⑴ 高中數學必修一各章思維導圖
內容如下:
《高中數學必修1》(即《普通高中課程標准實驗教科書·數學必修1·A版》的簡稱)是2007年1月人民教育出版社出版的圖書,作者是人民教育出版社課程教材研究所、中學數學課程教材研究開發中心。該書是高中數學學習階段順序必修的第一本教學輔助資料。
本冊包括:集合、函數。
作為這套書的主編,在大家開始用這套書學習數學之前,對於為什麼要學數學、如何才能學好數學等問題,我有一些想法與你們交流。
為什麼要學數學呢?我想從以下兩個方面談談認識。
1.數學是有用的。
2.學數學能提高能力
那麼,如何才能學好數學呢?我想首先應當對數學有一個正確的認識。
1.數學是自然的。
2.數學是清楚的。
在對數學有一個正確認識的基礎上,還需要講究一點點方法。
1.學數學要摸索自己的學習方法。
2.學數學趁年輕。
⑵ 數學,高中數學圖片中
數學四大思想:函數與方程、轉化與化歸、分類討論、數形結合;函數與方程函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。有時,還實現函數與方程的互相轉化、接軌,達到解決問題的目的。 笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程;求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。 函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題,經常利用的性質是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。在解題中,善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系,構造出函數原型。另外,方程問題、不等式問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。 函數知識涉及的知識點多、面廣,在概念性、應用性、理解性都有一定的要求,所以是高考中考查的重點。我們應用函數思想的幾種常見題型是:遇到變數,構造函數關系解題;有關的不等式、方程、最小值和最大值之類的問題,利用函數觀點加以分析;含有多個變數的數學問題中,選定合適的主變數,從而揭示其中的函數關系;實際應用問題,翻譯成數學語言,建立數學模型和函數關系式,應用函數性質或不等式等知識解答;等差、等比數列中,通項公式、前n項和的公式,都可以看成n的函數,數列問題也可以用函數方法解決。等價轉化等價轉化是把未知解的問題轉化到在已有知識范圍內可解的問題的一種重要的思想方法。通過不斷的轉化,把不熟悉、不規范、復雜的問題轉化為熟悉、規范甚至模式法、簡單的問題。歷年高考,等價轉化思想無處不見,我們要不斷培養和訓練自覺的轉化意識,將有利於強化解決數學問題中的應變能力,提高思維能力和技能、技巧。 轉化有等價轉化與非等價轉化。等價轉化要求轉化過程中前因後果是充分必要的,才保證轉化後的結果仍為原問題的結果。非等價轉化其過程是充分或必要的,要對結論進行必要的修正(如無理方程化有理方程要求驗根),它能給人帶來思維的閃光點,找到解決問題的突破口。我們在應用時一定要注意轉化的等價性與非等價性的不同要求,實施等價轉化時確保其等價性,保證邏輯上的正確。 著名的數學家,莫斯科大學教授C.A.雅潔卡婭曾在一次向數學奧林匹克參賽者發表《什麼叫解題》的演講時提出:「解題就是把要解題轉化為已經解過的題」。數學的解題過程,就是從未知向已知、從復雜到簡單的化歸轉換過程。 等價轉化思想方法的特點是具有靈活性和多樣性。在應用等價轉化的思想方法去解決數學問題時,沒有一個統一的模式去進行。它可以在數與數、形與形、數與形之間進行轉換;它可以在宏觀上進行等價轉化,如在分析和解決實際問題的過程中,普通語言向數學語言的翻譯;它可以在符號系統內部實施轉換,即所說的恆等變形。消去法、換元法、數形結合法、求值求范圍問題等等,都體現了等價轉化思想,我們更是經常在函數、方程、不等式之間進行等價轉化。可以說,等價轉化是將恆等變形在代數式方面的形變上升到保持命題的真假不變。由於其多樣性和靈活性,我們要合理地設計好轉化的途徑和方法,避免搬硬套題型。 在數學操作中實施等價轉化時,我們要遵循熟悉化、簡單化、直觀化、標准化的原則,即把我們遇到的問題,通過轉化變成我們比較熟悉的問題來處理;或者將較為繁瑣、復雜的問題,變成比較簡單的問題,比如從超越式到代數式、從無理式到有理式、從分式到整式…等;或者比較難以解決、比較抽象的問題,轉化為比較直觀的問題,以便准確把握問題的求解過程,比如數形結合法;
⑶ 魯科版高中數學必修一知識點
第一章集合(附上圖片)
第二章函數(附上圖片)
附:
一、函數的定義域的常用求法:
1、分式的分母不等於零;2、偶次方根的被開方數大於等於零;3、對數的真數大於零;4、指數函數和對數函數的底數大於零且不等於1;5、三角函數正切函數中;餘切函數中;6、如果函數是由實際意義確定的解析式,應依據自變數的實際意義確定其取值范圍。
二、函數的解析式的常用求法:
1、定義法;2、換元法;3、待定系數法;4、函數方程法;5、參數法;6、配方法
三、函數的值域的常用求法:
1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調性法;7、直接法
四、函數的最值的常用求法:
1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調性法
五、函數單調性的常用結論:
1、若均為某區間上的增(減)函數,則在這個區間上也為增(減)函數
2、若為增(減)函數,則為減(增)函數
3、若與的單調性相同,則是增函數;若與的單調性不同,則是減函數。
4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。
5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。
六、函數奇偶性的常用結論:
1、如果一個奇函數在處有定義,則,如果一個函數既是奇函數又是偶函數,則(反之不成立)
2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。
3、一個奇函數與一個偶函數的積(商)為奇函數。
4、兩個函數和復合而成的函數,只要其中有一個是偶函數,那麼該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。
5、若函數的定義域關於原點對稱,則可以表示為,該式的特點是:右端為一個奇函數和一個偶函數的和。
⑷ 高中數學知識點詳細總結
高中數學重點有什麼?該怎樣攻克?
高中數學重點內容還有很多.這些重點都是保持多年來的經驗,他們分析過高考數學的題型,高中數學重點分為以下幾個部分.
向量講解
其實高中數學重點就是在必修的裡面.必修是每個高中生都必須學習的,不管是分不分文理科,他們都是會學習的.很多重點都是在必修裡面,然而在選秀當中就是講一些統計之類的問題,這都是我們在生活當中就會學到的,所以這些都不是重點,重中之重就是在必修的課本當中.
⑸ 如何學好高中數學函數
一、教給學生閱讀課本的方法
1.對於識字不多,思考能力有限的低年級的學生來說,應採取在老師指導下講解和閱讀相結合的辦法。如對剛入學的小朋友,首先要幫助他們初步了解數學課的特點,知道數學課要學習哪些知識,看數學課本的插圖時要看清、數准圖上各種東西的個數。接著教他們學會有順序地閱讀教科書,即要從上到下,從左往右地看;教學10以內數的認知看主題圖時,要學會先整體後部分地看。又如,低年級教材中的知識是用各種圖示表示的,教師要把指導重點放在幫助學生掌握看圖方法上,努力使他們做到四會:一要會看例題插圖,能比較准確地進述圖意;二要會看標有思維過程的算式,看懂計算方法;三要會看應用題的圖示,能根據圖示理解題意,搞清數量之間的關系、思考解答方法;四要會看多種練習形式,懂得練習題的要求。
2.對於已積累了一定的知識和具有一定能力的中年級學生來說,教師可採用半工半讀半扶半放的方式進行培養。如教師既可先講後讀,具體指導學生閱讀課本的方法;也可騙制閱讀提綱,讓學生帶著提綱閱讀課本,尋找答案,幫助學生理解教材。
3.對於具有一定自學能力的高年級學生來說,則可採取課前預習、啟發引導、獨立閱讀的辦法。如指導預習時,教師對學生要有明確的要求,要有預習的范圍,要提出必要的思考題或實驗作業,要檢查預習情況。課堂上教師可以放手讓學生去讀讀、講講、論論、練練的方式進行自學與討論,要求他們在把握知識的基礎上理清知識體系,進一步提高認知水平。
二、教給學生科學的記憶方法
1.理解記憶法。就是通過學生的積極思維,依據事物的內在聯系,在理解的基礎上去記憶的方法。如:什麼叫梯形。首先讓學生通過認真觀察,理解「只有一組對邊」是什麼意思,若把「只」字去掉又會怎樣。通過積極思考,學生認知到「只有一組對邊平行」就是四條邊中相對的兩條邊為一組,其中一組平行,另一組不平行。這樣學生在理解的基礎上記憶梯形這個概念就容易了。
2.規律記憶法。就是尋找事物內在規律,抓住其規律幫助記憶的方法。數學知識是有規律的,只要引導學生掌握其規律,就可以進行有效記憶。例如:記憶長度、面積、體積單位進率。因為長度單位相鄰之間的進率是10,面積單位相鄰之間的進率是100,體積單位之間的進率是1000。掌握了這個規律記憶就比較容易。
3.形象記憶法。就是藉助事物的形象或表象進行記憶的方法。小學生的思維以形象思維為主,逐步向抽象思維發展。在教學中,教師講課時要注意生動、形象,以喚醒學生對事物的表象,進行形象記憶。例如,一年級數的認知教學時,老師把數與某些實物形象記憶:把「2」比作小鴨子、「3」比作耳朵等。
4.比較記憶法。這是把相似、相近的數學材科學的進行對比,把握它們的相同點與不同點,加強記憶的一種方法。例如,整除與除盡,質數與互質數等,在學生理解後,引導學生進行比較記憶。
5.類比聯想記憶法。是指對某一事物的感知或回憶引起性質上相似的事物的回憶的方法。例如,讓學生記憶分數的基本性質時,引導學生聯想除法的商不變性質和除法與分數的關系,那麼分數的基本性質就不難記憶了。
6.歸納記憶法。是把具有內在聯系的知識集中起來,組成系統,形成網路的記憶方法。你如,有關面積知識,學生是跨越幾個年級才全部學完。這些圖形有特徵上的不同,也有公式上的區別。零敲碎打獲得的知識,必須給予系統上的整理,才能保證這部分知識本身固有的整體性。可以通過下面網狀圖形,把這些圖形的內在聯系揭示出來,這樣有利於學生進行系統記憶。
三、教給學生復習的方法
復習就是把學過的數學知識再進行學習,以達到深入理解、融會貫通、精練概括、牢固掌握的目的。學生對數學知識的學習,是包括一堂堂數學課累積起來的,因而所獲得的知識往往是零碎的和片面的,時間一長,就會出現知識鏈條的斷裂現象。基於這一點,單元復習和總復習都是很重要的。小學數學教學中,復習的方法主要有以下幾點:
1.概括復習。學生每學完一個小單元或一個大單元,就組織他們對於知識體系進行一次再概括,理出綱目,記住輪廓,列出重點,幫助他們掌握單元的主要內容。
2.分類復習。引導學生把學過的知識和技能進行分類整理、分類比較,以加強知識的內在聯系和知識的深度、廣度,幫助學生加深理解與記憶。
3.區別復習。把學過的相似的概念、規則等,如以區別、比較,掌握知識的特徵。總之,一方面,復習要在理解教材的基礎上,溝通知識間的內在聯系,找出重點、關鍵,然後提煉概況,組成一個知識系統,從而形成或發展擴大認知結構;另一方面,通過復習,不斷地對知識本身或從數學思想方法角度進行提高與精煉,是有利於能力的發展與提高的。
四、教會學生整理與歸納的方法
整理知識是一項主要的學習方法。小學數學知識,由於學生認識能力的原因,往往分若干層次逐漸完成。一節課後、一個單元後或一個學期後,需要對所學知識進行整理與歸納,形成良好的認知結構,便於記憶和運用。
1.把知識串成「塊」,形成知識網路。
小學幾何初步知識涉及到五線(直線、線段、射線、垂線、平行線)、六角(銳角、直角、鈍角、平角、周角、圓心角)、七形(長方形、正方形、三角形、平行四邊形、梯形、圓形、扇形)五體(長方體、正方體等)教完幾何後,把七種平面圖形組成一個知識網路。
2.系統整理成表,便於記憶運用。按照數學知識的科學體系和小學生的認識規律,小學幾何初步知識分散在小學各冊實現教材中。在總復習中,教師應避免羅列和重復以往知識,而應恢復幾何初步知識原有的知識體系和法則,按點、線(角)、面、體四大部分知識認真系統地歸納整理成表,使之在學生頭腦中條理化、系統化、網路化,便於記憶與運用。
五、教給學生知識遷移的方法
遷移是指已獲得知識、技能乃至方法和態度對學習新知識新技能的影響。先前學習對後繼學習起積極、促進作用的,糾正遷移,反之糾負遷移。人們在解決新課題時,總是利用已有的知識技能去尋找解決問題的方法。數學是一門邏輯性、嚴密性極強的學科,它的知識系統性強,前面的知識是後面的基礎,後面的知識是前面知識的延伸與發展。所以教師必須緊緊抓住前後知識的內在聯系,教給學生知識遷移的方法。
⑹ 高中數學函數的分類以及定義圖像等是什麼
冪函數:形如y=x^a(a為常數)的函數,即以底數x為自變數,冪a為因變數,其中a為常量的函數稱為冪函數。冪函數的圖像隨a的取值不同呈現出不同的樣子,需具體問題具體分析。下面是幾種常見的冪函數圖像。
指數函數:一般形式為y=a^x(a>0且≠1)(x∈R).它是初等函數中的一種。其中a為常數,x為變數。
一次函數:也作線性函數,在x,y坐標軸中可以用一條直線表示,當一次函數中的一個變數的值確定時,可以用一元一次方程確定另一個變數的值。如y=ax+b,其中a,b為常數,x為變數。
二次函數:是指未知數的最高次數為二次的多項式函數。二次函數可以表示為f(x)=ax^2+bx+c(a不為0)。其圖像是一條主軸平行於y軸的拋物線。
對數函數:一般地,函數y=log(a)X,(其中a是常數,a>0且a不等於1)叫做對數函數,它實際上就是指數函數的反函數。即指數函數和對數函數關於直線y=x對稱。
後面四種函數圖像教材中都有,你可以查閱,或者在網上搜索也可以看到。
⑺ 高中數學知識有哪些
2020蔡德錦數學全年聯報(高清視頻33.5G有水印)網路網盤
鏈接:
若資源有問題歡迎追問~