⑴ 初中數學常見的重點知識點歸納
進入初三後最重要的就是提高成績,下面我就為大家來整理一下,初中數學常見的重點知識點歸納僅供參考。
常考的數學知識點
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形 兩邊的和大於第三邊
常用的數學公式
乘法與因式分解 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a
-b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a
X1*X2=c/a 註:韋達定理
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R
註:其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB
註:角B是邊a和邊c的夾角
中數學中考知識重難點分析
1.函數(一次函數、反比例函數、二次函數)中考占總分的15%左右。
特別是 二次函數 是中考的重點,也是中考的難點,在填空、選擇、解答題中均會出現,且知識點多,題型多變。
2.應用題,中考中占總分的30%左右
包括方程(組)應用,一元一次不等式(組)應用,函數應用,解三角形應用,概率與統計應用幾種題型。
一般會出現二至三道解答題(30分左右)及2—3道選擇、填空題(10分—15分),佔中考總分的30%左右。
以上就是我為大家整理的初中數學常見的重點知識點歸納。
⑵ 初中數學基礎知識點總結
初中數學只要內容是函數的學習,其中重點是二次函數的解法。二次函數在數學中佔有一定地位,甚至以後的數學學習中都會遇到二次函數問題,因此牢牢掌握二次函數的解法對於大家以後數學學習十分有幫助。現在將初中數學重要知識點整理如下,供大家學習。
目錄
有理數
代數式
分式的運算
方程與方程組
有理數1、數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
2、絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
3、有理數的運算:
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
4、實數:
①實數分有理數和無理數。
②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。
③每一個實數都可以在數軸上的一個點來表示。
1、合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
2、整式與分式,整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
3、整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。冪的運算:AM+AN=A(M+N)(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法 :提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
1、乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
2、除法:除以一個分式等於乘以這個分式的倒數。
3、加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
4、分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
方程與不等式
1、一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
2、解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
3、二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
4、二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
5、一元二次方程的二次函數的關系
關於二次函數的解法公式其實很簡單,關鍵是我們如何應用這些公式來解答實際問題,這有待於大家在以後學習過程中勤加練習, 總結 經驗 了。
相關 文章 :
1. 初中數學基礎知識點總結
2. 初中數學知識點整理:
3. 初一數學基礎知識有哪些?
4. 初中數學的常考知識點20條
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑶ 初中數學知識點有哪些呢
初中數學知識點如下:
1、第1章《有理數》主要知識點有:有理數概念、相反數、絕對值、有理數加減乘除運算、科學計數法。
2、第2章《整式的加減》主要知識點:單項式、多項式、整式、同類項、去括弧法則、整式的加減運算。
3、第3章《一元一次方程》主要知識點:方程及一元一次方程概念、等式的性質、解一元一次方程、應用一元一次方程解決實際問題。
4、第4章《幾何圖形初步》主要知識點:直線、射線、線段,角的有關概念、角的單位及角度制,餘角、補角等。
5、第5章《相交線與平行線》主要知識點:鄰補角、對頂角,垂線及其性質,同位角、內錯角、同旁內角,平行線的判定與性質,命題、定理、證明。
6、第6章《實數》主要知識點:算數平方根、平方根、立方根,無理數、實數概念,實數的性質及運算。
7、第7章《平面直角坐標系》主要知識點:有序數對,點的坐標,用坐標表示平移。
8、第8章《二元一次方程組》主要知識點:二元一次方程及解的定義,二元一次方程組的定義及其解,代入消元和加減消元解二元一次方程組,實際問題與二元一次方程組。
⑷ 初中數學重點知識點總結
學習數學的時候總結知識點是非常重要的一個環節,下面總結了初中數學總復習知識點,供大家參考。
實數的分類
有理數:整數(包括:正整數、0、負整數)和分數(包括:有限小數和無限環循小數)都是有理數。如:-3,,0.231,0.737373...
無理數:無限不環循小數叫做無理數如:π,-,0.1010010001...(兩個1之間依次多1個0)。
實數:有理數和無理數統稱為實數。
整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
分解因式
一、公式:1、ma+mb+mc=m(a+b+c);
2、a2-b2=(a+b)(a-b);
3、a22ab+b2=(ab)2。
二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。
1、把幾個整式的積化成一個多項式的形式,是乘法運算。
2、把一個多項式化成幾個整式的積的形式,是因式分解。
3、ma+mb+mcm(a+b+c)4、因式分解與整式乘法是相反方向的變形。
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式.找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式。
四、分解因式的一般步驟為:(1)若有-先提取-,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止。
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式。
分解因式的方法:1、提公因式法.2、運用公式法。
全等三角形
1.「邊角邊」簡稱「SAS」
2.「角邊角」簡稱「ASA」
3.「邊邊邊」簡稱「SSS」
4.「角角邊」簡稱「AAS」
5.斜邊和直角邊相等的兩直角三角形(HL)。
角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②回顧三角形判定,搞清我們還需要什麼,③正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題)。
二次函數解析式的表示方法
1.一般式:y=ax2+bx+c(a,b,c為常數,a≠0),如:y=2x2+3x+4;
2.頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0),如:y=2(x-5)2+3;
3.兩根式:y=a(x-x1)(x-x2)(a≠0,x1,x2是拋物線與x軸兩交點的橫坐標),如:y=2(x-1)(x+3).
注意:任何二次函數的解析式都可以化成一般式或頂點式,但並非所有的二次函數都可以寫成交點式,只有拋物線與x軸有交點,即b2-4ac≥0時,拋物線的解析式才可以用交點式表示.二次函數解析式的這三種形式可以互化。
⑸ 初中數學重要知識點總結
初中生在學習數學的過程中應該注意知識點的總結,下面總結了初中數學重點知識點,供大家參考。
因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
全等三角形
(一)經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。
(二)全等三角形的性質
1.全等三角形的對應角相等。
2.全等三角形的對應邊相等。
3.能夠完全重合的頂點叫對應頂點。
4.全等三角形的對應邊上的高對應相等。
5.全等三角形的對應角的角平分線相等。
6.全等三角形的對應邊上的中線相等。
7.全等三角形面積和周長相等。
8.全等三角形的對應角的三角函數值相等。
(三)全等三角形的判定
(1)SSS(邊邊邊)
三邊對應相等的三角形是全等三角形。
(2)SAS(邊角邊)
兩邊及其夾角對應相等的三角形是全等三角形。
(3)ASA(角邊角)
兩角及其夾邊對應相等的三角形全等。
(4)AAS(角角邊)
兩角及其一角的對邊對應相等的三角形全等。
(5)RHS(直角、斜邊、邊)
在一對直角三角形中,斜邊及另一條直角邊相等。
角相關定理公式
1、同位角相等,兩直線平行。
2、內錯角相等,兩直線平行。
3、同旁內角互補,兩直線平行。
4、兩直線平行,同位角相等。
5、兩直線平行,內錯角相等。
6、兩直線平行,同旁內角互補。
7、定理1在角的平分線上的點到這個角的兩邊的距離相等。
8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上。
9、角的平分線是到角的兩邊距離相等的所有點的集合。
二元一次方程
含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
不等式與不等式組
(1)不等式
用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。
(2)不等式的性質
①對稱性;
②傳遞性;
③加法單調性,即同向不等式可加性;
④乘法單調性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可開方;
(3)一元一次不等式
用不等號連接的,含有一個未知數,並且未知數的次數都是1,未知數的系數不為0,左右兩邊為整式的式子叫做一元一次不等式。
(4)一元一次不等式組
一元一次不等式組是由幾個含有同一個未知數的一元一次不等式組成的不等式組。
代數
1.代數式:用運算符號「+-×÷……」連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)
2.列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用「·」乘,或省略不寫;
(2)數與數相乘,仍應使用「×」乘,不用「·」乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;
(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a。
⑹ 關於初中數學知識點總結歸納
數學已成為許多國家及地區的 教育 范疇中的一部分。它應用於不同領域中,包括科學、工程、醫學、經濟學和金融學等。這次我給大家整理了初中數學知識點 總結 歸納,供大家閱讀參考。
初中數學知識點總結歸納
一: 數軸
11 有向直線
在科學技術和日常生活中,為了區別一條直線的兩個不同方向,可以規定其中一方向為正向,另一方向為負相
規定了正方向的直線,叫做有向直線,讀作有向直線l
12 數軸
我們把數軸上任意一點所對應的實數稱為點的坐標
對於每一個坐標(實數),在數周上可以找到唯一的點與之對應這就是直線的坐標化
數軸上任意一條有向線段的數量等於它的終點坐標與起點坐標的差任意一條有向線段的長度等於它兩個斷電坐標差的絕對值
二:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
三:平面直角坐標系的構成
對於平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
四:點的坐標的性質
點的坐標的性質
建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。
五:因式分解的一般步驟
關於數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:「一提」、「二套」、「三分組」、「四十字」。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
六:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定 方法 :①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括弧化成單括弧
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括弧外
⑦括弧內同類項合並。
初中數學知識點
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類: ① ②
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為:或 ;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數> 0,小數-大數< 0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼的倒數是;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.
7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運演算法則:先乘方,後乘除,最後加減.
本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題.
體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。
關於初中數學的知識點
一、平移變換:
1。概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。
2。性質:(1)平移前後圖形全等;
(2)對應點連線平行或在同一直線上且相等。
3。平移的作圖步驟和方法:
(1)分清題目要求,確定平移的方向和平移的距離;
(2)分析所作的圖形,找出構成圖形的關健點;
(3)沿一定的方向,按一定的距離平移各個關健點;
(4)連接所作的各個關鍵點,並標上相應的字母;
(5)寫出結論。
二、旋轉變換:
1。概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。
說明:
(1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;
(2)旋轉過程中旋轉中心始終保持不動。
(3)旋轉過程中旋轉的方向是相同的。
(4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。
2。性質:
(1)對應點到旋轉中心的距離相等;
(2)對應點與旋轉中心所連線段的夾角等於旋轉角;
(3)旋轉前、後的圖形全等。
3。旋轉作圖的步驟和方法:
(1)確定旋轉中心及旋轉方向、旋轉角;
(2)找出圖形的關鍵點;
(3)將圖形的關鍵點和旋轉中心連接起來,然後按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;
(4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉後的圖形。
說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。
常見考法
(1)把平移旋轉結合起來證明三角形全等;
(2)利用平移變換與旋轉變換的性質,設計一些題目。
誤區提醒
(1)弄反了坐標平移的上加下減,左減右加的規律;
(2)平移與旋轉的性質沒有掌握。
學好數學的方法
1、上課前要調整好心態,一定不能想,哎,又是數學課,上課時聽講心情就很不好,這樣當然學不好!
2、上課時一定要認真聽講,作到耳到、眼到、手到!這個很重要,一定要學會做筆記,上課時如果老師講的快,一定靜下心來聽,不要記,下課時再整理到 筆記本 上!保持高效率!
3、俗話說興趣是最好的老師,當別人談論最討厭的課時,你要告訴自己,我喜歡數學!
4、保證遇到的每一題都要弄會,弄懂,這個很重要!不會就問,不要不好意思,要學會舉一反三!也就是要靈活運用!作的題不要求多,但要精!
5、要有錯題集,把平時遇到的好題記下來,錯題記下來,並要多看,多思考,不能在同一個地方絆倒!!
總之,學習數學,不要怕難,不要怕累,不要怕問!
初中數學知識點總結歸納相關 文章 :
★ 初中數學基礎知識整理歸納
★ 初中數學知識點總結
★ 初中數學重點知識點的歸納總結
★ 初中數學知識點歸納有哪些
★ 初中數學知識點總結歸納
★ 初中部數學學習方法總結
★ 初中數學圓的知識點歸納
★ 初一數學學習方法總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑺ 初中數學知識點總結大全 這下全了!
初中生學習數學一定要注意知識點的總結,下面我為大家總結了初中 數學知識點 大全,僅供大家參考。
初中數學知識點
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
垂直平分線定理
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
以上就是我為大家總結的初中 數學 知識點大全,僅供參考,希望對大家有所幫助。
⑻ 初中數學必考知識點
初中生在學習數學的過程中應該注意知識點的總結,下面總結了初中數學必考知識點,供大家參考。
絕對值
(1)概念:數軸上某個數與原點的距離叫做這個數的絕對值。
①互為相反數的兩個數絕對值相等;
②絕對值等於一個正數的數有兩個,絕對值等於0的數有一個,沒有絕對值等於負數的數。
③有理數的絕對值都是非負數。
(2)如果用字母a表示有理數,則數a 絕對值要由字母a本身的取值來確定:
①當a是正有理數時,a的絕對值是它本身a;
②當a是負有理數時,a的絕對值是它的相反數﹣a;
③當a是零時,a的絕對值是零。
即|a|={a(a>0)0(a=0)﹣a(a<0)
分式
(一)分式的運算
分式四則運算,順序乘除加減,
乘除同級運算,除法符號須變(乘),
乘法進行化簡,因式分解在先,
分子分母相約,然後再行運算,
加減分母需同,分母化積關鍵,
找出最簡公分母,通分不是很難,
變號必須兩處,結果要求最簡。
(二)分式的運演算法則
(1)約分
①如果分式的分子和分母都是單項式或者是幾個因式乘積的形式,將它們的公因式約去。
②分式的分子和分母都是多項式,將分子和分母分別分解因式,再將公因式約去。
(2)公因式的提取方法
系數取分子和分母系數的最大公約數,字母取分子和分母共有的字母,指數取公共字母的最小指數,即為它們的公因式。
(3)除法
兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。
(4)乘方
分子乘方做分子,分母乘方做分母,可以約分的約分,最後化成最簡。
平面直角坐標系
1.定義:平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸,取向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。
2.平面上的任意一點都可以用一個有序數對來表示,記為(a,b),a是橫坐標,b是縱坐標。
3.原點的坐標是(0,0);
縱坐標相同的點的連線平行於x軸;
橫坐標相同的點的連線平行於y軸;
x軸上的點的縱坐標為0,表示為(x,0);
y軸上的點的橫坐標為0,表示為(0,y)。
4.建立了平面直角坐標系以後,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬於任何象限。
5.幾個象限內點的特點:
第一象限(+,+);第二象限(—,+);
第三象限(—,—);第四象限(+,—)。
6.(x,y)關於原點對稱的點是(—x,—y);
(x,y)關於x軸對稱的點是(x,—y);
(x,y)關於y軸對稱的點是(—x,y)。
7.點到兩軸的距離:點P(x,y)到x軸的距離是︱y︳;
點P(x,y)到y軸的距離是︱x︳。
8.在第一、三象限角平分線上的點的坐標是(m,m);
在第二、四象限叫平分線上的點的坐標是(m,—m)。
全等三角形
(一)經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。
(二)全等三角形的性質
1.全等三角形的對應角相等。
2.全等三角形的對應邊相等。
3.能夠完全重合的頂點叫對應頂點。
4.全等三角形的對應邊上的高對應相等。
5.全等三角形的對應角的角平分線相等。
6.全等三角形的對應邊上的中線相等。
7.全等三角形面積和周長相等。
8.全等三角形的對應角的三角函數值相等。
(三)全等三角形的判定
(1)SSS(邊邊邊)
三邊對應相等的三角形是全等三角形。
(2)SAS(邊角邊)
兩邊及其夾角對應相等的三角形是全等三角形。
(3)ASA(角邊角)
兩角及其夾邊對應相等的三角形全等。
(4)AAS(角角邊)
兩角及其一角的對邊對應相等的三角形全等。
(5)RHS(直角、斜邊、邊)
在一對直角三角形中,斜邊及另一條直角邊相等。
一元一次不等式(組)
1.不等式:用不等號「>」「<」「≤」「≥」「≠」,把兩個代數式連接起來的式子叫不等式。
2.不等式的基本性質:
a不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;
b不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;
c不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變。
3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集。
4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b>0或ax+b<0,(a≠0).
5.用不等式表示,利用數軸或口訣解不等式組(口訣(簡單不等式):同大取大,同小取小,大(於)小小(於)大取中間,大(於)大小(於)小,解不見了。
相交線與平行線
1.平行線的性質
性質1:兩直線平行,同位角相等。 性質2:兩直線平行,內錯角相等。 性質3:兩直線平行,同旁內角互補。 平行線的判定:
判定1:同位角相等,兩直線平行。 判定2:內錯角相等,兩直線平行。 判定3:同旁內角相等,兩直線平行。
2.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
平行線:在同一平面內,不相交的兩條直線叫做平行線。 同位角、內錯角、同旁內角:
3.同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。
內錯角:∠2與∠6像這樣的一對角叫做內錯角。
同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。 命題:判斷一件事情的語句叫命題。
4.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
對應點:平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。
代數式求值
1.代數式:用數值代替代數式里的字母,計算後所得的結果叫做代數式的值。
2.代數式的求值:求代數式的值可以直接代入、計算.如果給出的代數式可以化簡,要先化簡再求值。
必考題型簡單總結以下三種:
①已知條件不化簡,所給代數式化簡;
②已知條件化簡,所給代數式不化簡;
③已知條件和所給代數式都要化簡。
⑼ 初中數學知識點總結大全 重點都在這了
初中生學習數學要特別注意知識點的總結,下面我為大家總結了初中 數學知識點 ,僅供大家參考。
數學基礎知識點
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
初中數學重點知識點平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
數學基本定理1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
以上就是我為大家總結的 初中數學 知識點總結大全,僅供參考,希望對大家有所幫助。
⑽ 初中數學知識點全總結歸納
初中數學的知識點比較多,也比較雜,但是需要初中生扎實掌握,我整理了一些比較重要的知識點。
有理數
1、有理數:有理數分為正有理數、0、負有理數;
2、數軸:數軸是規定了原點、正方向、單位長度的一條直線。
3、相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0a+b=0a、b互為相反數。
4、絕對值:正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離。
5、科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。
6、單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式。
(1)單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數。
7、多項式:幾個單項式的和叫多項式。
(1)多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。
一元一次方程
1、只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。
2、一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
3、一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解)
相交線與平行線
1、線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
2、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
3、平行線的性質:
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
4、平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內錯角相等,兩直線平行。
判定3:同旁內角相等,兩直線平行。
不等式
1、不等式的解:使不等式成立的未知數的值,叫做不等式的解。
2、不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
3、一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。
4、一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組
全等三角形
1、兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2、全等三角形的性質:全等三角形的對應角相等、對應邊相等。
3、三角形全等的判定公理及推論有:
(1)「邊角邊」簡稱「SAS」
(2)「角邊角」簡稱「ASA」
(3)「邊邊邊」簡稱「SSS」
(4)「角角邊」簡稱「AAS」
(5)斜邊和直角邊相等的兩直角三角形(HL)
分式
1、形如A/B,A、B是整式,B中含有未知數且B不等於0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。
2、分式有意義的條件:分母不等於0。
3、約分:把一個分式的分子和分母的公因式(不為1的數)約去,這種變形稱為約分。
4、通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。
以上是我整理的比較重要的知識點,希望能幫到你。