❶ 八年級下冊數學重點知識點
數學是一門很重要的學科,下面是八年級下冊數學重點知識點的總結,希望能在數學的學習上給大家帶來幫助。
軸對稱
1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
3.角平分線上的點到角兩邊距離相等。
4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
6.軸對稱圖形上對應線段相等、對應角相等。
7.畫一圖形關於某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。
8.點(x,y)關於x軸對稱的點的坐標為(x,-y)
點(x,y)關於y軸對稱的點的坐標為(-x,y)
點(x,y)關於原點軸對稱的點的坐標為(-x,-y)
四邊形
1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分。
3.平行四邊形的判定:兩組對邊分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形; 兩組對角分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
5.直角三角形斜邊上的中線等於斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。
7.矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理:有一個角是直角的平行四邊形叫做矩形;對角線相等的平行四邊形是矩形;有三個角是直角的四邊形是矩形。
9.菱形的定義 :鄰邊相等的平行四邊形。
10.菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
11.菱形的判定定理:一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四條邊相等的四邊形是菱形。
S菱形=1/2×ab(a、b為兩條對角線)
12.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
13.正方形的性質:四條邊都相等,四個角都是直角。 正方形既是矩形,又是菱形。
14.正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個角是直角的菱形是正方形。
15.梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
16.直角梯形的定義:有一個角是直角的梯形
17.等腰梯形的定義:兩腰相等的梯形。
18.等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
19.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
分解因式
一、公式:1、ma+mb+mc=m(a+b+c);
2、a2-b2=(a+b)(a-b);
3、a22ab+b2=(ab)2。
二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。
1、把幾個整式的積化成一個多項式的形式,是乘法運算。
2、把一個多項式化成幾個整式的積的形式,是因式分解。
3、ma+mb+mcm(a+b+c)4、因式分解與整式乘法是相反方向的變形。
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式.找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式。
四、分解因式的一般步驟為:(1)若有-先提取-,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止。
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式。
分解因式的方法:1、提公因式法.2、運用公式法。
數據的分析
1.加權平均數:加權平均數的計算公式。權的理解:反映了某個數據在整個數據中的重要程度。而是以比的或百分比的形式出現及頻數分布表求加權平均數的方法。
2.將一組數據按照由小到大(或由大到小)的順序排列,如果數據的個數是奇數,則處於中間位置的數就是這組數據的中位數;如果數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數。
3.一組數據中出現次數最多的數據就是這組數據的眾數。
4.一組數據中的最大數據與最小數據的差叫做這組數據的極差。
5.方差越大,數據的波動越大;方差越小,數據的波動越小,就越穩定。
❷ 初中八年級下冊數學知識點
馬上期末考試了,好多同學想要八年級數學下冊的知識點,以便復習備考。下面我整理了初中八年級下冊數學知識點,大家可以對照復習,供大家參考。
幾何知識點
1、旋轉和平移
平移和旋轉是幾何中全等變換的一種重要的方式,其中旋轉是對大家幾何變化能力進行考察的常用手段。
旋轉問題之所以難,就是因為他通過旋轉使得圖形中出現很多相等的邊和相等的角,但是這不是圖中直接告訴的,是需要大家自己發現的,而旋轉與後面的二次函數、反比例函數、四邊形等知識結合在一起,會使的題目靈活性非常強,所以這一塊在學基礎知識的時候一定要牢固把握。
2、平行四邊形
平行四邊形,是學習矩形、菱形、正方形的基礎,他的判定方式有五種,在實際應用的時候,同學們往往難以決定到底要採取哪種方式,這就需要同學們根據圖形靈活的選擇,不同的辦法進行解決。
3、特殊平行四邊形行
特殊平行四邊形是初三的內容,但是很多地方都把它提到初二來講。這部分知識靈活性強,變化大,綜合難度高,往往是同學們覺得幾何難學的開端。解決的辦法就是把他們的性質和判定列表寫出來,由於表述非常的類似和接近,記憶起來比較困難。這就需要同學們運用對比分析的方法,搞清楚這三種圖形各自的性質和判定,這樣才能在應用的時候不至於混淆。
整式的加減
1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。
2、單項式中的數字因數叫做這個單項式的系數(coefficient)。
3、一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree of a monomial)。
4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantly term)。
5、多項式里次數最高項的次數,叫做這個多項式的次數(degree of a polynomial)。
6、把多項式中的同類項合並成一項,叫做合並同類項。合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。
7、如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。
8、如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
9、一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。
軸對稱知識點
1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
3.角平分線上的點到角兩邊距離相等。
4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
6.軸對稱圖形上對應線段相等、對應角相等。
7.畫一圖形關於某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。
8.點(x,y)關於x軸對稱的點的坐標為(x,-y)
點(x,y)關於y軸對稱的點的坐標為(-x,y)
點(x,y)關於原點軸對稱的點的坐標為(-x,-y)
9.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為三線合一。
10.等腰三角形的判定:等角對等邊。
11.等邊三角形的三個內角相等,等於60,
12.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60的等腰三角形是等邊三角形
有兩個角是60的三角形是等邊三角形。
13.直角三角形中,30角所對的直角邊等於斜邊的一半。
分解因式
一、公式:1、ma+mb+mc=m(a+b+c);
2、a2-b2=(a+b)(a-b);
3、a22ab+b2=(ab)2。
二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。
1、把幾個整式的積化成一個多項式的形式,是乘法運算。
2、把一個多項式化成幾個整式的積的形式,是因式分解。
3、ma+mb+mcm(a+b+c)4、因式分解與整式乘法是相反方向的變形。
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式.找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.
四、分解因式的一般步驟為:(1)若有-先提取-,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止.
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.
分解因式的方法:1、提公因式法.2、運用公式法。
❸ 八年級數學下冊知識點整理
學習知識要善於思考,思考,再思考。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
數學八年級知識點歸納下冊
公式與性質:
(1)三角形的內角和:三角形的內角和為180°
(2)三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
(3)多邊形內角和公式:邊形的內角和等於?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
位置與坐標
1、確定位置
在平面內,確定一個物體的位置一般需要兩個數據。
2、平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。
⑤在直角坐標系中,對於平面上任意一點,都有的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上的一點與它對應。
八年級數學知識點滬科版
分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
初二下冊數學知識點歸納北師大版
第一章一元一次不等式和一元一次不等式組
一、不等關系
1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式.
2、要區別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系.
3、准確"翻譯"不等式,正確理解"非負數"、"不小於"等數學術語.
非負數<===>大於等於0(≥0)<===>0和正數<===>不小於0
非正數<===>小於等於0(≤0)<===>0和負數<===>不大於0
二、不等式的基本性質
1、掌握不等式的基本性質,並會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c,a-c>b-c.
(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc,.
(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac
2、比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a
即:
a>b<===>a-b>0
a=b<===>a-b=0
aa-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
八年級數學下冊知識點整理相關 文章 :
★ 八年級下冊數學知識點整理
★ 初二數學下冊知識點歸納與數學學習方法
★ 八年級下冊數學知識點歸納
★ 八年級下冊數學知識點總結歸納
★ 八年級下冊數學知識點匯總
★ 八年級下冊數學知識點梳理
★ 八年級下冊數學知識點總復習
★ 人教版八年級下冊數學知識點總結
★ 八年級下冊數學知識點總結
★ 初二數學下冊重點知識總結
❹ 八年級下冊數學知識點總結
數學是一門很重要的學科,下面是八年級下冊數學重點知識點的總結,希望能在數學的學習上給大家帶來幫助。
四邊形
1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分。
3.平行四邊形的判定:兩組對邊分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形; 兩組對角分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
5.直角三角形斜邊上的中線等於斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。
7.矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理:有一個角是直角的平行四邊形叫做矩形;對角線相等的平行四邊形是矩形;有三個角是直角的四邊形是矩形。
9.菱形的定義 :鄰邊相等的平行四邊形。
10.菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
11.菱形的判定定理:一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四條邊相等的四邊形是菱形。
S菱形=1/2×ab(a、b為兩條對角線)
12.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
13.正方形的性質:四條邊都相等,四個角都是直角。 正方形既是矩形,又是菱形。
14.正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個角是直角的菱形是正方形。
15.梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
16.直角梯形的定義:有一個角是直角的梯形
17.等腰梯形的定義:兩腰相等的梯形。
18.等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
19.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
分式的運算
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」。
一元一次方程
1.在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。
2.等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
二元一次方程
含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
❺ 初二數學下冊湘教版知識點
課堂臨時報佛腳,不如 課前預習 好。其實任何學科都是一樣的,學習任何一門學科,勤奮都是最好的 學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
分式方程
一、理解定義
1、分式方程:含分式,並且分母中含未知數的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。
(2)解這個整式方程。
(3)把整式方程的根帶入最簡公分母,看結果是不是為零,使最簡公分母為零的根是原方程的增根,必須捨去。
(4)寫出原方程的根。
「一化二解三檢驗四 總結 」
3、增根:分式方程的增根必須滿足兩個條件:
(1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;
(3)解整式方程;(4)驗根;
註:解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。
分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
5、分式方程解實際問題
步驟:審題—設未知數—列方程—解方程—檢驗—寫出答案,檢驗時要注意從方程本身和實際問題兩個方面進行檢驗。
二、軸對稱圖形:
一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。
1、軸對稱:
兩個圖形沿一條直線對折,其中一個圖形能夠與另一個圖形完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。
2、軸對稱圖形與軸對稱的區別與聯系:
(1)區別。軸對稱圖形討論的是「一個圖形與一條直線的對稱關系」;軸對稱討論的是「兩個圖形與一條直線的對稱關系」。
(2)聯系。把軸對稱圖形中「對稱軸兩旁的部分看作兩個圖形」便是軸對稱;把軸對稱的「兩個圖形看作一個整體」便是軸對稱圖形。
3、軸對稱的性質:
(1)成軸對稱的兩個圖形全等。
(2)對稱軸與連結「對應點的線段」垂直。
(3)對應點到對稱軸的距離相等。
(4)對應點的連線互相平行。
三、用坐標表示軸對稱
1、點(x,y)關於x軸對稱的點的坐標為(x,-y);
2、點(x,y)關於y軸對稱的點的坐標為(-x,y);
3、點(x,y)關於原點對稱的點的坐標為(-x,-y)。
四、關於坐標軸夾角平分線對稱
點P(x,y)關於第一、三象限坐標軸夾角平分線y=x對稱的點的坐標是(y,x)
點P(x,y)關於第二、四象限坐標軸夾角平分線y=-x對稱的點的坐標是(-y,-x)
八年級 上冊數學知識點
1、全等三角形的對應邊、對應角相等
2、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
3、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
5、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
7、定理1在角的平分線上的點到這個角的兩邊的距離相等
8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
9、角的平分線是到角的兩邊距離相等的所有點的集合
10、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
11、推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊
12、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
13、推論3等邊三角形的各角都相等,並且每一個角都等於60°
14、等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
15、推論1三個角都相等的三角形是等邊三角形
16、推論2有一個角等於60°的等腰三角形是等邊三角形
17、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
18、直角三角形斜邊上的中線等於斜邊上的一半
19、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
20、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
21、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
22、定理1關於某條直線對稱的兩個圖形是全等形
23、定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
24、定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
25、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
26、勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
27、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那麼這個三角形是直角三角形
數學學習方法 技巧
1、強化訓練,這個學期計算類和證明類的題目較多,在復習中要加強這方面的訓練。特別是一次函數,在復習過程中要分類型練習,重點是解題方法的正確選擇同時使學生養成檢查計算結果的習慣。還有幾何證明題,要通過針對性練習力爭達到少失分,達到證明簡練又嚴謹的效果。
2、加強管理嚴格要求,根據每個學生自身情況、學習水平嚴格要求,對應知應會的內容要反復講解、練習,必須做到學一點會一點,對接受能力差的學生課後要加強輔導,及時糾正出現的錯誤,平時多小測多檢查。對能力較強的學生要引導他們多做課外習題,適當提高做題難度。
3、加強證明題的訓練,通過近階段的學習,我發現學生對證明題掌握不牢,不會找合適的分析方法,部分學生看不懂題意,沒有思路。在今後的復習中我准備拿出一定的時間來專項練習證明題,引導學生如何弄懂題意、怎樣分析、怎樣寫證明過程。力爭讓學生把各種類型題做全並抓住其特點。
4、加強成績不理想學生的輔導,制定詳細的復習計劃,對他們要多表揚多鼓勵,調動他們學習的積極性,利用課余時間對他們進行輔導,輔導時要有耐心,要心平氣和,對不會的知識要多講幾遍,不怕麻煩,直至弄懂弄會。
初二數學下冊湘教版知識點相關 文章 :
★ 湘教版八年級數學下冊課本內容
★ 湘教版初中數學總復習資料
★ 八年級學習方法指導
★ 湘教版八年級數學下冊教案
★ 湘教版初一數學知識點
★ 湘教版八年級數學下冊教學計劃(2)
★ 湘教版八年級數學下冊教學計劃
★ 湘教版八年級數學下期末試卷
❻ 八年級下冊數學課本每一節的整理
湘教版八年級下冊數學知識歸納
第一章節 直角三角形 第二章節 四邊形 第三章節圖形與坐標 第四章節一次函數 第五章節數據的頻數分布
第一章節 直角三角形
歸納作者 唐 瑤
第一章 直角三角形的兩個銳角互余。 直角三角形的兩個銳角相加和為90 ° 有兩個角互余的三角形是直角三角形。 兩個銳角相加和為90 ° ,那麼這個三角形是直角三角形。
直角三角形斜邊上的中線等於斜邊的一半。標注時一般要標三條線段。
在直角三角形中,如果一個銳角等於30 °,那麼它所對的直角邊等於斜邊的一半。一股都是用來計算或填空。
在直角三角形中,如果一條直角邊等於斜邊的一半,那麼這條直角邊所對的角等於30 °
直角三角形兩直角邊a,b的平方和,等於斜邊c的平方。 即:a²+b²=c²
通常我們稱較短的一邊為勾,較長的一邊為股,斜邊為弦,因此這一性質被稱為勾股定理。
如果三角形的三條邊長a,b,c滿足關系;a²+b²=c²,那麼這個三角形是直角三角形。
斜邊直角邊定理斜邊和一條直角邊對應相等的兩個直角三角形全等〔可以間接寫成「斜邊 、直角邊」定理 或 HL 定理 〕.
角的平分線上的點到角的兩邊的距離相等。通常是用來計算,填空,證明等等。
角的內部到角的兩邊距離相等的點在角的平方線上。 用來判斷角平分線或者證明。
注意:
1「斜邊 、直角邊定理」是判斷兩個直角三角形全等所獨有的,在運用該判定定理時,要注意全等的前提條件是兩個直角三角形。
2要注意文章中的互逆命題,如直角三角形的性質和判定定理,勾股定理及其逆定理,角平分線的性質定理及其逆定理等,它們都互為逆命題。
3勾股定理及其逆定理都體現了數形結合的思想,勾股定理體現了由形到數,而勾股定理的逆定理是用代數方法來研究幾何問題,提現了由數到形。
第二章 四邊形
廖燕怡供稿
多邊形: 在平面內,由一些線段首尾順次相接組成的封閉圖形叫作多邊形。
組成多邊形的各條線段叫作多邊形的邊。 相鄰兩條邊的公共端點叫做多邊形的頂點。
連接不相鄰的兩個頂點的線段叫作多邊形的對角線。 相鄰兩邊組合的角叫作多邊形的內角,簡稱多邊形的角。 在平面內,邊相等、角也相等的多邊形叫作正多邊形。
多邊形內角和公式:n邊形的內角和等於(n-2)·180° 多邊形的內角的一邊與另一邊的反向延長所組成的角叫作這個多邊形的一個外角。 在多邊形的每個頂點處去一個外角,他們的和叫做這個多邊形的外角和。 n邊形的外角和與邊數沒有關系。任意多邊形的外角和等於360°,這與邊數多少無關,只要是多邊形。
平行四邊形:
平行四邊形的性質:兩組對邊分別平行的四邊形叫作平行四邊形。 這是定理概念。
平行四邊形性質定理一:平行四邊形的對邊相等,平行四邊形的對角相等。夾在兩條平行線間的平行線段相等。
平行四邊形性質定理二:平行四邊形的對角線互相平分。
平行四邊形的判定:判定定理一:一組對邊平行且相等的四邊形是平行四邊形 。
判定定理二:兩組對邊分別相等的四邊形是平行四邊形。
形判定定理三:對角線互相平分的四邊形是平行四邊形。兩組對角分別相等的四邊形是平行四邊形。
中心對稱和中心對稱圖形 在平面內,一個圖形上的每一個點對應到它在繞點O旋轉180°的相,這個變換稱為關於點O的中心對稱。 在平面內,如果一個圖形繞點旋轉180°,得到的像與另一個圖形重合,那麼稱這兩個圖形關於點O成中心對稱,點O叫作對稱中心。
性質:成中心對稱的兩個圖形中提供,對應點的連線經過對稱中心,且被對稱中心平分。
如果一個圖形繞點旋轉180°,所得到的像與原來的圖形互相重合,那麼這個圖形叫作中心對稱圖形,這個點叫作它的對稱中心。由上可得:線段是中心對稱圖形,線段的中心是它的對稱中心。平行四邊形是中心對稱圖形,對角線的交點是它的對稱中心。 線段也是中心對稱圖形。
三角形的中位線:連接三角形兩邊中點的線段叫作三角形的中位線。一個三角形有三條中位線。 中位線定理:三角形的每一條中位線都平行於第三邊,並且等於第三邊的一半。這個定理通常是用來計算或者填空和證明用。
矩形: 有一個角是直角的平行四邊形叫作矩形,也稱長方形。矩形的四個角都是直角,對邊相等,對角線互相平分。矩形是中心對稱圖形,對角線的交點是它的對稱中心。矩形的對角線相等。矩形還是軸對稱圖像,過每一組對邊中點的直線都是矩形的對稱軸(共有兩條對稱軸)。
矩形的判定:三個角是直角的四邊形是矩形。 對角線相等的平行四邊形是矩形。
菱形:定義:一組鄰邊相等的平行四邊形叫作菱形。
性質:菱形的四條邊都相等,對角相等,對角線互相平分。菱形是中心對稱圖形,對角線的交點是它的對稱中心。菱形的對角線互相垂直。菱形是軸對稱圖形,兩條對角線所在直線都是它的對稱軸。知道菱形的邊長,一般要標明四個邊的長,知道對角線長時,一般是只標它的一半長度。 菱形的面積是兩對角線長度乘積的一半。
判定:四條邊都相等的四邊形是菱形。 對角線互相垂直的平行四邊形是菱形。
正方形:我們把有一組鄰邊相等且有一個角是直角的平行四邊形叫作正方形。
性質:正方形的四條邊都相等,四個角都是直角。正方行的對角線相等,且互相垂直平分。
正方形是中心對稱圖形,對角線的交點是它的對稱中心。正方形也是軸對稱圖形(要注意它有4條對稱軸)。正方形是軸對稱圖形,兩條對角線所在直線,以及過每一組對邊中點的直線都是它的對稱軸。
第三章:平面直角坐標系
蔡博文供稿
為了用有序實數對表示平面內的一個點,可以在平面內畫兩條互相垂直的數軸,其中一條叫橫軸〔abscissa axis,通常稱為x軸〕,另一條叫縱軸〔ordinate axis,通常稱為y軸〕,它們的交點O是這兩條數軸的原點.通常,我們取橫軸向右為正方向,縱軸向上為正方向,橫軸與縱軸的單位長度通常取成一致〔有時也可以不一致〕,這樣建立的兩條數軸構成平面直角坐標系〔orthogonal coordinate system〕,記作Oxy,
在建立了平面直角坐標系後,平面上的點與有序實數對一一對應,
① 平面坐標軸分為四個象限,分別用I,II,III,IV表示或者一,二,三,四表示(通常還是用後面的這種方法來表示)。
② 並一,二,三,四象限的符號分別為(+. + ) ( -. + ) ( -. - ) ( +. - )
③ 平面直角坐標軸有橫軸縱軸分別用X .Y表示。如點A(4,-3)表示到Y軸有4個單位長度,到X軸有3單位長度,且在第四象限的這么一個點。而點B(- 3 , 4 )表示到Y軸有3個單位長度,到X軸有4單位長度,且在第二象限的這么一個點。
④ 到X軸的距離是Y軸的絕對值 點A(4 ,- 3 )到Y軸有4個單位。
到Y軸的距離是X軸的絕對值 點B(- 3 ,4 )到X軸有4個單位。
⑤ 軸對稱坐標表示,關於哪個軸對稱哪個軸的符號不變。
⑥ 平移的坐標表示上下移加Y或減Y 左右移減-X或加X
本章知識結構:
平面上物體位置的確定
↓
↓ ← ← ← ← ↓ → → → → ↓
↓ ↓ ↓
方位角與距離 平面直角坐標系 其他方法
點的坐標
↓ ↓ ↓
← ← ← ← ↓ → → → →
↓ ↓
簡單圖形的坐標表示 軸對稱和平移的坐標表示
第四章 一次函數
謝 倩 供稿
【函數和它的表示法】 ﹛變數與函數﹜ 在討論的問題中,取值會發生變化的量稱為變數,取值固定不變的量稱為常量(或常數)。
一般的,如果變數y隨著變數x而變化,並且對於x取得每一個值,y都有唯一的一個值與它對應,那麼稱y是x的函數,記作y=f(x)。這時把x叫做自變數,把y叫做因變數。對於自變數x取得每一個值a,因變數y的對應值稱為函數值,記作f(a)。
函數的傳統定義:設有兩個變數x、y,如果對於x在某一范圍內的每一個確定的值,y都有唯一確定的值與它對應,y=f(x),那麼就稱y是x的函數,x叫做自變數。注間,我們通常說 「縱坐標是橫坐標的函數」。
﹛函數的表示法﹜ 建立平面直角坐標系,以自變數取得每一個值為橫坐標,以相應的函數值(即因變數的對應值)為縱坐標,描出每一個點,由所有這些點組成的圖形稱為這個函數的圖象。這種表示函數關系的方法稱為圖象法。
列一張表第一行表示自變數取的第一個值,第二行表示相應的函數值(即因變數Y的對應值),這種表示函數關系的方法稱為列表法。
用式子表示函數關系的方法稱為公式法,這樣的式子稱為函數的表達式。y=f(x)
如 : Y=8X Y=- 5X Y=3X+6 Y=7-2X
【一次函數】 關於自變數的一次式,像這樣的函數稱為一次函數,它的一般形式是: y=kx+b ( k, b為常數,k≠0). K值的正號決定了函數是上升——斜上 K值的負號決定了函數是下降——斜下
特別地,當b=0時,一次函數 y=kx ( k為常數且k≠0)也叫作正比例函數,其中k叫作比例系數。 正比例函數是經過原點且最簡單的函數。
一次函數的特徵是:因變數隨自變數的變化是均勻的(即自變數每增加1個最小單位,因變數都增加(或都減少)相同的數量 。
【一次函數的圖象】 類似的,數學上已經證明 :正比例函數y=kx ( k為常數,k≠0)的圖象是一條直線,由於兩點確定一條直線,因此畫正比例函數的圖象,只要描出圖象上的兩個點就行了,然後過這兩點作一條直線即可,我們常常把這條直線叫作「直線y=kx」.
一般的,直線y=kx ( k為常數,k≠0) 是一條經過原點的直線,當k>0時,直線y=kx經過第三、一象限從左向右上升,y隨x的增大而增大;當k<0時,直線y=kx經過第二、四象限從左向右下降,y隨x的增大而減小。 多是填空題目和判斷題。
類似的,可以證明,一次函數y=kx+b的圖象是一條直線,它與正比例函數y=kx的圖象平行,一次函數y=kx+b ( k, b為常數,k≠0)的圖象可以看作由直線y=kx平移|b|個單位長度而得到( 當b>0時,向上平移;當b<0時,向下平移)。
【用待定系數法確定一次函數表達式】 像這樣,通過先設定函數表達式(確定函數模型),再根據條件確定表達式中的未知系數,從而求出函數的表達式的方法稱為待定系數法。
先設這個函數為 y=kx+b 然後代入二個點的坐標值,得兩個方程,求出K與b,這時這個函數也就得出來了。
第五章 數據的頻數分布
黃騰逸供稿
1 不同小組中的數據個數稱頻數
2 當組距和組數無法確定無固定標准,可依數據個數多少分成5~12組(當數據在100個以內時)
3 繪制頻數直方圖時應注意:橫縱軸加上刻度,表明代表名稱和單位;小矩形邊界對應於各組的組界;
小長方形的面積: 組距*(頻數/組距)=頻數 請看 P157
4 繪制直方圖時注意組距選取不能過寬或者過窄。
5 頻數直方圖本質上是一種條形統計圖,注意體會它們的區別和聯系
❼ 湘教版八年級數學知識點
沒有加倍的勤奮,就沒有才能,也沒有天才。天才其實就是可以持之以恆的人。勤能補拙是良訓,一分辛苦一分才,勤奮一直都是學習通向成功的最好捷徑。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
三角形知識概念
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
13、公式與性質:
(1)三角形的內角和:三角形的內角和為180°
(2)三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
(3)多邊形內角和公式:邊形的內角和等於?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
初二下冊數學知識點歸納
第一章一元一次不等式和一元一次不等式組
一、不等關系
1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式.
2、要區別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系.
3、准確"翻譯"不等式,正確理解"非負數"、"不小於"等數學術語.
非負數<===>大於等於0(≥0)<===>0和正數<===>不小於0
非正數<===>小於等於0(≤0)<===>0和負數<===>不大於0
二、不等式的基本性質
1、掌握不等式的基本性質,並會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c,a-c>b-c.
(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc,.
(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac
2、比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a
即:
a>b<===>a-b>0
a=b<===>a-b=0
aa-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
三、不等式的解集:
1、能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.
2、不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.
3、不等式的解集在數軸上的表示:
用數軸表示不等式的解集時,要確定邊界和方向:
①邊界:有等號的是實心圓圈,無等號的是空心圓圈;
②方向:大向右,小向左
初二數學下冊知識點歸納
一次函數
一、正比例函數與一次函數的概念:
一般地,形如y=kx(k為常數,且k≠0)的函數叫做正比例函數.其中k叫做比例系數。
一般地,形如y=kx+b(k,b為常數,且k≠0)的函數叫做一次函數.
當b=0時,y=kx+b即為y=kx,所以正比例函數,是一次函數的特例.
二、正比例函數的圖象與性質:
(1)圖象:正比例函數y=kx(k是常數,k≠0))的圖象是經過原點的一條直線,我們稱它為直線y=kx。
(2)性質:當k>0時,直線y=kx經過第三,一象限,從左向右上升,即隨著x的增大y也增大;當k0,b>0圖像經過一、二、三象限;
(2)k>0,b<0圖像經過一、三、四象限;
(3)k>0,b=0圖像經過一、三象限;
(4)k<0,b>0圖像經過一、二、四象限;
(5)k<0,b<0圖像經過二、三、四象限;
(6)k<0,b=0圖像經過二、四象限。
一次函數表達式的確定
求一次函數y=kx+b(k、b是常數,k≠0)時,需要由兩個點來確定;求正比例函數y=kx(k≠0)時,只需一個點即可.
湘教版八年級數學知識點相關 文章 :
★ 湘教版初中數學總復習資料
★ 八年級上冊期末數學重點筆記
★ 湘教版初一數學知識點
★ 八年級學習方法指導
★ 湘教版八年級數學上冊學法大視野答案
★ 八年級下冊地理湘教版提綱
★ 湘教版八年級數學教學計劃
★ 湘教版八年級上學期數學教學工作計劃
★ 最好的學習方法推薦
★ 湘教版八年級數學下期末試卷
❽ 八年級數學湘教版知識點
不渴望能夠一躍千里,只希望每天能夠前進一步。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
三角形知識概念
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
13、公式與性質:
(1)三角形的內角和:三角形的內角和為180°
(2)三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
(3)多邊形內角和公式:邊形的內角和等於?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
位置與坐標
1、確定位置
在平面內,確定一個物體的位置一般需要兩個數據。
2、平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。
⑤在直角坐標系中,對於平面上任意一點,都有的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上的一點與它對應。
3、軸對稱與坐標變化
關於x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關於y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數。
八年級上冊數學知識點
一、在平面內,確定物體的位置一般需要兩個數據。
二、平面直角坐標系及有關概念
1、平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
2、為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬於任何一個象限。
3、點的坐標的概念
對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
4、不同位置的點的坐標的特徵
(1)、各象限內點的坐標的特徵
點P(x,y)在第一象限:x;0,y;0
點P(x,y)在第二象限:x;0,y;0
點P(x,y)在第三象限:x;0,y;0
點P(x,y)在第四象限:x;0,y;0
(2)、坐標軸上的點的特徵
點P(x,y)在x軸上,y=0,x為任意實數
點P(x,y)在y軸上,x=0,y為任意實數
點P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點P坐標為(0,0)即原點
(3)、兩條坐標軸夾角平分線上點的坐標的特徵
點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數
初二 數學學習方法 技巧
一、復習內容:
第一章:勾股定理
第二章:實數第三章:位置與坐標
第四章:一次函數
第五章:二元一次方程組
第六章:數據的分析
第七章:平行線的證明
二、復習目標:
八年級數學本學期知識點多,復習時間又比較短,只有三周的時間。
根據實際情況,應該完成如下目標:
(一)、整理本學期學過的知識與方法:1.第一、七章是幾何部分。這三章的重點是勾股定理的應用以及平行線的性質與判別還有三角形內角和定理及其應用。所以記住性質是關鍵,學會判定是重點,靈活應用是目的。要學會判定方法的選擇,不同圖形之間的區別和聯系要非常熟悉,形成一個有機整體。對常見的證明題要多練多 總結 。2.第四五六章主要是概念的教學,對這幾章的考試題型學生可能都不熟悉,所以要以與課本同步的訓練題型為主,要列表或作圖的,讓學生積極動手操作,並得出結論,課堂上教師講評,盡量是精講多練,該動手的要多動手,盡可能的讓學生自己總結出論證幾何問題的常用分析方法。3.第二章主要是計算,教師提前先把概念、性質、方法綜合復習,加入適當的練習,在練習計算。課堂上逐一對易錯題的講解,多強調解題方法的針對性。最後針對平時練習中存在的問題,查漏補缺。
(二)、在自己經歷過的解決問題活動中,選擇一個有挑戰問題性的問題,寫下解決它的過程:包括遇到的困難、克服困難的方法與過程及所獲得的體會,並選擇這個問題的原因。
(三)、通過本學期的數學學習,讓同學們總結自己有哪些收獲;有哪些需要改進的地方。
三、 復習方法 :
1、強化訓練,這個學期計算類和證明類的題目較多,在復習中要加強這方面的訓練。特別是一次函數,在復習過程中要分類型練習,重點是解題方法的正確選擇同時使學生養成檢查計算結果的習慣。還有幾何證明題,要通過針對性練習力爭達到少失分,達到證明簡練又嚴謹的效果。
2、加強管理嚴格要求,根據每個學生自身情況、學習水平嚴格要求,對應知應會的內容要反復講解、練習,必須做到學一點會一點,對接受能力差的學生課後要加強輔導,及時糾正出現的錯誤,平時多小測多檢查。對能力較強的學生要引導他們多做課外習題,適當提高做題難度。
3、加強證明題的訓練,通過近階段的學習,我發現學生對證明題掌握不牢,不會找合適的分析方法,部分學生看不懂題意,沒有思路。在今後的復習中我准備拿出一定的時間來專項練習證明題,引導學生如何弄懂題意、怎樣分析、怎樣寫證明過程。力爭讓學生把各種類型題做全並抓住其特點。
4、加強成績不理想學生的輔導,制定詳細的復習計劃,對他們要多表揚多鼓勵,調動他們學習的積極性,利用課余時間對他們進行輔導,輔導時要有耐心,要心平氣和,對不會的知識要多講幾遍,不怕麻煩,直至弄懂弄會。
四、課時安排:
本次復習共三周時間,具體安排如下:第一章1課時第二章2課時第三章1課時第四章2課時第五章2課時第六章1課時第七章2課時模擬測試4課時
五、復習階段採取的 措施 :
1.精心備課上課,針對班級學生出現的錯題及所涉及到的重點問題認真挑選試題。
2.對於復習階段作業的布置,少而精,有針對性,並且很抓訂正及改錯。
3.在試題的選擇上作到面面俱到,重點難點突出,不重不漏。
4.面向全體學生。由於學生在知識、技能方面的發展和興趣、特長等不盡相同,所以要因材施教。在組織教學時,應從大多數學生的實際出發,並兼顧學習有困難的和學有餘力的學生。對學習有困難的學生,要特別予以關心,及時採取有效措施,激發他們學習數學的興趣,指導他們改進學習方法。減緩他們學習中的坡度,使他們經過努力,能夠達到大綱中規定的基本要求。對學有餘力的學生,要通過講授選學內容和組織課外活動等多種形式,滿足他們的學習願望,發展他們的數學才能。
5.重視改進 教學方法 ,堅持啟發式,反對注入式。教師在課前先布置學生預習,同時要指導學生預習,提出預習要求,並布置與課本內容相關、難度適中的嘗試題材由學生課前完成,教學中教師應幫助學生梳理學習的知識,指出重點和易錯點,解答學生復習時遇到的問題,使學生在學習中體會成功,調動學習積極性。
6.改革作業結構減輕學生負擔。將學生按學習能力分成幾個層次,分別布置難、中、易三檔作業,使每類學生都能在原有基礎上提高。
八年級數學湘教版知識點相關 文章 :
★ 湘教版初中數學總復習資料
★ 八年級上冊期末數學重點筆記
★ 湘教版初一數學知識點
★ 八年級學習方法指導
★ 湘教版八年級數學上冊學法大視野答案
★ 八年級下冊地理湘教版提綱
★ 湘教版八年級數學教學計劃
★ 湘教版八年級數學下冊課本內容
★ 湘教版八年級上學期數學教學工作計劃
★ 湘教版八年級數學下冊教案
❾ 八下數學知識點歸納總結
八年級下冊數學知識點很多,希望同學們可以整理成系統的知識框架,方便學習和復習,接下來給大家分享八下數學知識點,供參考。
八年級下冊數學定理
1、直角三角形斜邊上的中線等於斜邊上的一半。
2、四邊形的外角和等於360°。
3、等腰梯形性質定理:等腰梯形在同一底上的兩個角相等。
4、同角或等角的餘角相等。
5、過一點有且只有一條直線和已知直線垂直。
6、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
7、如果兩條直線都和第三條直線平行,這兩條直線也互相平行。
8、同位角相等,兩直線平行。
9、同旁內角互補,兩直線平行。
10、兩直線平行,同位角相等。
二次根式知識點
(一)一般地,形如√a的代數式叫做二次根式,其中,a叫做被開方數。當a≥0時,√a表示a的算術平方根;當a小於0時,√a的值為純虛數。
(二)二次根式的加減法
1.同類二次根式:一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。
2.合並同類二次根式:把幾個同類二次根式合並為一個二次根式就叫做合並同類二次根式。
3.二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合並。
(三)二次根式的乘除法
二次根式相乘除,把被開方數相乘除,根指數不變,再把結果化為最簡二次根式。
一次函數知識點
(一)一般地,形如y=kx+b(k,b是常數,且k≠0)的函數,叫做一次函數,其中x是自變數。當b=0時,一次函數y=kx,又叫做正比例函數。
(二)一次函數的圖像及性質
1.在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。
2.一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)。
3.正比例函數的圖像總是過原點。
4.k,b與函數圖像所在象限的關系:
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
當k>0,b>0時,直線通過一、二、三象限;
當k>0,b<0時,直線通過一、三、四象限;
當k<0,b>0時,直線通過一、二、四象限;
當k<0,b<0時,直線通過二、三、四象限;
當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
❿ 湘教版八年級數學下冊課本內容
湘教版八年級數學下冊課本內容(一) 數據的頻數分布
1、頻數與頻率:頻率= ,各小組的頻數之和等於總數,各小組的頻率之和等於1。
2、頻數分布直方圖:會讀圖,計算並將直方圖補充完整。
輔助線作法
人說幾何很困難,難點就在輔助線。輔助線,是虛線,畫圖注意勿改變。
如何添加輔助線?把握定理和概念。還要刻苦加鑽研,找出規律憑 經驗 。
圖中有角平分線,可向兩邊作垂線。線段垂直平分線,常向兩端把線連。
角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。
三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。
平行四邊形出現,對稱中心等分點。要證線段倍與半,延長縮短可試驗。
湘教版八年級數學下冊課本內容(二)
圖形與坐標
1、點的對稱性:
關於x軸對稱的點,橫坐標相反,縱坐標相等;
關於y軸對稱的點,橫坐標相等,縱坐標相反;
關於原點對稱的點,橫、縱坐標都相反。
例如:若直角坐標系內一點P(a,b),則P關於x軸對稱的點為P1(a,-b),P關於y軸對稱的點為P2(-a,b),關於原點對稱的點為P3(-a,-b)。
解題 方法 :相等時用“=”連結,相反時兩式相加=0。
2、坐標平移: 左右平移:橫坐標右加左減,縱坐標不變;
上下平移:橫坐標不變,縱坐標上加下減。
例如:若直角坐標系內一點P(a,b)向左平移h個單位,坐標變為P(a-h,b),向右平移h個單位,坐標變為P(a+h,b);向上平移h個單位,坐標變為P(a,b+h),向下平移h個單位,坐標變為P(a,b-h).如:點A(2,-1)向上平移2個單位,再向右平移5個單位,則坐標變為A(7,1).
3、在平面直角坐標系中會畫軸對稱、平移後的圖形,並寫出圖形頂點的坐標。
4、會建平面直角坐標系,用坐標表示相關位置。
5、平面上的點與有序實數對是一 一對應的。
湘教版八年級數學下冊課本內容(三)
特殊四邊形的判定
①平行四邊形:
方法1兩組對邊分別平行的四邊形是平行四邊形
如圖,∵ AB‖CD,AD‖BC,∴四邊形ABCD是平行四邊形
方法2 兩組對邊分別相等的四邊形是平行四邊形
如圖,∵ AB=CD,AD=BC,∴四邊形ABCD是平行四邊形
方法3兩組對角分別相等的四邊形是平行四邊形
如圖,∵∠A=∠C,∠B=∠D,∴四邊形ABCD是平行四邊形
方法4一組對邊平行相等的四邊形是平行四邊形
如圖,∵ AB‖CD,AB=CD,∴四邊形ABCD是平行四邊形
或∵AD‖BC,AD=BC,∴四邊形ABCD是平行四邊形
方法5 對角線互相平分的四邊形是平行四邊形
如圖,∵ OA=OC,OB=OD,∴四邊形ABCD是平行四邊形
②矩形:
方法1 有三個角是直角的四邊形是矩形
方法2 對角線相等的平行四邊形是矩形
③菱形:
方法1 四邊都相等的四邊形是菱形
方法2 對角線互相垂直的平行四邊形是菱形
④正方形
方法1 有一個角是直角的菱形是正方形