⑴ 數學家的故事簡單介紹(非常短)
1、高斯的故事
高斯念小學的時候,有一次在老師教完加法後,因為老師想要休 息,所以便出了一道題目要同學們算算看,題目是: 1+2+3+ ..... +97+98+99+100 = ? 老師心裡正想,這下子小朋友一定要算到下課 了吧!正要借口出去時,卻被 高斯叫住了!! 原來呀,高斯已經算 出來了,高斯告訴大家他算出的答案:5050,從此以後高斯小學的學習過程早已經超越了其它的同學,也 因此奠定了他以後的數學基礎,更讓他成為——數學天才!
2、阿基米德的故事
敘拉古的亥厄洛王叫金匠造一頂純金的皇冠,因懷疑裡面摻有銀,便請阿基米德鑒定。當他進入浴盆洗澡時,水漫溢到盆外,於是悟得不同質料的物體,雖然重量相同,但因體積不同,排去的水也必不相等。根據這一道理,就可以判斷皇冠是否摻假。
⑵ 有哪些小知識是數學家或數學愛好者總結出來的
有趣的數學科普小知識如下:
一、阿拉伯數字
阿拉伯數字是古代印度人發明的,後來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發明的,就把它們叫做「阿拉伯數字」。因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做阿拉伯數字。
二、九九歌
九九歌就是我們現在使用的乘法口訣。遠在公元前的春秋戰國時代,九九歌就已經被人們廣泛使用。在當時的許多著作中,都有關於九九歌的記載。最初的九九歌是從「九九八十一」起到「二二如四」止,共36句。因為是從「九九八十一」開始,所以取名九九歌。
大約在公元五至十世紀間,九九歌才擴充到「一一如一」。大約在公元十三、十四世紀,九九歌的順序才變成和現在所用的一樣,從「一一如一」起到「九九八十一」止。現在我國使用的乘法口訣有兩種,一種是45句的,通常稱為「小九九」;還有一種是81句的,通常稱為「大九九」。
三、莫比烏斯環
莫比烏斯環是一種拓撲學結構,它只有一個面和一個邊界。可以用一根紙條扭轉成180度後,兩頭再粘接起來,就形成了莫比烏斯環。
莫比烏斯環沿著中線剪開,第一次,可以得到一個更大的環;第二次及以後,每次都會得到兩個互相嵌套的環。中間永遠不會斷開,這也是莫比烏斯環的神奇之處。
四、克萊因瓶
在1882年,著名數學家菲利克斯·克萊因發現了後來以他的名字命名的著名「瓶子」:克萊因瓶。克萊因瓶就像是一個瓶子,但是它沒有瓶底,它的瓶頸被拉長,然後似乎是穿過了瓶壁,最後瓶頸和瓶底圈連在了一起。有趣的是,如果把克萊因瓶沿著它的對稱線切下去,竟會得到兩個莫比烏斯環。
五、黃金分割
黃金分割提出者是畢達哥拉斯。
有一次,畢達哥拉斯路過鐵匠作坊,被叮叮當當的打鐵聲迷住了。為了揭開這些聲音的秘密,他測量了鐵錘和鐵砧的尺寸,發現它們存在著十分和諧的比例關系。回家後,他取出一根線,分為兩段,反復比較,最後認定1:0.618的比例最為優美。這個比例被公認為是最能引起美感的比例,因此被稱為黃金分割。
⑶ 福建教師招聘信息技術備考:《信息技術》知識梳理
考點1·信息的概念
信息(Information)是通過語言、文字、圖形、圖像等信號傳送的音信、消息,它反映一切事物的屬性、狀態及動態。
數學家香農在題為「通訊的數學理論」的論文中指出:「信息是用來消除隨機不定性的東西」,控制論的創始人維納在他的《控制論》中說:「信息就是信息,不是物質也不是能量。信息是我們適應外部世界並且使這種適應為外部世界所感知的過程中,同外部世界進行交換的內容的名稱。」我國資訊理論專家鍾義信在《信息科學原理》中將信息定義為:「信息是事物的運動狀態及其狀態變化的方式」。
人類通過獲得、識別自然界和社會的不同信息來區別不同事物,得以認識和改造世界。在自然界,樹葉黃了並紛紛地飄落的現象,傳遞著天氣變冷、秋天來臨的信息;古代烽火台上的狼煙、烽火,傳遞了敵人來犯的信息;消防車上閃爍的警燈與鳴響的警笛,宣告著「有火警,本車正趕赴火場」的信息;新聞報道向大眾公布的信息是世界各地發生的各種事件以及政治、經濟、軍事、科研、生產、生活等諸方面的現狀、動態與發展趨勢;各類書籍傳播的信息包括科學知識、風土人情、學術思想等等。
信息不同於消息,消息只是信息的外殼,信息則是消息的內核;信息不同於信號,信號是信息的載體,信息則是信號所載荷的內容;信息不同於數據,數據是記錄信息的一種形式。
考點2·信息的特徵
1.普遍性
從本質上看,信息是事物的狀態、特徵和變化的表現。而事物的狀態、特徵和變化普遍存在,信息也普遍存在,具有普遍性。
2.依附性
信息不能獨立存在,需要依附於一定的載體;同一個信息可以依附於不同的載體。
3.價值性
信息雖不能給人們直接帶來物質上的滿足,但人類卻離不開信息,因為信息也是有價值的。
(1)信息的價值體現
信息的價值體現在以下兩方面:
①可以滿足人們精神領域的需求。
②可以促進物質、能量的生產和使用。
(2)價值相對性
信息只有被人們利用才能體現出其價值,信息的價值存在絕對性和相對性。
①價值的絕對性:對於社會來講,某一信息具有統一價值的絕對性,因為信息本身揭示事物和反映事物的程度是一定的,社會認可信息的基礎條件也是一定的。
②價值的相對性:由於具體的信息接收者原有的認知水平和接收程度不同,某一信息對於不同的信息接收者又具有不同的價值。這句話反映出不同的人對於同一信息的認識和理解是不同的,說明信息具有價值相對性。
4.時效性
信息的時效性是指同一信息在不同的時間具有不同的價值。信息反映的是事物某一特定時刻的狀態,會隨著時間的推移而變化,比如天氣預報信息和交通信息。因此,信息的價值也隨著時間的推移而變化。如果信息不能反映事物的最新變化,它的效用就會降低。例如天氣預報,只對預報的幾個小時有用,之後就失效了。
5.傳遞性
信息的傳遞性是指信息可藉助一定的載體進行傳遞,使人們感知並接受。傳遞性指信息從一處傳到另一處,其傳遞過程包括信源、信道、信宿三個因素。
6.共享性
信息的共享性是指信息可以被多個信息接收者接收並且多次使用,而且一般情況下,信息共享不會造成信息源信息的丟失,也不會改變信息的內容,即信息可以無損使用、公平分享。
7.真偽性
信息的真偽性是指信息有真偽之分,而衡量信息准確與否的標準是信息客觀反映現實世界中事物的程度。
信息特徵經典實例如下圖所示:
⑷ 關於數學家的數學知識故事
(1)康托的連續統基數問題。
1874年,康托猜測在可數集基數和實數集基數之間沒有別的基數,即著名的連續統假設。1938年,僑居美國的奧地利數理邏輯學家哥德爾證明連續統假設與ZF集合論公理系統的無矛盾性。1963年,美國數學家科思(P.Choen)證明連續統假設與ZF公理彼此獨立。因而,連續統假設不能用ZF公理加以證明。在這個意義下,問題已獲解決。
(2)算術公理系統的無矛盾性。
歐氏幾何的無矛盾性可以歸結為算術公理的無矛盾性。希爾伯特曾提出用形式主義計劃的證明論方法加以證明,哥德爾1931年發表不完備性定理作出否定。根茨(G.Gentaen,1909-1945)1936年使用超限歸納法證明了算術公理系統的無矛盾性。
(3)只根據合同公理證明等底等高的兩個四面體有相等之體積是不可能的。
問題的意思是:存在兩個登高等底的四面體,它們不可能分解為有限個小四面體,使這兩組四面體彼此全等德思(M.Dehn)1900年已解決。
(4)兩點間以直線為距離最短線問題。
此問題提的一般。滿足此性質的幾何很多,因而需要加以某些限制條件。1973年,蘇聯數學家波格列洛夫(Pogleov)宣布,在對稱距離情況下,問題獲解決。
(5)拓撲學成為李群的條件(拓撲群)。
這一個問題簡稱連續群的解析性,即是否每一個局部歐氏群都一定是李群。1952年,由格里森(Gleason)、蒙哥馬利(Montgomery)、齊賓(Zippin)共同解決。1953年,日本的山邁英彥已得到完全肯定的結果。
(6)對數學起重要作用的物理學的公理化。
1933年,蘇聯數學家柯爾莫哥洛夫將概率論公理化。後來,在量子力學、量子場論方面取得成功。但對物理學各個分支能否全盤公理化,很多人有懷疑。
(7)某些數的超越性的證明。
需證:如果α是代數數,β是無理數的代數數,那麼αβ一定是超越數或至少是無理數(例如,2√2和eπ)。蘇聯的蓋爾封特(Gelfond)1929年、德國的施奈德(Schneider)及西格爾(Siegel)1935年分別獨立地證明了其正確性。但超越數理論還遠未完成。目前,確定所給的數是否超越數,尚無統一的方法。
(8)素數分布問題,尤其對黎曼猜想、哥德巴赫猜想和孿生素共問題。
素數是一個很古老的研究領域。希爾伯特在此提到黎曼(Riemann)猜想、哥德巴赫(Goldbach)猜想以及孿生素數問題。黎曼猜想至今未解決。哥德巴赫猜想和孿生素數問題目前也未最終解決,其最佳結果均屬中國數學家陳景潤。
(9)一般互反律在任意數域中的證明。
1921年由日本的高木貞治,1927年由德國的阿廷(E.Artin)各自給以基本解決。而類域理論至今還在發展之中。
(10)能否通過有限步驟來判定不定方程是否存在有理整數解?
求出一個整數系數方程的整數根,稱為丟番圖(約210-290,古希臘數學家)方程可解。1950年前後,美國數學家戴維斯(Davis)、普特南(Putnan)、羅賓遜(Robinson)等取得關鍵性突破。1970年,巴克爾(Baker)、費羅斯(Philos)對含兩個未知數的方程取得肯定結論。1970年。蘇聯數學家馬蒂塞維奇最終證明:在一般情況答案是否定的。盡管得出了否定的結果,卻產生了一系列很有價值的副產品,其中不少和計算機科學有密切聯系。
(11)一般代數數域內的二次型論。
德國數學家哈塞(Hasse)和西格爾(Siegel)在20年代獲重要結果。60年代,法國數學家魏依(A.Weil)取得了新進展。
(12)類域的構成問題。
即將阿貝爾域上的克羅內克定理推廣到任意的代數有理域上去。此問題僅有一些零星結果,離徹底解決還很遠。
(13)一般七次代數方程以二變數連續函數之組合求解的不可能性。
七次方程x7+ax3+bx2+cx+1=0的根依賴於3個參數a、b、c;x=x(a,b,c)。這一函數能否用兩變數函數表示出來?此問題已接近解決。1957年,蘇聯數學家阿諾爾德(Arnold)證明了任一在〔0,1〕上連續的實函數f(x1,x2,x3)可寫成形式∑hi(ξi(x1,x2),x3)(i=1--9),這里hi和ξi為連續實函數。柯爾莫哥洛夫證明f(x1,x2,x3)可寫成形式∑hi(ξi1(x1)+ξi2(x2)+ξi3(x3))(i=1--7)這里hi和ξi為連續實函數,ξij的選取可與f完全無關。1964年,維土斯金(Vituskin)推廣到連續可微情形,對解析函數情形則未解決。
(14)某些完備函數系的有限的證明。
即域K上的以x1,x2,…,xn為自變數的多項式fi(i=1,…,m),R為K〔X1,…,Xm]上的有理函數F(X1,…,Xm)構成的環,並且F(f1,…,fm)∈K[x1,…,xm]試問R是否可由有限個元素F1,…,FN的多項式生成?這個與代數不變數問題有關的問題,日本數學家永田雅宜於1959年用漂亮的反例給出了否定的解決。
(15)建立代數幾何學的基礎。
荷蘭數學家范德瓦爾登1938年至1940年,魏依1950年已解決。
(15)注一舒伯特(Schubert)計數演算的嚴格基礎。
一個典型的問題是:在三維空間中有四條直線,問有幾條直線能和這四條直線都相交?舒伯特給出了一個直觀的解法。希爾伯特要求將問題一般化,並給以嚴格基礎。現在已有了一些可計算的方法,它和代數幾何學有密切的關系。但嚴格的基礎至今仍未建立。
(16)代數曲線和曲面的拓撲研究。
此問題前半部涉及代數曲線含有閉的分枝曲線的最大數目。後半部要求討論備dx/dy=Y/X的極限環的最多個數N(n)和相對位置,其中X、Y是x、y的n次多項式。對n=2(即二次系統)的情況,1934年福羅獻爾得到N(2)≥1;1952年鮑廷得到N(2)≥3;1955年蘇聯的波德洛夫斯基宣布N(2)≤3,這個曾震動一時的結果,由於其中的若干引理被否定而成疑問。關於相對位置,中國數學家董金柱、葉彥謙1957年證明了(E2)不超過兩串。1957年,中國數學家秦元勛和蒲富金具體給出了n=2的方程具有至少3個成串極限環的實例。1978年,中國的史松齡在秦元勛、華羅庚的指導下,與王明淑分別舉出至少有4個極限環的具體例子。1983年,秦元勛進一步證明了二次系統最多有4個極限環,並且是(1,3)結構,從而最終地解決了二次微分方程的解的結構問題,並為研究希爾伯特第(16)問題提供了新的途徑。
(17)半正定形式的平方和表示。
實系數有理函數f(x1,…,xn)對任意數組(x1,…,xn)都恆大於或等於0,確定f是否都能寫成有理函數的平方和?1927年阿廷已肯定地解決。
(18)用全等多面體構造空間。
德國數學家比貝爾巴赫(Bieberbach)1910年,萊因哈特(Reinhart)1928年作出部分解決。
(19)正則變分問題的解是否總是解析函數?
德國數學家伯恩斯坦(Bernrtein,1929)和蘇聯數學家彼德羅夫斯基(1939)已解決。
(20)研究一般邊值問題。
此問題進展迅速,己成為一個很大的數學分支。日前還在繼讀發展。
(21)具有給定奇點和單值群的Fuchs類的線性微分方程解的存在性證明。
此問題屬線性常微分方程的大范圍理論。希爾伯特本人於1905年、勒爾(H.Rohrl)於1957年分別得出重要結果。1970年法國數學家德利涅(Deligne)作出了出色貢獻。
(22)用自守函數將解析函數單值化。
此問題涉及艱深的黎曼曲面理論,1907年克伯(P.Koebe)對一個變數情形已解決而使問題的研究獲重要突破。其它方面尚未解決。
(23)發展變分學方法的研究。
這不是一個明確的數學問題。20世紀變分法有了很大發展。
可見,希爾伯特提出的問題是相當艱深的。正因為艱深,才吸引有志之士去作巨大的努力。
⑸ 數學家知識,故事30字左右
雅各布·伯努利是歐洲著名的數學家,他於1654年出生在瑞士的巴塞爾。
從13歲開始,雅各布悄悄地寫起了日記,他把自己在學習中所取得的收獲及遇到的難題,統統記了下來。翻開他的日記,有閱讀書報雜志的體會,有與別人討論數學問題時得到的啟發,有解決數學難題突發的奇想……日記成了雅各布學習數學的問題集,解決問題的思路集、辦法集,研究數學問題的收獲集、成果集。
雅各布對數學的執著追求,終於使他走上了研究數學的道路。他33歲就成為巴塞爾大學數學教授。
塞樂斯生於公元前624年,是古希臘第一位聞名世界的大數學家。他原是一位很精明的商人,靠賣橄欖油積累了相當財富後,塞樂斯便專心從事科學研究和旅行。他勤奮好學,同時又不迷信古人,勇於探索,勇於創造,積極思考問題。他的家鄉離埃及不太遠,所以他常去埃及旅行。在那裡,塞樂斯認識了古埃及人在幾千年間積累的豐富數學知識。他游歷埃及時,曾用一種巧妙的方法算出了金字塔的高度,使古埃及國王阿美西斯欽羨不已。
⑹ 七個關於數學的數學家故事和數學的資料
數學家的故事——蘇步青
蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。
那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。
楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。
17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」
這就是老一輩數學家那顆愛國的赤子之心
數學家的墓誌銘
一些數學家生前獻身於數學,死後在他們的墓碑上,刻著代表著他們生平業績的標志。
古希臘學者阿基米德死於進攻西西里島的羅馬敵兵之手(死前他還在主:「不要弄壞我的圓」。)後,人們為紀念他便在其墓碑上刻上球內切於圓柱的圖形,以紀念他發現球的體積和表面積均為其外切圓柱體積和表面積的三分之二。 德國數學家高斯在他研究發現了正十七邊形的尺規作法後,便放棄原來立志學文的打算 而獻身於數學,以至在數學上作出許多重大貢獻。甚至他在遺囑中曾建議為他建造正十七邊形的稜柱為底座的墓碑。
16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語
祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".
⑺ 有哪些數學家的故事,或數學知識
比較有名的阿基米得
當牛頓說:「如果我看的比別人遠,是因為我站在巨人的肩上。」 的時候,他心目中的巨人必定有一個是西拉斯鳩人—阿基米得,古代最傑出的數學家、物理學家 和工程師。
父親菲迪阿斯是 一位天文學家,阿基米得的一生大部分的時間是在希臘的 西拉斯鳩,受教於歐幾理德。他是國王海厄洛二世的親戚,為國王設計許多打仗用的機械來抵抗羅馬人的七略,他也因為檢定王冠的含金量而發現浮力原理。
阿基米得是第一位講科學的工程師,在他的研究中,使用歐幾理得的方法,先假設,再以嚴謹的邏輯推論得到結果,他不斷地尋求一般性的原則而用於特殊的工程上。他的作品始終融合數學和物理,因此阿基米得成為物理學之父。
他應用杠桿原理於戰爭,保衛西拉斯鳩的事跡是家喻戶曉的。而他也以同 一原理導出部分球體的體積、回轉體的體積(橢球、回轉拋物面、回轉雙曲面),此外,他也討論阿基米得螺線(例如:蒼蠅由等速旋轉的唱盤中心向外走去所留下的軌跡),圓,球體、圓柱的相關原理,其成就,在古時無人能望其項背。
阿基米得將歐幾理得提出的趨近觀念作了有效的運用,他提出圓內接多邊形和相似圓外切多邊形,當邊數足夠大時,兩多邊形的周長便一個由上,一個由下的趨近於圓周長。他先用六邊形,以後逐次加倍邊數,到了九十六邊形,求π的估計值介於3.14163和3.14286之間。另外他算出球的表面積是其內接最大圓面積的四倍。而他最得意的傑作是導出圓柱內切球體的體積是圓柱體積的三分之二倍。這定理就刻在他的墓碑上,也成為他名垂千古的一大注記。
⑻ 想問問五位數學家的資料或小故事100字左右
祖沖之
祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人。他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家。
祖沖之在數學上的傑出成就,是關於圓周率的計算。秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率"。後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一。直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長。劉徽計算到圓內接96邊形,求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確。祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間。並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數。祖沖之究竟用什麼方法得出這一結果,現在無從考查。若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的。祖沖之計算得出的密率,外國數學家獲得同樣結果,已是一千多年以後的事了。為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率"。
蘇步青
蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。
那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。
楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。
17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」
這就是老一輩數學家那顆愛國的赤子之心
數學之父—泰勒斯(Thales)
泰勒斯生於公元前624年,是古希臘第一位聞名世界的大數學家。他原是一位很精明的商人,靠賣橄欖油積累了相當財富後,泰勒斯便專心從事科學研究和旅行。他勤奮好學,同時又不迷信古人,勇於探索,勇於創造,積極思考問題。他的家鄉離埃及不太遠,所以他常去埃及旅行。在那裡,泰勒斯認識了古埃及人在幾千年間積累的豐富數學知識。他游歷埃及時,曾用一種巧妙的方法算出了金字塔的高度,使古埃及國王阿美西斯欽羨不已。
泰勒斯的方法既巧妙又簡單:選一個天氣晴朗的日子,在金字塔邊豎立一根小木棍,然後觀察木棍陰影的長度變化,等到陰影長度恰好等於木棍長度時,趕緊測量金字塔影的長度,因為在這一時刻,金字塔的高度也恰好與塔影長度相等。也有人說,泰勒斯是利用棍影與塔影長度的比等於棍高與塔高的比算出金字塔高度的。如果是這樣的話,就要用到三角形對應邊成比例這個數學定理。泰勒斯自誇,說是他把這種方法教給了古埃及人但事實可能正好相反,應該是埃及人早就知道了類似的方法,但他們只滿足於知道怎樣去計算,卻沒有思考為什麼這樣算就能得到正確的答案。
泰勒斯最先證明了如下的定理:
1.圓被任一直徑二等分。
2.等腰三角形的兩底角相等。
3.兩條直線相交,對頂角相等。
4.半圓的內接三角形,一定是直角三角形。
5.如果兩個三角形有一條邊以及這條邊上的兩個角對應相等,那麼這兩個三角形全等。
這個定理也是塞樂斯最先發現並最先證明的,後人常稱之為塞樂斯定理。相傳泰勒斯證明這個定理後非常高興,宰了一頭公牛供奉神靈。後來,他還用這個定理算出了海上的船與陸地的距離。
陳景潤與哥德巴赫猜想 (這是他的主要成就)
陳景潤在福州英華中學讀書時,有幸聆聽了清華大學調來一名很有學問的數學教師講課。他給同學們講了世界上一道數學難題:「大約在200年前,一位名叫哥德巴赫的德國數學家提出了『任何一個偶數均可表示兩個素數之和』,簡稱1+l。他一生沒有證明出來,便給俄國聖彼得堡的數學家歐拉寫信,請他幫助證明這道難題。歐拉接到信後,就著手計算。他費盡了腦筋,直到離開人世,也沒有證明出來。之後,哥德巴赫帶著一生的遺憾也離開了人世,卻留下了這道數學難題。200多年來,這個哥德巴赫猜想之謎吸引了眾多的數學家,但始終沒有結果,成為世界數學界一大懸案」。老師講到這里還打個形象的比喻,自然科學皇後是數學,「哥德巴赫猜想」則是皇後王冠上的明珠!這引人入勝的故事給陳景潤留下了深刻的印象,「哥德巴赫猜想」像磁石一般吸引著陳景潤。從此,陳景潤開始了摘取皇冠上寶石的艱辛歷程......
1953年,陳景潤畢業於廈門大學數學系,曾被留校,當了一名圖書館的資料員,除整理圖書資料外,還擔負著為數學系學生批改作業的工作,盡管時間緊張、工作繁忙,他仍然堅持不懈地鑽研數學科學。陳景潤對數學論有濃厚的興趣,利用一切可以利用的時間系統地閱讀了我國著名數學家華羅庚有關數學的專著。陳景潤為了能直接閱讀外國資料,掌握最新信息,在繼續學習英語的同時,又攻讀了俄語、德語、法語、日語、義大利語和西班牙語。學習這些個國家語言對一個數學家來說已是一個驚人突破了,但對陳景潤來說只是萬里長征邁出的第一步。
為了使自己夢想成真,陳景潤不管是酷暑還是嚴冬,在那不足6平米的斗室里,食不知味,夜不能眠,潛心鑽研,光是計算的草紙就足足裝了幾麻袋。1957年,陳景潤被調到中國科學院研究所工作,做為新的起點,他更加刻苦鑽研。經過10多年的推算,在1965年5月,發表了他的論文《大偶數表示一個素數及一個不超過2個素數的乘積之和》。論文的發表,受到世界數學界和著名數學家的高度重視和稱贊。英國數學家哈伯斯坦和德國數學家黎希特把陳景潤的論文寫進數學書中,稱為「陳氏定理」,可是這個世界數學領域的精英,在日常生活中卻不知商品分類,有的商品名字都叫不出來,被稱為「痴人」和「怪人」。
華羅庚
出生在一個擺雜貨店的家庭,從小體弱多病,但他憑借自己一股堅強的毅力和崇高的追求,終於成為一代數學宗師.
少年時期的華羅庚就特別愛好數學,但數學成績並不突出.19歲那年,一篇出色的文章驚動了當時著名的數學家熊慶來.從此在熊慶來先生的引導下,走上了研究數學的道路.晚年為了國家經濟建設,把純粹數學推廣應用到工農業生產中,為祖國建設事業奮斗終生! 華爺爺悉心栽培年輕一代,讓青年數學家茁壯成兒使他們脫穎而出,工作之餘還不忘給青多年朋友寫一些科普讀物.下面就是華羅庚爺爺曾經介紹給同學們的一個有趣的數學游戲: 有位老師,想辨別他的3個學生誰更聰明.他採用如下的方法:事先准備好3頂白帽子,2頂黑帽子,讓他們看到,然後,叫他們閉上眼睛,分別給戴上帽子,藏起剩下的2頂帽子,最後,叫他們睜開眼,看著別人的帽子,說出自己所戴帽子的顏色.
3個學生互相看了看,都躊躇了一會,並異口同聲地說出自己戴的是白帽子
聰明的小讀者,想想看,他們是怎麼知道帽子顏色的呢?「 為了解決上面的伺題,我們先考慮「2人1頂黑帽,2頂白帽」問題.因為,黑帽只有1頂,我戴了,對方立刻會說自己戴的是白帽.但他躊躇了一會,可見我戴的是白帽.
這樣,「3人2頂黑帽,3頂白帽」的問題也就容易解決了.假設我戴的是黑帽子,則他們2人就變成「2人1頂黑帽,2頂白帽」問題,他們可以立刻回答出來,但他們都躊躇了一會,這就說明,我戴的是白帽子,3人經過同樣的思考,於是,都推出自己戴的是白帽子. 看到這里。同學們可能會拍手稱妙吧.後來,華爺爺還將原來的問題復雜化,「n個人,n-1頂黑帽子,若干(不少於n)頂白帽子」的問題怎樣解決呢?運用同樣的方法,便可迎刃而解.他並告誡我們:復雜的問題要善「退」,足夠地「退」,「退」到最原始而不失去重要性的地方,是學好數學的一個訣竊.
⑼ 歷史上與計算機相關的科學家都首先是數學家,由此說明了什麼
'數學家是指一些對數學有深入了解的人士,將其所學知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、集合、結構、空間、變化。
專注於解決純數學領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型。