當前位置:首頁 » 基礎知識 » 三年下冊數學知識
擴展閱讀
動漫人物如何畫出光感 2025-01-22 21:03:37
火線冷知識圖片大全 2025-01-22 20:32:40

三年下冊數學知識

發布時間: 2022-09-08 00:27:33

Ⅰ 數學三年級下冊內容有哪些

數學三年級下冊內容有如下:

1、因數:一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身。

一個數的因數的求法:成對地按順序找,或用除法找。

2、倍數:一個數的倍數的個數是無限的,最小的倍數是它本身。

一個數的倍數的求法:依次乘自然數。

3、自然數按能不能被2整除分為:奇數、偶數。

奇數:不是2的倍數的數叫做奇數。

偶數:是2的倍數的數叫做偶數。

最小的奇數是1,最小的偶數是0。

4、合數:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。如4、6、8、9、10、12、14、15、16、18、20、22都是合數。

5、公因數、最大公因數。

幾個數公有的因數叫這些數的公因數。其中最大的那個因數就叫它們的最大公因數。用短除法分解質因數(一個合數寫成幾個質數相乘的形式)例:12=2×2×3。

Ⅱ 三年級下冊數學的知識點

三年級數學(下冊)知識要求歸納

第一單元 位置與方向
1、(東與西)相對,(南與北)相對,
(東南與西北)相對,(西南與東北)相對。
面南左為東,面北左為西,面東左為北,面西左為南。
2、地圖通常是按(上北、下南、左西、右東)來繪制的。
通常所說的八個方向:東、西、南、北、東南、西北、西南、東北。
3、會看簡單的路線圖,會描述行走路線。(做題時先標出東 南 西 北。)
一定寫清楚從哪兒向哪個方向走,走了多少米,到哪兒再向哪個方向走就到了哪裡。(在轉彎處要注意方向的變化)
判斷一個地方在什麼方向,先要找到一個為中心點(觀測點) 處畫「米」字元號,再進行判斷。
4、指南針是用來指示方向的,它的一個指針永遠指向(南方),另一端永遠指向(北方)。
5、生活中的方位知識:
①北斗星永遠在北方。 ②影子與太陽的方向相對。
③早上太陽在東方,中午在南方,傍晚在西方。
④風向與物體傾斜的方向相反。
(刮風時的樹朝風向相對的方向彎,煙朝風向相對的方向飄……)
我國地處北半球,樹葉茂盛的一面是南方,樹葉稀疏的一面是北方。

第二單元 除數是一位數的除法
1、只要是平均分就用(除 法)計算。
2、除數是一位數的豎式除法法則:
(1)從被除數的高位除起,每次用除數先試被除數的前一位數,如果它比除數小,再試除前兩位數。
(2)除到被除數的哪一位,就把商寫在那一位上。
(3)每求出一位商,餘下的數必須比除數小。
順口溜:除數是一位,先看前一位,一位不夠看兩位,除到哪位商那位,每次除後要比較,余數要比除數小。
3、被除數末尾有幾個0,商的末尾不一定就有幾個0。(如:30÷5 = 6)
4、筆算除法:
(1)余數一定要比除數小。在有餘數的除法中:最小的余數是1;最大的余數是除數減去1;最小的除數是余數加1;
最大的被除數=商×除數+最大的余數; 最小的被除數=商×除數+1;
(2)除法驗算:→ 用乘法
沒有餘數的除法 有餘數的除法
被除數÷除數=商 被除數÷除數=商……余數
商×除數=被除數 商×除數+余數=被除數
被除數÷商=除數 (被除數-余數)÷商=除數
0除以任何不是0的數(0不能為除數)都等於0;0乘以任何數都得0;
0加任何數都得任何數本身,任何數減0都得任何數本身。
5、筆算除法順序:確定商的位數,試商,檢查,驗算。
6、筆算除法時,哪一位上不夠商1,就添0佔位。(最高位不夠除,就向後退一位再商。)
7、多位數除以一位數(判斷商是幾位數):
用被除數最高位上的數跟除數進行比較,當被除數最高位上的數大於或等於除數時,被除數是幾位數商就是幾位數;當被除數最高位上的數小於除數時,商的位數就是被除數的位數減去1。

第三單元 復式統計表
復式統計圖的特點:有利於數據的比較,更容易分辨相同項目的區別。

第四單元 兩位數乘兩位數
1、兩位數乘兩位數,積可能是(三)位數,也可能是(四)位數。
2、口算乘法:整十、整百的數相乘,只需把前面數字相乘,再看兩個因數一共有幾個0,就在結果後面添上幾個0。
3、估算:18×22,可以先把因數看成整十、整百的數,再去計算。
→(可以把一個因數看成近似數,也可以把兩個因數都同時看成近似數。)
4、有大約字樣的一般要估算。
5、凡是問夠不夠,能不能等的題目,都要三大步:
①計算、②比較、③答題。→ 別忘了比較這一步。
6、筆算乘法:先把第一個因數同第二個因數個位上的數相乘,再與第二個因數十位上的數相乘。
7、相關公式: 因數×因數=積 積÷因數=另一個因數
運算順序:先乘除,再算加減;同級運算,應按從左到右的順序進行計算;如果有括弧,要先算括弧內的運算。

第五單元 面 積
1、物體的表面或封閉圖形的大小,就是它們的面積。
封閉圖形一周的長度叫周長。長度單位和面積單位的單位不同,無法比較。
2、比較兩個圖形面積的大小,要用統一的面積單位來測量。
3、①邊長1厘米的正方形,面積是1平方厘米;
②邊長1分米的正方形,面積是1平方分米;
③邊長1米的正方形,面積是1平方米;
4、長方形:
長方形的面積=長×寬 長方形的周長=(長+寬)×2
求長:長=長方形面積÷寬 已知周長求長:長=長方形周長÷2-寬
求寬:寬=長方形面積÷長 已知周長求寬:寬=長方形周長÷2-長
正方形:
正方形的面積=邊長×邊長 正方形的周長=邊長×4
邊長:邊長=正方形面積÷邊長 已知周長求邊長:邊長=正方形周長÷4
5、長度單位之間的進率:
1厘米=10毫米 1分米=10厘米 1米=10分米 1千米=1000米
6、周長相等的兩個長方形,面積不一定相等。面積相等的兩個長方形,周長也不一定相等。
7、在生活中找出接近於1平方厘米、1平方分米、1平方米的例子。例如1平方厘米(指甲蓋)、1平方分米(電腦A盤或電線插座)、1平方米(教室側面的小展板)。
8、區分長度單位和面積單位的不同:長度單位測量線段的長短,面積單位測量面的大小。
(二)長方形、正方形的面積計算
1、歸類:
什麼樣的問題是求周長?(縫花邊、圍柵欄、圍欄桿、池塘或花壇周圍小路長度、圍操場跑步的長度等等)
什麼樣的問題是求面積?或與面積有關?(課本等封面大小、刷牆、花壇周圍小路面積、給餐桌配玻璃、給課桌配桌布、灑水車灑到的地面、某物品佔地面積、買玻璃、買鏡子、買布、買地毯、鋪地磚、裁手帕等等)
2、長方形或正方形紙的剪或拼。
有兩個或兩個以上長方形或正方形拼成新的圖形後的面積與周長。從一個圖形中(通常是長方形)剪掉一個圖形(最大的正方形等)求剪掉部分的面積或周長、求剩下部分的面積或周長。要求先畫圖,再標上所用數據,最後列式計算。
3、刷牆的(有的中間有黑板、窗戶等):求要用到的面積等於大面積減去小面積。
4、常用的面積單位有:平方厘米、平方分米、平方米。
相鄰兩個常用的面積單位之間的進率是 100 。
測量房間、菜園、教室、操場的面積通常用平方米為單位 。
6、面積單位換算:1平方米 = 100平方分米
1平方分米 = 100平方厘米 1平方米 = 10000平方厘米

第六單元 年、月、日
1、重要的日子:1月1日元旦節,3月8日婦女節,3月12日植樹節,5月1日勞動節,5月4日青年節,6月1日兒童節,7月1日建黨節,8月1日建軍節,9月10日教師節,10月1日國慶節。
2、一、三、五、七、八、十、臘,三十一天永不差,四、六、九、冬三十整,平年二月二十八,閏年二月把一加。
3、季度: 一年分四季度,每3個月為一季度。
一、二、三月是 第一季度(平年有90天,閏年有91天)
四、五、六月是 第二季度(有91天)
七、八、九月是 第三季度(92天)
十、十一、十二月是 第四季度(有92天)。
平年上半年181天,閏年上半年182天,下半年都是184天。
4、求有多少個星期?用天數÷7。→ 如:31天 31÷7=4(個)……3(天)
平年一年有52個星期零1天,閏年一年有52個星期零2天。
5、判斷平年、閏年的方法:
① 一般用公歷年份÷4,正好余數是0,就是閏年;
② 公歷年份是整百的÷400,余數是0,就是閏年。
公歷年份是整百的閏年有:1200年,1600年,2000年,2400年;
6、經過的天數的計算:公式→結束時間—開始時間+1=經過的天數;
(二)24計時法
1、普通計時法轉化為24時計時法: ①從凌晨0時到中午12時,時刻相同,去掉時刻前的時間限制詞。 ②下午1時到晚上12時,時刻加上12,並去掉時刻前的時間限制詞。 2、24時計時法轉化為普通計時法: ①從凌晨0時到中午12時在時間前加上凌晨、早上或上午等時間限制詞。 ②13時到24時,用時刻減去12,再加下午、傍晚或晚上等時間限制詞。 3、計算經過時間:用結束時刻—開始時刻=經過時間。時刻—時刻=時間段
4、時間單位進率:1世紀=100年 1年=12個月 1天=24小時
1時=60分 1分=60秒
第七單元 小數的初步認識
1、比較兩個小數的大小,先比較小數的整數部分,整數部分大的數就大,如果整數部分相同就比較小數的小數部分,小數部分要從小數點後最高位比起,十分位上的數大的小數就大;十分位上的數相同的,再比較百分位上的數,以此類推。
2、計算小數加、減法時,一定要先對齊小數點再相加、減。
3、分母是10的分數寫成一位小數,分母是100的分數寫成兩位小數。
4、小數讀寫法:① 讀法→漢字形式;② 寫法→阿拉伯數字。
5、小數不一定比整數小。

第八單元 數學廣角----搭配

有順序地組數、搭配連線,才能保證不重復、不遺漏。

Ⅲ 三年級下冊數學第一單元《位置與方向》有哪些知識點

1、根據一個確定的方向,找其他三個方向:面南背北、左東右西。

2、平面圖一般是按照上北下南、左西右東繪制的。先選好觀察點,把選好的觀察點畫在平面圖的中心位置,再確定各物體相對於觀察點的方向,在紙上按上北下南,左西右東繪制。



3、描述行走路線,首先要確定好自己的位置,以自己為中心,按上北下南、左西右東的規則來確定目標和周圍事物所處的方向,根據目的地的方向和路程,確定行走的路線。

4、東與北之間的方向是東北;東與南之間的方向是東南;西與南之間的方向是西南;西與北之間的方向是西北。

5、以出發點為中心,先確定目的地所在的方向,看哪條路能到達目的地,然後按照先後順序,用八個方位詞來描述。

Ⅳ 三年級下冊數學內容有哪些

三年級下冊的教學內容主要包括:除數是一位數的除法,兩位數乘兩位數,小數的初步認識,位置與方向(一),面積,年、月、日,復式統計表,用數學解決問題,數學廣角和綜合與實踐活動等。下面基本按單元順序對本冊教材的修訂情況進行簡要說明。
一、位置與方向(一)
本單元內容包括:在現實情境中認識東、南、西、北、東北、西北、東南和西南八個方向,並能用這些詞語描述物體所在的方向;了解在平面圖上如何表示方向,並能描述平面圖上物體的相對位置;第讓學生利用所學習的方向的知識解決生活中的實際問題。與實驗教材相比,主要有以下幾個方面的變化。
1.根據《義務教育數學課程標准(2011版)》的要求,降低了難度
《義務教育數學課程標准(2011版)》對第一學段「圖形與位置」的課程內容做了修改:一是刪去了「會看簡單的路線圖」的內容和要求;二是降低了對「東北、東南、西北、西南」這四個方向的教學要求,不再要求根據一個方向(東、南、西或北)辨認出這四個方向,只要知道這四個方向就可以了。因此,修訂後的教材刪去了實驗教材中有關路線圖的內容,同時,在需要辨認「東北、東南、西北、西南」這四個方向的時候,都採用標準的地圖的畫法,並給出指「北」的方向標,以便於學生先判斷出四個基本方向,再進一步辨認這四個方向。
2.根據對實驗教材的意見,將例3和例5整合為例4,讓學生綜合應用所學的方位知識解決問題,培養學生提出問題的意識,提高解決問題的能力
對三年級的學生來說,東、南、西、北等方位概念還是比較抽象的,學生需要大量的感性材料支撐和豐富的表象積累,才能較好地掌握這些概念。因此,教學時要以學生已有的知識和生活經驗為基礎,創設大量的體驗方位的活動,讓所有的學生都參與到活動中來。鼓勵學生獨立思考,敢於發表自己的意見,並能與同伴交流自己的想法。使學生在多樣的活動中進行觀察、操作、想像、描述、表示和交流,豐富對方位知識的體驗,積累活動經驗,進一步發展良好的空間觀念。
二、除數是一位數的除法
本單元的主要內容有:口算除法、筆算除法和用估算解決問題。「除數是一位數的除法」口算和筆算是小學生應該掌握和形成的基礎知識和基本技能,也是進一步學習多位數筆算除法的基礎。與實驗教材相比,修訂後的教材仍然十分重視落實雙基,同時注重在使學生獲得基本數學思想和基本數學活動經驗方面及培養學生解決問題的能力方面有所突破。
1.調整例題設計,使教學內容和教學順序更為合理
本單元的教學內容安排體現了「由簡到繁,由易到難」的認知規律,按照「口算—筆算—用估算解決問題」的順序分為三個層次編排。第一個層次是口算除法。根據《義務教育數學課程標准(2011版)》的要求,在實驗教材的基礎上,增加了幾十幾除以一位數(每一位都能除盡)的例題口算方法。在讓學生用已有的口算方法解決新問題的同時,為理解筆算算理作鋪墊。第二個層次是筆算除法(例1~例7)。(1)按照「由一般到特殊」的原則,先安排「商中沒有0」的除法,再安排「商中有0」的除法,便於學生在掌握一般方法的基礎上,自主探究特殊的計算方法。(2)按照「由易到難」的原則,先安排「兩位數除以一位數」再安排「三位數除以一位數」;先安排「首位能除盡」的除法,再安排「首位不能被除盡」的除法。根據實驗教材的反饋意見,增加了例3,教學三位數除以一位數,首位上能除盡的題目,減小教學的坡度。第三個層次是解決問題(例8和例9,重點教學如何將估算作為的一個有效策略來解決問題),這是整套修訂後教材關於估算教學的一大特色。
2.重視對算理的理解和計算方法的總結和概括
(1)加強對算理的理解,溝通算理和演算法的聯系。第一,無論在教學口算還是筆算時,教材都注重通過直觀操作幫助學生理解算理。例如,在「口算除法」的小節中創設了平均分彩色手工紙的情境,將手工紙設計為10張一沓,給出直觀圖展示分的過程和結果,為學生理解算理提供直觀支撐。第二,在筆算除法中,重視溝通算理與演算法的聯系。分步給出了豎式的演算過程,並配合給出小棒圖展示平均分的過程,還標注了每一個結果的含義或每一個結果的計算方法,幫助學生理解除法豎式的每一步的算理,實現了從算理到演算法的自然過渡。
(2)重視對計算方法的總結和概括,培養歸納推理的能力。在學生獲得大量計算活動經驗的基礎上,教材重視讓學生對計演算法則進行歸納和總結。在進一步掌握演算法,形成計算技能的同時,培養學生歸納推理的能力。例如,在探索了大量的除數是一位數的除法筆算後,教材在第18頁安排了學生通過討論交流,總結計算方法的場景,雖然教材沒出給出完整的計演算法則的文本,但是通過學生的對話了突出了計算的基本步驟和要點。
在教學中,應重視對算理和計算規律的探求,培養學生的數學交流能力。首先,應充分利用學生已掌握的除法口算的經驗,引導學生探索筆算除法的算理和演算法,結合一定的直觀操作活動,使學生理解算理。並通過讓學生說一說每一個結果的含義及計算方法,溝通算理和演算法的聯系。再讓學生說一說計算的程序,養成一種有序地操作和思考的習慣,並能自主概括出筆算除法的計算要點。其次,應給學生創造一個寬松的表達環境,先讓學生在思考每個例題時,輕聲地說出自己的思考過程;再讓學生在小組(或與同桌)內說自己的思考過程;之後請能夠清晰地、有條理地表達自己的思路的學生在班上交流,提供表達的範例。通過有層次地說過程、說算理,使學生自主歸納出口算或筆算除法的基本方法,同時學會用簡潔的語言表述自己的思考過程,培養學生的數學交流能力。
三、復式統計表
根據《義務教育數學課程標准(2011版)》的要求,統計知識的教學整體後移,將原來安排在二年級下冊的復式統計表移至本冊教學,引導學生進一步體驗統計的方法和意義。尤其是藉助復式統計表的學習,進一步體會數據收集與整理的必要性以及數據分析方法的多樣性,體會數據中蘊含的豐富信息及其應用價值。本單元教學內容的編排,將數據分析觀念的培養貫穿於教學過程的各個環節。例如,例1,首先提出活動任務「要知道本班同學最喜歡的活動情況」——需要進行調查,獲取數據;接著讓學生用以前學習過的知識(單式統計表)來呈現數據,討論兩個統計表的共同點,發現還有更簡潔的形式——合成一個表,形成復式統計表;最後通過回答問題,讓學生感受復式統計表的優越性——表中包含的信息內涵更豐富;可直接看出男、女生每一項活動喜歡的人數,更便於比較;並可從不同的角度去解讀或分析問題。以上三個環節環環相扣,層層遞進,讓學生完整地經歷統計分析的全過程,經歷「復式統計表」產生的過程並體會其必要性,有效地發展學生的數據分析觀念。
盡管一、二年級時,學生已有過數據收集、整理、分析的經歷,但是,統計方法和意義的體驗、數據分析觀念的發展不是一蹴而就,需要在多次的經歷中不斷積淀,逐步內化。因此,本單元教學時,切不可單純地將復式統計表的認識和填寫作為唯一目標,而應以更寬廣的視角來審視與設計教學的過程。在學生應用已有的知識解決問題的基礎上,引導學生從解決問題的角度,發現單式統計表存在的局限性,自主「創造」出功能更強的復式統計表,體會復式統計表的優越性,體驗數據整理方法的多樣性。最後,教師還要引導學生通過對復式統計表的多角度解讀,獲得對數據分析方法的切身體驗,體會數據中包含的豐富信息。通過以上教學活動,讓學生親身經歷、主動探究的過程,有利於學生進一步體驗統計方法和意義。
四、兩位數乘兩位數
本單元包括口算乘法、兩位數乘兩位數的筆算乘法及運用連乘、連除兩步計算解決問題。與實驗教材相比,主要有以下幾個方面的變化。
1.藉助幾何直觀,幫助學生理解算理,掌握演算法
在教學兩位數乘一位數口算、兩位數乘兩位數(不進位)的計算方法時,教材安排了通過擺方塊學習口算兩位數乘一位數,利用點子圖探索兩位數乘兩位數的演算法。藉助直觀手段(方塊、點子圖)與算式相對應,數形結合,引導學生親歷建構兩位數乘一位數口算、兩位數乘兩位數數學模型的過程,不僅能夠幫助學生理解算理,掌握演算法;而且為學生提供了數學思考、傾聽、交流的機會,培養學生的數感和推理能力。
教學時,要留有充裕的時間,放手讓學生嘗試、探討兩位數乘兩位數的筆算方法。在自主探索的基礎上,適時組織討論交流,以完善學生對計算過程與算理的理解。應為學生提供充分的從事數學活動的機會,讓學生主動探索計算方法。例如,在探索兩位數乘兩位數(不進位)筆算乘法的算理時,首先要讓學生嘗試用已有的知識解決新的問題,並要求學生用點子圖把自己的方法表示出來,讓學生經歷用圖示表徵解釋演算法的過程;然後,再交流展示多種解決問題的方法,並通過學生的匯報使學生明確如何劃分點子圖、算式表徵了哪種計算方法,溝通圖形表徵、算式表徵與計算方法之間的聯系;最後,在理解豎式計算的算理時,可以讓學生再次利用點子圖,表示出豎式計算中每一步的結果,進而更好地理解其含義,掌握好演算法。藉助點子圖,在加深學生對計算方法理解的同時,使學生逐步學會藉助幾何直觀去解決問題,去表達和交流,有效地促進學生的全面發展。
2.注重運算規律的探索,培養數學思維能力
第一,有些計算的演算法是一致或相似的,教材通過例題和練習的設計啟發學生體會這些題目在演算法上的一致性,促進計算方法的有效遷移。例如,口算乘法例1中,在學生學習了15×3
的口算方法後,接著呈現150×3,讓學生體會這兩道口算之間的聯系和區別,利用舊知探究幾百幾十乘一位數的口算方法。
第二,練習中也設計了一類計算題(如練習十的第9題、練習十一的第10題),讓學生通過一組題的計算,發現其中蘊含的計算規律,再直接寫出其他各題的得數。讓學生經歷「猜想——計算——驗證」的探究過程,為積累探索數學規律的活動經驗提供機會。這樣的練習既可提高學生的學習興趣,又能滲透數學思想方法,培養學生的數學思維能力。
五、面積
本單元的主要學習內容包括四部分:面積和面積單位,長方形、正方形的面積計算,面積單位之間的進率,用所學的知識解決簡單的實際問題。與實驗教材相比,主要有以下幾個方面的變化。
1.關注學生對面積概念的真正理解
教材在修訂過程中刪去了面積的定義,其目的是避免學生死記硬背,也避免教師將功夫用在指導學生敘述面積的定義上,而忽視了學生對面積含義的真正理解。從讓學生觀察身邊熟悉的一些物體(黑板和國旗)的表面入手,明確「面」的概念;然後讓學生通過觀察比較兩個面的大小,進而形成對「面」的大小的直觀感受。在此基礎上,教材採用描述的方式,藉助具體事例說明「面積」的概念,並讓學生依此說出其他一些物體表面的面積。
2.注重對面積概念認識的全面性
由於學生常常誤認為只有向上擺放的「面」才有面積,因此教材在例1下面增加了「做一做」中,要求學生摸摸字典的封面和側面,並比較這兩個面的面積大小,使學生認識到側面的大小就是側面的面積。為避免學生一提到面積就想到長方形、正方形的面積,教材在練習十四中增加了不規則圖形面積的比較,包括線段圍成的圖形和曲線圍成的圖形,其目的是突出面積概念的本質,讓學生更全面地理解面積概念。
教師應結合具體教學內容,讓學生不斷感悟度量的本質,發展度量的意識。在教學中,可以從以下幾方面加以落實。一是,製造認知沖突,使學生感受學習「面積單位」的必要性;二是,藉助學生身邊熟悉的事物,使學生建立面積單位的表象;三是,讓學生經歷用面積單位度量面積的過程,體驗單位的價值;四是,梳理面積單位,形成結構化認識;五是,讓學生結合實際選擇和運用合適的面積單位解決問題。另外,在學生經歷用面積單位度量長方形面積的基礎上,應溝通長方形的長、寬與每行面積單位個數和行數之間的對應關系,適時進行長方形面積公式的抽象概括,幫助學生深入理解面積公式。
六、年、月、日
本單元主要包括:1.認識年、月、日,了解它們之間的關系;知道平年、閏年,了解24時計時法,會用24時計時法表示時刻;初步理解時間和時刻的意義,會計算簡單的經過時間。在編排時,仍然注意精心選取和學生生活聯系密切的素材,讓學生直觀地感受到了時間與人們的生活密不可分,對學生本單元的學習起到有效的支撐和促進作用。並注意為學生搭建自主學習、主動建構知識的平台,為學生提供較為充分的探究和思考的空間。與實驗教材相比,加強幾何直觀,幫助學生理解抽象的概念。24時計時法比較抽象,教材藉助多種直觀方法幫助學生理解。在實驗教材在鍾面上標出內、外圈數呈現24時計時法的基礎上,增加了「時間軸」,將一日經過的時間展開,在時間軸上對比給出一日內12時計時法和24時計時法所表示的整點的時間。將抽象的、不斷流逝的時間與直觀的數軸建立起聯系,將「時刻」與數軸上的點建立聯系,藉助幾何直觀進一步幫助學生理解抽象的24時計時法。
在教學中,應關注學生的生活經驗,讓學生在生動具體的情境中感受時間,並採用多種途徑引導學生探究、理解知識,發展應用能力。應當通過創設一些現實性情境,布置一些實踐性任務或具有挑戰性的問題,多途徑地引導學生經歷觀察、記錄、猜想、交流、推理等學習過程,使學生在自主建構知識、積累活動經驗的同時,提升思維水平,發展應用能力。還可以設計一些觀察、記錄、歸納等學習活動,也可以嘗試解決以實際問題為任務驅動,以便更好地挖掘教材資源,幫助學生積累解決問題的經驗。
由於學生平時很少使用24時計時法,因此在用24時計時法表示下午幾時或晚上幾時時,學生往往感到不太習慣。教學時,應使用鍾表模型等教具或學具,加強對鍾面的觀察和操作,引導學生觀察一日時針正好走兩圈,體會鍾面數字、時間及圈數之間的關系,讓學生積累豐富的表象;並適時出示時間軸,教學時可給出12時計時法表示的時刻,讓學生在標出相應的24時計時法表示的時刻,藉助幾何直觀幫助學生理解24時計時法。在教學計算簡單的經過時間時,可以讓學生通過觀察鍾面和直觀演示,從出發時刻開始,讓指針轉動到到達時刻,把直觀觀察和線路圖對應起來,並口算得出經過的時間;還可以出示時間軸,讓學生在上面標出出發時刻和到達時刻,將抽象的時刻與直線上的點對應起來,將「經過時間」與兩點間的距離建立聯系,幫助學生思考。
七、小數的初步認識
本單元的學習內容主要包括認識小數和簡單的小數加、減法兩部分,與實驗教材相比,降低了要求,小數的含義、大小比較和小數加、減法,僅限於一位小數。在實驗教材以學生熟悉的日常事物和活動為場景,通過人民幣、米制系統這些具體的量幫助學生認識小數的基礎上,增加了面積、數尺或數軸這樣的直觀、半直觀模型來幫助學生進一步認識小數。
本單元是小數的初步認識教學應把握以下兩點:一是本單元是「小數的初步認識」,不要把小數作為一個抽象的「數」來研究,不要出現數位、計數單位等概念,應結合具體的「量」和面積、數軸等直觀模型來認識;二是小數的大小比較和小數加、減法,僅限於一位小數。
八、數學廣角——搭配(二)
學生在二年級上冊「數學廣角」的學習中已經接觸了簡單的排列和組合內容,在此基礎上,本單元內容難度稍有提升,不僅數據加大了,而且問題情況也更加復雜,同時給出了更簡潔、更抽象的表達方式,進一步培養學生有序、全面思考問題的能力。
例1,要求學生用4個數字(含0)組成沒有重復數字的兩位數,教學稍復雜的排列問題。與二年級上冊的例1相比,不僅元素要(排列的數字)多了1個,而且增加的是0這個特殊元素。例2,通過搭配服裝的問題,教學分步乘法計算原理。例3,要求找出4支球隊的比賽(每兩個隊賽一場)次數,教學組合問題。與二年級上冊的例2相比,素材不同,且多了一個元素。在二年級時,學生主要通過具體操作、觀察、猜測等活動初步感受排列組合的思想和方法。本單元教學的重點應放在引導學生用更簡潔、更抽象的方式把思考的過程和結果表達出來,培養學生有序、全面思考問題的能力。
排列和組合是很抽象的數學知識,教學中,需要通過多種活動把這些抽象的知識直觀化、具體化,並鼓勵學生用自己喜歡的方式表達思維過程和結果。既要指導學生根據實際問題採取枚舉、連線等形式有序地、不重不漏地找出事物的排列數和組合數,還要注意不要拔高要求。只要求學生用圖示的方式把所有的排列或組合情況列舉出來(即有哪些排列或組合)即可,不要求抽象地計算出一共有多少種排列數或組合數,諸如排列、組合、分類計數原理、分步計數原理等名詞,不必出現。

Ⅳ 三年級下冊數學內容有哪些呢

三年級下冊數學內容如下:

1、從被除數的高位除起,每次用除數先試被除數的前一位數,如果它比除數小,再試除前兩位數。

2、在有餘數的除法中:最小的余數是1;的余數是除數減去1;最小的除數是余數加1。

3、商×除數=被除數商×除數+余數=被除數。

4、除法的估算:在實際生活中有時候不必算出准確的結果,而是把一些數看成和它接近的整十、整百、整千,然後進行計算,這樣的計算就叫做估算。

5、角、五角星、等腰三角形、等邊三角形、等腰梯形、正方形、長方形、圓和正多邊形等都是軸對稱圖形等。

Ⅵ 三年級數學下冊位置與方向是什麼

三年級數學下冊位置與方向知識點如下。

1、(東與西)相對,(南與北)相對,(東南與西北)相對,(西南與東北)相對。面南左為東,面北左為西,面東左為北,面西左為南。

2、地圖通常是按(上北、下南、左西、右東)來繪制的。通常所說的八個方向:東、西、南、北、東南、西北、西南、東北。

3、會看簡單的路線圖,會描述行走路線,做題時先標出東南西北。一定寫清楚從哪兒向哪個方向走,走了多少米,到哪兒再向哪個方向走就到了哪裡,在轉彎處要注意方向的變化。判斷一個地方在什麼方向,先要找到一個為中心點(觀測點)處畫米字元號,再進行判斷。

4、指南針是用來指示方向的,它的一個指針永遠指向(南方),另一端永遠指向(北方)。

5、生活中的方位知識:北斗星永遠在北方。影子與太陽的方向相對。早上太陽在東方,中午在南方,傍晚在西方。風向與物體傾斜的方向相反。我國地處北半球,樹葉茂盛的一面是南方,樹葉稀疏的一面是北方。

Ⅶ 小學三年級數學下冊知識點梳理

一、 植樹問題:
這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。
解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。
解題規律:
沿線段植樹
棵樹=總路程÷株距+1
棵樹=段數+1
株距=總路程÷(棵樹-1)
總路程=株距×(棵樹-1)

沿周長植樹
棵樹=總路程÷株距
棵樹=段數
株距=總路程÷棵樹
總路程=株距×棵樹

例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)

二、分數和百分數的應用
1 分數加減法應用題:
分數加減法的應用題與整數加減法的應用題的結構、數量關系和解題方法基本相同,所不同的只是在已知數或未知數中含有分數。

2分數乘法應用題:
是指已知一個數,求它的幾分之幾是多少的應用題。
特徵:已知單位「1」的量和分率,求與分率所對應的實際數量。
解題關鍵:准確判斷單位「1」的量。找准要求問題所對應的分率,然後根據一個數乘分數的意義正確列式。

3 分數除法應用題:
求一個數是另一個數的幾分之幾(或百分之幾)是多少。
特徵:已知一個數和另一個數,求一個數是另一個數的幾分之幾或百分之幾。「一個數」是比較量,「另一個數」是標准量。求分率或百分率,也就是求他們的倍數關系。
解題關鍵:從問題入手,搞清把誰看作標準的數也就是把誰看作了「單位一」,誰和單位一的量作比較,誰就作被除數。
甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標准量,用甲除以乙。
甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之幾)或(百分之幾)。關系式(甲數減乙數)/乙數或(甲數減乙數)/甲數 。

已知一個數的幾分之幾(或百分之幾 ) ,求這個數。
特徵:已知一個實際數量和它相對應的分率,求單位「1」的量。
解題關鍵:准確判斷單位「1」的量把單位「1」的量看成x根據分數乘法的意義列方程,或者根據分數除法的意義列算式,但必須找准和分率相對應的已知實際
數量。

三、度量
一、 長度
(一) 什麼是長度
長度是一維空間的度量。
(二) 長度常用單位
公里(km) 、 米(m) 、 分米(dm)、 厘米(cm)、毫米(mm) 、 微米(um)
(三) 單位之間的換算
1毫米 =1000微米 , 1厘米 =10 毫米 , 1分米 =10 厘米 , 1米 =1000 毫米 , 1千米 =1000 米

二、 面積
(一)什麼是面積
面積,就是物體所佔平面的大小。對立體物體的表面的多少的測量一般稱表面積。
(二)常用的面積單位
平方毫米 、平方厘米 、 平方分米、平方米 、平方千米
(三)面積單位的換算
1平方厘米 =100 平方毫米 , 1平方分米=100平方厘米 ,1平方米 =100 平方分米
1公傾 =10000 平方米 , 1平方公里 =100 公頃

三、 體積和容積
(一)什麼是體積、容積
體積,就是物體所佔空間的大小。
容積,箱子、油桶、倉庫等所能容納物體的體積,通常叫做它們的容積。
(二)常用單位
1、 體積單位
立方米 、 立方分米、立方厘米
2 、容積單位: 升、毫升
(三)單位換算
(1) 體積單位
1立方米=1000立方分米
1立方分米=1000立方厘米
(2) 容積單位
1升=1000毫升
1升=1立方米
1毫升=1立方厘米

四、 質量
(一)什麼是質量
質量,就是表示表示物體有多重。
(二)常用單位
噸 :t 千克: kg 克: g
(三)常用換算
一噸=1000千克
1千克=1000克

五、 時間
(一)什麼是時間
是指有起點和終點的一段時間
(二)常用單位
世紀、 年 、 月 、 日 、 時 、 分、 秒
(三)單位換算
1世紀=100年
1年=365天 (平年)
1年=366天 (閏年)
一、三、五、七、八、十、十二是大月, 大月有31 天
四、六、九、十一是小月,小月有30天
平年2月有28天, 閏年2月有29天
1天= 24小時
1小時=60分
1分=60秒

六、 貨幣
(一)什麼是貨幣
貨幣是充當一切商品的等價物的特殊商品。貨幣是價值的一般代表,可以購買任何別的商品。
(二)常用單位
元 、 角 、 分
(三)單位換算
1元=10角
1角=10分

Ⅷ 北師大版小學三年級數學下冊教學重點知識有哪些

一、教學內容與教學目標:
本冊教材採用數與代數、空間與圖形、統計與概率和實踐與綜合運用四個領域的內容同時混編的方式,各個領域包括以下內容:
數與代數:第一單元"元、角、分與小數"。結合購物的具體情境初步理解小數的意義,能認、讀、寫簡單的小數;感受比較小數大小的過程;會進行一位小數的 加減運算,能解決一些相關的簡單問題;能運用小數表示日常生活中的一些事物,並進行交流。第三單元"乘法"。會計算兩位數乘兩位數的乘法;能結合具體情境進行估算,並解釋估算的過程;能靈活運用不同的方法解決生活中的簡單問題,並能對結果的合理性進行判斷。第五單元"認識分數"。能結合具體情境與直觀操作初步理解分數的意義,能認、讀、寫簡單的分數;感受比較分數大小的過程;會計算同分母分數的加減運算, 能解決一些相關的簡單問題。
空間與圖形:第二單元"對稱、平移和旋轉"。結合實例,感知平移、旋轉、軸對稱現象;能在方格紙上畫出一個簡單圖形沿水平、豎直方向平移後的圖形;通過觀察、操作,認識軸對稱圖形,並能在方格紙上畫出簡單是軸對稱圖形。第四單元"面積"。結合實例認識面積的含義,能用自選單位估計和測量圖形的面積,體會統一面積單位的必要性,體會並認識面積單位,會進行簡單的面積單位的換算;探索並掌握長方形、正方形的面積公式, 能估算給定的長方形、正方形的面積。
統計與概率:第六單元"統計與可能性"。通過豐富的實例,了解平均數的意義,體會學習平均數的必要性,會求簡單數據的平均數;能對一些簡單事件發生的可能性做出描述,並和同伴交換想法。
實踐活動: 到商店調查三種商品的價格,做好記錄。與同學比一比同一種商品的價格。找一找生活中的小數,並與同伴說一說。用紙剪出一個你喜歡的圖形,通過平移或旋轉繪制一幅圖案。設計旅遊計劃。廚房鋪地轉的選擇方案 製作七巧板。調查小組同學的身高,並計算小組的平均身高,並計算小組的平均身高。在報刊上找出與平均數有關的信息,並與同伴說一說。
二、教學重點:
本冊教材中的小數與分數、圖形的變換與面積等概念,都是學生初次接觸的重要基礎知識,讓學生在具體生動的情境中學習和理解它們是至關重要的。
三、教學難點:
培養學生應用數學的意識與獨立解決問題的能力。要把數學學習與解決生活中的數學 問題結合起來,充分利用教材所提供的數學與生活緊密聯系的線索,培養學生學會用數學的眼光觀察現實生活,從中發現數學問題、提出數學問題、並解決數學問題,體會數學的廣泛應用與實際價值,獲得良好的情感體驗。
四、學情分析:
本學期我所任教的三班,大部分學生對數學比較感興趣,接受能力較強,學習態度較端正。尤其是男同學,學習基礎也還比較好,但是有部分學生自覺性不夠,不能及時完成作業,或者作業質量較差,對於學習數學有一定困難。所以在新的學期里,在端正學生學習態度的同時,應加強培養他們的各種學習數學的能力,以提高成績。
五、教學資源分析:
重視學生的生活經驗,密切數學與現實的聯系,引導學生在理解的基礎上學習數學,促進學生對數學的認識。教材通過"數與計算、量與計量、空間與圖形、統計與概率、實踐與綜合應用"基本領域反映運用數學研究現實世界的基本過程,有機的滲透數感、符號感、空間觀念、統計思想、推理意識等重要的數學思想和思維方式,並以此為主線選擇和安排教學內容。
展現知識的產生和應用過程,形成"問題情境--建立模型--解釋與應用"的基本敘述模式,引導學生逐步形成多樣化的、科學合理的學習方式。通過上述的過程,學生將逐步掌握基本的數學知識和方法,形成良好的數學思維習慣和應用意識,提高自己解決問題的能力,感受數學思考的樂趣,增進學好數學的信心,獲得對數學較為全面的體驗與理解。
以數學活動為線索安排教材內容,促進學生自主地參與、探索和交流。按照《標准》的要求,教材突破了以往的以例題為中心的呈現方式,以學生的數學活動為線索,展開相關知識的學習。教材設立了"看一看、做一做、想一想、說一說、讀一讀、我的成長足跡、問題銀行"等欄目,促進學生在觀察、操作、思考、交流、反思等活動中,掌握基本的知識和技能,發展數學思考和解決問題的能力,初步形成良好的情感、態度與價值觀。
六、提高教學質量的具體措施:
(一)切實加強基礎知識和基本技能的教學。
數學基礎知識的理解。教學時在使學生掌握數學概念、法則、數量關系的同時,應更重視數學方法的訓練,逐步形成良好的思維方式和運用數學的意識。處理好基本訓練與創造性思維發展及後繼學習的關系。小學生的創造性思維是在數學學習的"再創造"過程中逐步得到發展的,而 "再創造"的前提是通過必要的基本訓練使學生形成扎實的基本功。
(二)重視引導學生自主探索,培養學生的創新意識和學習數學的興趣。
本冊教材設計了適量探索性和開放性的數學問題,給學生提供自主探索的機會和一個比較充分的思考空間。培養學生肯於鑽研、善於思考、勤於動手的科學態度。教師要關注學生的個體差異,尊重學生的創造精神。對學生在探索過程中遇到的問題,要適時,有效的幫助和引導。
(三)重視培養學生的應用意識和實踐能力。
數學教學應體現"從問題情境出發,建立模型,尋求結論,應用與推廣"的基本過程。在日常的數學活動中要注意小課題研究和實習作業等實踐活動,對這方面的內容不但不能隨意刪減,而且要加強這方面內容安排的密度和強度。
(四)把握教學要求,促進學生發展。
教師要善於駕馭教材,把握知識的重點和難點以及知識間的內在聯系,根據學生的年齡特點和教學要求,開展教學活動。要注意在直觀感知廣泛的背景下,通過自身體驗在分析、整理的過程中學習概念,不要用死記硬背的方法。
七、促進教學評估方法。
教學評估要有利於學生的發展,注重對學生學習過程的考察。知識和技能的評估,試題類型要多樣化。評價應體現激勵的作用。

Ⅸ 初三數學下冊知識點

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些初三數學知識點,希望對大家有所幫助。

九年級下冊數學知識點歸納

知識點1.概念

把形狀相同的圖形叫做相似圖形。(即對應角相等、對應邊的比也相等的圖形)

解讀:(1)兩個圖形相似,其中一個圖形可以看做由另一個圖形放大或縮小得到.

(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同.

(3)判斷兩個圖形是否相似,就是看這兩個圖形是不是形狀相同,與其他因素無關.

知識點2.比例線段

對於四條線段a,b,c,d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那麼這四條線段叫做成比例線段,簡稱比例線段.

知識點3.相似多邊形的性質

相似多邊形的性質:相似多邊形的對應角相等,對應邊的比相等.

解讀:(1)正確理解相似多邊形的定義,明確「對應」關系.

(2)明確相似多邊形的「對應」來自於書寫,且要明確相似比具有順序性.

知識點4.相似三角形的概念

對應角相等,對應邊之比相等的三角形叫做相似三角形.

解讀:(1)相似三角形是相似多邊形中的一種;

(2)應結合相似多邊形的性質來理解相似三角形;

(3)相似三角形應滿足形狀一樣,但大小可以不同;

(4)相似用「∽」表示,讀作「相似於」;

(5)相似三角形的對應邊之比叫做相似比.

知識點5.相似三角的判定方法

(1)定義:對應角相等,對應邊成比例的兩個三角形相似;

(2)平行於三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構成的三角形與原三角形相似.

(3)如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那麼這兩個三角形相似.

(4)如果一個三角的兩條邊與另一個三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似.

(5)如果一個三角形的三條邊分別與另一個三角形的三條邊對應成比例,那麼這兩個三角形相似.

(6)直角三角形被斜邊上的高分成的兩個直角三角形與原三角形都相似.

知識點6.相似三角形的性質

(1)對應角相等,對應邊的比相等;

(2)對應高的比,對應中線的比,對應角平分線的比都等於相似比;

(3)相似三角形周長之比等於相似比;面積之比等於相似比的平方.

(4)射影定理

九年級下冊數學知識點 總結

直線與圓的位置關系

①直線和圓無公共點,稱相離。AB與圓O相離,d>r。

②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等於0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關於x的方程

如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行於y軸(或垂直於x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,並且規定x1

當x=-C/Ax2時,直線與圓相離;

旋轉變換

1.概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。

說明:(1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;(2)旋轉過程中旋轉中心始終保持不動.(3)旋轉過程中旋轉的方向是相同的.(4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的.⑤旋轉不改變圖形的大小和形狀.

2.性質:(1)對應點到旋轉中心的距離相等;

(2)對應點與旋轉中心所連線段的夾角等於旋轉角;

(3)旋轉前、後的圖形全等.

3.旋轉作圖的步驟和方法:(1)確定旋轉中心及旋轉方向、旋轉角;(2)找出圖形的關鍵點;(3)將圖形的關鍵點和旋轉中心連接起來,然後按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;(4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉後的圖形.

說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角.

初三 數學學習方法

1、「方程」的思想

數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好 其它 形式的方程。

所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。

2、「數形結合」的思想

大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。在初三,建立平面直角坐標系後,研究函數的問題就離不開圖象了。往往藉助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今後的數學學習中,要重視「數形結合」的 思維訓練 ,任何一道題,只要與「形」沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養成一種「數形結合」的好習慣。

3、「對應」的思想

「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」;隨著學習的深入,我們還將「對應」擴展到對應一種形式,對應一種關系,等等。比如我們在計算或化簡中,將對應公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果即。這就是運用「對應」的思想和方法來解題。初二、初三我們還將看到數軸上的點與實數之間的一一對應,直角坐標平面上的點與一對有序實數之間的一一對應,函數與其圖象之間的對應。「對應」的思想在今後的學習中將會發揮越來越大的作用

初三數學下冊知識點相關 文章 :

★ 九年級數學知識點下冊

★ 九年級下冊數學知識點歸納

★ 最新初三數學知識點總結大全

★ 九年級數學下冊圓的知識點整理

★ 人教版初三數學知識點

★ 初三數學知識點總結

★ 九年級下學期期末數學復習資料

★ 初三年級下冊數學知識點歸納總結

★ 人教版初三數學知識點復習資料備戰中考

★ 初三數學學習方法指導與學習方法總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅹ 三年級下冊數學思維導圖

三年級下冊數學思維導圖如下:

對於乘、除法和加、減法的混合運算式題,應該先算乘、除法,後算加、減法;有括弧的試題,首先要算括弧內的運算,這里不能以是否簡便為標准,而一定要遵循正確的運算順序。

有的算式,表面一看,有一步運算能湊整,便先計算出來。比如32+68×14,看上去先算加法簡便,就會忘掉運算順序,先算加法後算乘法。

數學思維導圖對三年級數學學習的幫助

數學思維導圖在三年級數學當中針對各個章節的知識總結和分析,除了對基礎的概念,學習方法,解決問題技巧的總結,其中重點和難點內容的突出也是在不斷地提醒大家要注意這些重點的內容。

同時增強了各知識點之間的聯系,讓同學們在學習當中能夠從總體上把握知識這種學習的結構模式能夠為同學們節省不少的時間在學習和復習當中都是不錯的選擇,知識點之間環環相扣,循序漸進,能夠提高同學們的思維能力。