以上公式可推出下列二倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

(上面這個餘弦的很重要)

sin2A=2sinA_cosA

三)半形的只需記住這個:

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

四)用二倍角中的餘弦可推出降冪公式

(sinA)^2=(1-cos2A)/2

(cosA)^2=(1+cos2A)/2

五)用以上降冪公式可推出以下常用的化簡公式

1-cosA=sin^(A/2)_2

1-sinA=cos^(A/2)_2

高一數學知識點梳理

重點難點講解:

1.回歸分析:

就是對具有相關關系的兩個變數之間的關系形式進行測定,確定一個相關的數學表達式,以便進行估計預測的統計分析 方法 。根據回歸分析方法得出的數學表達式稱為回歸方程,它可能是直線,也可能是曲線。

2.線性回歸方程

設x與y是具有相關關系的兩個變數,且相應於n組觀測值的n個點(xi,yi)(i=1,......,n)大致分布在一條直線的附近,則回歸直線的方程為。

其中。

3.線性相關性檢驗

線性相關性檢驗是一種假設檢驗,它給出了一個具體檢驗y與x之間線性相關與否的辦法。

①在課本附表3中查出與顯著性水平0.05與自由度n-2(n為觀測值組數)相應的相關系數臨界值r0.05。

②由公式,計算r的值。

③檢驗所得結果

如果|r|≤r0.05,可以認為y與x之間的線性相關關系不顯著,接受統計假設。

如果|r|>r0.05,可以認為y與x之間不具有線性相關關系的假設是不成立的,即y與x之間具有線性相關關系。

典型例題講解:

例1.從某班50名學生中隨機抽取10名,測得其數學考試成績與物理考試成績資料如表:序號12345678910數學成績54666876788285879094,物理成績61806286847685828896試建立該10名學生的物理成績對數學成績的線性回歸模型。

解:設數學成績為x,物理成績為,則可設所求線性回歸模型為,

計算,代入公式得∴所求線性回歸模型為=0.74x+22.28。

說明:將自變數x的值分別代入上述回歸模型中,即可得到相應的因變數的估計值,由回歸模型知:數學成績每增加1分,物理成績平均增加0.74分。大家可以在老師的幫助下對自己班的數學、化學成績進行分析。

例2.假設關於某設備的使用年限x和所支出的維修費用y(萬元),有如下的統計資料:x23456y2.23.85.56.57.0

若由資料可知y對x成線性相關關系。試求:

(1)線性回歸方程;(2)估計使用年限為10年時,維修費用是多少?

分析:本題為了降低難度,告訴了y與x間成線性相關關系,目的是訓練公式的使用。

解:(1)列表如下:i12345xi23456yi2.23.85.56.57.0xiyi4.411.422.032.542.049162536於是b=,。∴線性回歸方程為:=bx+a=1.23x+0.08。

(2)當x=10時,=1.23×10+0.08=12.38(萬元)即估計使用10年時維修費用是12.38萬元。

說明:本題若沒有告訴我們y與x間是線性相關的,應首先進行相關性檢驗。如果本身兩個變數不具備線性相關關系,或者說它們之間相關關系不顯著時,即使求出回歸方程也是沒有意義的,而且其估計與預測也是不可信的。

例3.某省七年的國民生產總值及社會商品零售總額如下表所示:已知國民生產總值與社會商品的零售總額之間存在線性關系,請建立回歸模型。年份國民生產總值(億元)

社會商品零售總額(億元)1985396.26205.821986442.04227.951987517.77268.661988625.10337.521989700.83366.001990792.54375.111991858.47413.18合計4333.012194.24

解:設國民生產總值為x,社會商品零售總額為y,設線性回歸模型為。

依上表計算有關數據後代入的表達式得:∴所求線性回歸模型為y=0.445957x+37.4148,表明國民生產總值每增加1億元,社會商品零售總額將平均增加4459.57萬元。

例4.已知某地每單位面積菜地年平均使用氮肥量xkg與每單位面積蔬菜每年平均產量yt之間的關系有如下數據:年份(kg)7074807885929095y(t)5.16.06.87.89.010.210.012.0年份(kg)92108115123130138145y(t)11.511.011.812.212.512.813.0(1)求x與y之間的相關系數,並檢驗是否線性相關;

(2)若線性相關,求蔬菜產量y與使用氮肥量之間的回歸直線方程,並估計每單位面積施肥150kg時,每單位面積蔬菜的年平均產量。

分析:(1)使用樣本相關系數計算公式來完成;(2)查表得出顯著水平0.05與自由度15-2相應的相關系數臨界值r0.05比較,若r>r0.05,則線性相關,否則不線性相關。

解:(1)列出下表,並用科學計算器進行有關計算:.16.06.87.89.010.210.012.011.511.011.812.212.512.813.0xiyi357444544608.4765938.490011401058118813571500.616251766.41885,.故蔬菜產量與施用氮肥量的相關系數:r=由於n=15,故自由度15-2=13。由相關系數檢驗的臨界值表查出與顯著水平0.05及自由度13相關系數臨界值r0.05=0.514,則r>r0.05,從而說明蔬菜產量與氮肥量之間存在著線性相關關系。

(2)設所求的回歸直線方程為=bx+a,則∴回歸直線方程為=0.0931x+0.7102。

當x=150時,y的估值=0.0931×150+0.7102=14.675(t)。

說明:求解兩個變數的相關系數及它們的回歸直線方程的計算量較大,需要細心謹慎計算,如果會使用含統計的科學計算器,能簡單得到,這些量,也就無需有製表這一步,直接算出結果就行了。另外,利用計算機中有關應用程序也可以對這些數據進行處理。

高一數學知識點相關 文章 :

★ 高一數學必修4知識點

★ 高一數學必修4知識點總結(人教版)

★ 高一數學必修四知識點總結

★ 高一數學必修4知識點總結

★ 高中數學必修四第一章知識點總結

★ 高一數學必修4三角函數知識點總結

★ 高一數學必修4三角函數知識點總結

★ 高一數學必修四三角恆等變換知識點

★ 高一數學必修4教案

★ 高中數學必修4平面向量知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

8. 高中數學必修4基礎知識點

高中數學必修4知識點 第一章 三角函數 2、角 的頂點與原點重合,角的始邊與 軸的非負半軸重合,終邊落在第幾象限,則稱 為第幾象限角. 第一象限角的集合為 第二象限角的集合為 第三象限角的集合為 第四象限角的集合為 終邊在 軸上的角的集合為 終邊在 軸上的角的集合為 終邊在坐標軸上的角的集合為 3、與角 終邊相同的角的集合為 4、長度等於半徑長的弧所對的圓心角叫做 弧度. 5、半徑為 的圓的圓心角 所對弧的長為 ,則角 的弧度數的絕對值是 . 6、弧度制與角度制的換算公式: ,,. 7、若扇形的圓心角為 ,半徑為 ,弧長為 ,周長為 ,面積為 ,則,,. Pv x y A O M T 8、設 是一個任意大小的角, 的終邊上任意一點 的坐標是 ,它與原點的距離是 ,則,,. 9、三角函數在各象限的符號:第一象限全為正,第二象限正弦為正, 第三象限正切為正,第四象限餘弦為正. 10、三角函數線: ,,. 11、角三角函數的基本關系: ;. 12、函數的誘導公式: ,,. ,,. ,,. ,,. ,.,. 口訣:奇變偶不變,符號看象限.(是 的倍數) 13、①的圖象上所有點向左(右)平移 個單位長度,得到函數 的圖象;再將函數 的圖象上所有點的橫坐標伸長(縮短)到原來的 倍(縱坐標不變),得到函數 的圖象;再將函數 的圖象上所有點的縱坐標伸長(縮短)到原來的 倍(橫坐標不變),得到函數 的圖象. ②數 的圖象上所有點的橫坐標伸長(縮短)到原來的 倍(縱坐標不變),得到函數 的圖象;再將函數 的圖象上所有點向左(右)平移 個單位長度,得到函數 的圖象;再將函數 的圖象上所有點的縱坐標伸長(縮短)到原來的 倍(橫坐標不變),得到函數 的圖象. (都是相對於 而言) 14、函數 的性質: ①振幅: ;②周期: ;③頻率: ;④相位: ;⑤初相: . 函數,當時,取得最小值為 ;當時,取得最大值為 ,則,,. 15、正弦函數、餘弦函數和正切函數的圖象與性質: 函 數 性 質 圖象 定義域 值域 最值 當時, ;當 時, . 當時, ;當 時, . 既無最大值也無最小值 周期性 奇偶性 奇函數 偶函數 奇函數 單調性 在 上是增函數;在 上是減函數. 在 上是增函數;在 上是減函數. 在 上是增函數. 對稱性 對稱中心 對稱軸 對稱中心 對稱軸 對稱中心 無對稱軸 第二章 平面向量 16、向量:既有大小,又有方向的量. 數量:只有大小,沒有方向的量. 有向線段的三要素:起點、方向、長度. 零向量:長度為 的向量. 單位向量:長度等於 個單位的向量. 平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行. 相等向量:長度相等且方向相同的向量. 17、向量加法運算: ⑴三角形法則的特點:首尾相連. ⑵平行四邊形法則的特點:共起點. ⑶三角形不等式: . ⑷運算性質:①交換律: ; ②結合律: ;③. ⑸坐標運算:設, ,則. 18、向量減法運算: ⑴三角形法則的特點:共起點,連終點,方向指向被減向量. ⑵坐標運算:設, ,則. 設、 兩點的坐標分別為 , ,則. 19、向量數乘運算: ⑴實數 與向量 的積是一個向量的運算叫做向量的數乘,記作 . ①; ②當時, 的方向與 的方向相同;當時, 的方向與 的方向相反;當時, . ⑵運算律:①;②;③. ⑶坐標運算:設 ,則. 20、向量共線定理:向量 與 共線,當且僅當有唯一一個實數 ,使. 設, ,其中 ,則當且僅當 時,向量 、 共線. 21、平面向量基本定理:如果 、 是同一平面內的兩個不共線向量,那麼對於這一平面內的任意向量 ,有且只有一對實數 、 ,使.(不共線的向量 、 作為這一平面內所有向量的一組基底) 22、分點坐標公式:設點 是線段 上的一點, 、 的坐標分別是 , ,當時,點 的坐標是 .(當 23、平面向量的數量積: ⑴ .零向量與任一向量的數量積為 . ⑵性質:設和 都是非零向量,則① .②當與 同向時, ;當與 反向時, ;或.③. ⑶運算律:①;②;③. ⑷坐標運算:設兩個非零向量 , ,則. 若,則 ,或.設, ,則. 設、 都是非零向量, ,,是與 的夾角,則. 第三章 三角恆等變換 24、兩角和與差的正弦、餘弦和正切公式: ⑴;⑵; ⑶;⑷; ⑸ (); ⑹ (). 25、二倍角的正弦、餘弦和正切公式: ⑴. ⑵ 升冪公式 降冪公式 ,. ⑶. 26、 (後兩個不用判斷符號,更加好用) 27、合一變形 把兩個三角函數的和或差化為「一個三角函數,一個角,一次方」的 形式。 ,其中 . 28、三角變換是運算化簡的過程中運用較多的變換,提高三角變換能力,要學會創設條件,靈活運用三角公式,掌握運算,化簡的方法和技能.常用的數學思想方法技巧如下: (1)角的變換:在三角化簡,求值,證明中,表達式中往往出現較多的相異角,可根據角與角之間的和差,倍半,互補,互余的關系,運用角的變換,溝通條件與結論中角的差異,使問題獲解,對角的變形如: ①是 的二倍; 是 的二倍; 是 的二倍; 是 的二倍; ② ;問: ; ; ③;④;⑤ ;等等 (2)函數名稱變換:三角變形中,常常需要變函數名稱為同名函數。如在三角函數中正餘弦是基礎,通常化切為弦,變異名為同名。 (3)常數代換:在三角函數運算,求值,證明中,有時需要將常數轉化為三角函數值,例如常數「1」的代換變形有: (4)冪的變換:降冪是三角變換時常用方法,對次數較高的三角函數式,一般採用降冪處理的方法。常用降冪公式有: ; 。降冪並非絕對,有時需要升冪,如對無理式 常用升冪化為有理式,常用升冪公式有: ; ; (5)公式變形:三角公式是變換的依據,應熟練掌握三角公式的順用,逆用及變形應用。 如: ;; ;; ;; ; ; ; = ; = ;(其中 ;) ; ; (6)三角函數式的化簡運算通常從:「角、名、形、冪」四方面入手; 基本規則是:見切化弦,異角化同角,復角化單角,異名化同名,高次化低次,無理化有理,特殊值與特殊角的三角函數互化。 如: ; 。