當前位置:首頁 » 基礎知識 » 初一至初三數學知識考點
擴展閱讀
浦東哪裡看兒童口腔 2025-01-22 14:48:18
獨立基礎為什麼長筋 2025-01-22 14:40:52
志公教育培訓班怎麼樣 2025-01-22 14:24:01

初一至初三數學知識考點

發布時間: 2022-09-07 11:48:53

❶ 初一到初三的數學知識歸納是什麼

初一到初三的數學知識歸納:

初中數學知識點。

(一)概率。

1、隨機事件:在一定的條件下可能發生也可能不發生的事件,叫做隨機事件。

2、互斥事件:不可能同時發生的兩個事件叫做互斥事件。

3、對立事件:即必有一個發生的互斥事件叫做對立事件。

4、必然事件:那些無需通過實驗就能夠預先確定它們在每一次實驗中都一定會發生的事件稱為必然事件。

5、不可能事件:那些在每一次實驗中都一定不會發生的事件稱為不可能事件。

(二)有理數。

1、定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

2、相反數:指絕對值相等,正負號相反的兩個數互為相反數。

3、絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。

4、有理數的加減法:同號相加,把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。

5、有理數的乘法:兩數相乘,同號得正,異號得負,並把絕對值相乘。

6、有理數的除法:兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不為0的數,都得0。

(三)整式。

1、是單項式和多項式的統稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運算,但在整式中除數不能含有字母。

2、整式的加減運算時,如果遇到括弧先去掉括弧,再合並同類項。

(四)一元一次方程。

1、定義:只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

2、解一元一次方程的步驟:

①去分母:把系數化成整數。

②去括弧。

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項。

⑤系數化為1。

(五)實數。

1、平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算術平方根。一個正數有兩個實平方根,它們互為相反數,負數沒有平方根。

2、如果一個數的立方等於a,那麼這個數叫a的立方根,也稱為三次方根。

❷ 初一到初三數學知識點總結歸納

2020年的中考就要到了,同學們可以利用這個寒假系統的復習一下初中數學的重要知識點,接下來給大家分享初一到初三數學知識點,供參考。

數軸

1.數軸的概念:規定了原點、正方向、單位長度的直線叫做數軸。

數軸的三要素:原點,單位長度,正方向。

2.數軸上的點:所有的有理數都可以用數軸上的點表示,但數軸上的點不都表示有理數。(一般取右方向為正方向,數軸上的點對應任意實數,包括無理數。)

3.用數軸比較大小:一般來說,當數軸方向朝右時,右邊的數總比左邊的數大。

概率

1.隨機事件:在一定的條件下可能發生也可能不發生的事件,叫做隨機事件。

2.互斥事件:不可能同時發生的兩個事件叫做互斥事件。

3.對立事件:即必有一個發生的互斥事件叫做對立事件。

4.必然事件:那些無需通過實驗就能夠預先確定它們在每一次實驗中都一定會發生的事件稱為必然事件。

5.不可能事件:那些在每一次實驗中都一定不會發生的事件稱為不可能事件。

解一元二次方程的步驟

1.配方法的步驟:

先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式。

2.分解因式法的步驟:

把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。

3.公式法

就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c。

平行線

1.在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3.如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4.判定兩條直線平行的方法:

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5.平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

全等三角形

1.經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。

2.三角形全等的判定

(1)SSS(邊邊邊)

三邊對應相等的三角形是全等三角形。

(2)SAS(邊角邊)

兩邊及其夾角對應相等的三角形是全等三角形。

(3)ASA(角邊角)

兩角及其夾邊對應相等的三角形全等。

(4)AAS(角角邊)

兩角及其一角的對邊對應相等的三角形全等。

(5)RHS(直角、斜邊、邊)

在一對直角三角形中,斜邊及另一條直角邊相等。

3.角平分線

(1)從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線。

(2)性質

①角平分線分得的兩個角相等,都等於該角的一半。

②角平分線上的點到角的兩邊的距離相等。

有理數

1.定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

2.數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。

3.相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

4.絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

5.有理數的加減法

同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。

6.有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0.例:0×1=0

7.有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除

以任何一個不為0的數,都得0。

8.有理數的乘方

求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當aⁿ看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

❸ 初一到初三數學重點知識點總結

很多同學都需要整理數學知識點,我整理了一些初中數學重點知識,大家一起來看看吧。

數學三角函數的中考考點

1.正弦定理

在任意△ABC中,角A、B、C所對的邊長分別為a、b、c,三角形外接圓的半徑為R,直徑為D。則有:a/sinA=b/sinB=c/sinC=2r=D(r為外接圓半徑,D為直徑)。

一個三角形中,各邊和所對角的正弦之比相等,且該比值等於該三角形外接圓的直徑(半徑的2倍)長度。

2.餘弦定理

對於任意三角形,任何一邊的平方等於其他兩邊平方的和減去這兩邊與它們夾角的餘弦的積的兩倍。

對於邊長為a、b、c而相應角為A、B、C的三角形則有:

①a²=b²+c²-2bc·cosA;

②b²=a²+c²-2ac·cosB;

③c²=a²+b²-2ab·cosC。

也可表示為:

①cosC=(a²+b²-c²)/2ab;

②cosB=(a²+c²-b²)/2ac;

③cosA=(c²+b²-a²)/2bc。

3.正切定理

在三角形中,任意兩條邊的和除以第一條邊減第二條邊的差所得的商,等於這兩條邊對角的和的一半的正切除以第一條邊對角減第二條邊對角的差的一半的正切所得的商。

對於邊長為a,b和c而相應角為A,B和C的三角形,有:

①(a-b)/(a+b)=[tan(A-B)/2]/[tan(A+B)/2];

②(b-c)/(b+c)=[tan(B-C)/2]/[tan(B+C)/2];

③(c-a)/(c+a)=[tan(C-A)/2]/[tan(C+A)/2]。

基本定理

1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

4、同角或等角的餘角相等

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連接的所有線段中,垂線段最短

7、平行公理經過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內錯角相等,兩直線平行

11、同旁內角互補,兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內錯角相等

14、兩直線平行,同旁內角互補

15、定理三角形兩邊的和大於第三邊

16、推論三角形兩邊的差小於第三邊

17、三角形內角和定理三角形三個內角的和等於180°

18、推論1直角三角形的兩個銳角互余

19、推論2三角形的一個外角等於和它不相鄰的兩個內角的和

20、推論3三角形的一個外角大於任何一個和它不相鄰的內角

21、全等三角形的對應邊、對應角相等

22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等

23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等

25、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等

27、定理1在角的平分線上的點到這個角的兩邊的距離相等

28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

29、角的平分線是到角的兩邊距離相等的所有點的集合

30、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)

31、推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊

32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33、推論3等邊三角形的各角都相等,並且每一個角都等於60°

34、等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35、推論1三個角都相等的三角形是等邊三角形

36、推論2有一個角等於60°的等腰三角形是等邊三角形

37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

38、直角三角形斜邊上的中線等於斜邊上的一半

39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42、定理1關於某條直線對稱的兩個圖形是全等形

43、定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44、定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

45、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

46、勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2

47、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形

48、定理四邊形的內角和等於360°

49、四邊形的外角和等於360°

50、多邊形內角和定理n邊形的內角的和等於(n-2)×180°

一次函數的圖像及性質

1.在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。

2.一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)。

3.正比例函數的圖像總是過原點。

4.k,b與函數圖像所在象限的關系:

當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。

當k>0,b>0時,直線通過一、二、三象限;

當k>0,b<0時,直線通過一、三、四象限;

當k<0,b>0時,直線通過一、二、四象限;

當k<0,b<0時,直線通過二、三、四象限;

當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

以上就是一些數學知識點的相關信息,希望對大家有所幫助。

❹ 初一到初三數學知識點 高頻考點總結

學習數學總結知識點是非常重要的一個環節,下面我為大家總結了初一到初三 數學知識點 ,僅供大家參考。

整式的除法知識點

(1)單項式乘單項式的結果仍然是單項式。

(2)單項式與多項式相乘,結果是一個多項式,其項數與因式中多項式的項數相同。

(3)計算時要注意符號問題,多項式的每一項都包括它前面的符號,同時還要注意單項式的符號。

(4)多項式與多項式相乘的展開式中,有同類項的要合並同類項。

(5)公式中的字母可以表示數,也可以表示單項式或多項式。

因式分解的一般步驟

(1)如果多項式的各項有公因式,那麼先提取公因式。

(2)在各項提出公因式以後或各項沒有公因式的情況下,觀察多項式的項數:2項式可以嘗試運用公式法分解因式;3項式可以嘗試運用公式法、十字相乘法分解因式;4項式及4項式以上的可以嘗試分組分解法分解因式

(3)分解因式必須分解到每一個因式都不能再分解為止。

初中數學不等式知識點

不等式的解集

對於一個含有未知數的不等式,任何一個適合這個不等式的未知數的值,都叫做這個不等式的解。

對於一個含有未知數的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。

求不等式的解集的過程,叫做解不等式。

不等式基本性質

⑴、不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變。

⑵、不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變。

⑶、不等式兩邊都乘以(或除以)同一個負數,不等號的方向改變。

一元二次方程的解法

①、直接開平方法

利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用於解形如的一元二次方程。根據平方根的定義可知,是b的平方根,當時,,,當b<0時,方程沒有實數根。

②、配方法

配方法是一種重要的數學方法,它不僅在解一元二次方程上有所應用,而且在數學的其他領域也有著廣泛的應用。配方法的理論根據是完全平方公式,把公式中的a看做未知數x,並用x代替,則有。

③、公式法

公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程的求根公式:

④、因式分解法

因式分解法就是利用因式分解的手段,求出方程的解的方法,這種方法簡單易行,是解一元二次方程最常用的方法。

以上就是我為大家總結的初一到初三 數學 知識點,僅供參考,希望對大家有幫助。

❺ 初一到初三數學知識點有哪些

初一到初三數學知識點:

1、過兩點有且只有一條直線。

2、兩點之間線段最短。

3、同角或等角的補角相等。

4、同角或等角的餘角相等。

5、過一點有且只有一條直線和已知直線垂直。

6、直線外一點與直線上各點連接的所有線段中,垂線段最短。

7、平行公理經過直線外一點,有且只有一條直線與這條直線平行。

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行。

9、同位角相等,兩直線平行。

10、內錯角相等,兩直線平行。

11、同旁內角互補,兩直線平行。

12、兩直線平行,同位角相等。

13、兩直線平行,內錯角相等。

14、兩直線平行,同旁內角互補。

15、定理三角形兩邊的和大於第三邊。

16、推論三角形兩邊的差小於第三邊。

17、三角形內角和定理三角形三個內角的和等於180°。

18、推論1直角三角形的兩個銳角互余。

19、推論2三角形的一個外角等於和它不相鄰的兩個內角的和。

20、推論3三角形的一個外角大於任何一個和它不相鄰的內角。

21、全等三角形的對應邊、對應角相等。

22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等。

23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等。

24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等。

25、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等。

26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等。

27、定理1在角的平分線上的點到這個角的兩邊的距離相等。

28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上。

29、角的平分線是到角的兩邊距離相等的所有點的集合。

30、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)。

31、推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊。

32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合。

33、推論3等邊三角形的各角都相等,並且每一個角都等於60°。

34、等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)。

35、推論1三個角都相等的三角形是等邊三角形。

36、推論2有一個角等於60°的等腰三角形是等邊三角形。

37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半。

38、直角三角形斜邊上的中線等於斜邊上的一半。

39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等。

40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合。

42、定理1關於某條直線對稱的兩個圖形是全等形。

43、定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線。

44、定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上。

45、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱。

❻ 初一到初三數學公式 所有重點知識總結

初中生學習數學要注意知識點公式的總結,下面我為大家總結了 初一到初三 數學公式,僅供大家參考。

初中數學定理大全
1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

4、同角或等角的餘角相等

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連接的所有線段中,垂線段最短

7、平行公理經過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內錯角相等,兩直線平行

11、同旁內角互補,兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內錯角相等

14、兩直線平行,同旁內角互補

15、定理三角形兩邊的和大於第三邊
初中數學公式
比例的基本性質:

如果a:b=c:d,那麼ad=bc

如果ad=bc,那麼a:b=c:d

(2)合比性質:

如果a/b=c/d,那麼(a±b)/b=(c±d)/d

(3)等比性質:

如果a/b=c/d=…=m/n(b+d+…+n≠0),

那麼(a+c+…+m)/(b+d+…+n)=a/b

梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2S=L×h

菱形面積=對角線乘積的一半,即S=(a×b)÷2

平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例
數學重點知識點總結
圓是定點的距離等於定長的點的集合

圓的內部可以看作是圓心的距離小於半徑的點的集合

圓的外部可以看作是圓心的距離大於半徑的點的集合

同圓或等圓的半徑相等

到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線

以上就是初中網我為大家總結的初一到初三 數學 公式,僅供參考,希望對大家有幫助。

❼ 初一到初三數學知識點最全整理 中考必背重點

函數學習口決
正比例函數是直線,圖象一定過圓點,k的正負是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵。

反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換。

二次函數拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,△的符號最簡便,x軸上數交點,b的食物中毒結全算,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。
相似三角形知識點
考點:相似三角形的概念、相似比的意義、畫圖形的放大和縮小

考核要求:(1)理解相似形的概念;(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小.

考點:平行線分線段成比例定理、三角形一邊的平行線的有關定理

考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算.

注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用.

考點:相似三角形的概念

考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義.
過三點的圓
1、過三點的圓

不在同一直線上的三個點確定一個圓。

2、三角形的外接圓

經過三角形的三個頂點的圓叫做三角形的外接圓。

3、三角形的外心

三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。

4、圓內接四邊形性質(四點共圓的判定條件)

圓內接四邊形對角互補。

以上就是我為大家總結的初一到初三 數學知識點 ,僅供參考,希望對大家有所幫助。

❽ 初一到初三數學知識點歸納有哪些

有些同學覺得數學不好學,其實學好初中數學並不難。只要掌握了正確的學習方法,就能有效提高學習效率,學好數學,拿高分不在話下。以下是我分享給大家的初一到初三數學知識點,希望可以幫到你!
初一到初三數學知識點
1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

4、同角或等角的餘角相等

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連接的所有線段中,垂線段最短

7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內錯角相等,兩直線平行

11、同旁內角互補,兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內錯角相等

14、兩直線平行,同旁內角互補

15、定理 三角形兩邊的和大於第三邊

16、推論 三角形兩邊的差小於第三邊

17、三角形內角和定理 三角形三個內角的和等於180°

18、推論1 直角三角形的兩個銳角互余

19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21、全等三角形的對應邊、對應角相等

22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等

24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

27、定理1 在角的平分線上的點到這個角的兩邊的距離相等

28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29、角的平分線是到角的兩邊距離相等的所有點的集合

30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°

34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35、推論1 三個角都相等的三角形是等邊三角形

36、推論 2 有一個角等於60°的等腰三角形是等邊三角形

37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

38、直角三角形斜邊上的中線等於斜邊上的一半

39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42、定理1 關於某條直線對稱的兩個圖形是全等形

43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
初中數學學習方法
首先、課前預習

課前預習很多同學和家長會忽視而寧願花大量時間去輔導班。其實按時做好課前預習,聽課的時候就能有重點。重點聽自己不理解的地方,做好課堂筆記。課後及時溫習。學習就是一個循序漸進的過程,不會一口吃個胖子;與其貪多嚼不爛,不如按照正常的學習規律來,既不耽誤學習又不耽誤玩。

第二、打好數學基礎。

數學學習中,數學概念、基本定理定義和公式是基礎。同學們一定要先理解,需要求證的學會求證,能推導的自己會推導;這樣才能理解記憶;真正學會。如果連基本概念和定理定義、公式都不理解,記不住;怎麼會做題呢?所以,打好基礎是關鍵。

第三、熟悉例題,吃透課本。

數學考試和中考都是以課本為基礎命題的。因此,書上的例題一定要弄懂吃透。把課本上所有的知識點都過一遍;重點記憶。

第四、課後練習及時做

對於課後練習一定要在學完一課後及時做。鞏固所學知識;不懂的及時問老師或者同學。

第五、做同步訓練題。

數學公式和定理的運用,還要考平時做一定的同步訓練題。但是不能貪多,做過的一定要弄會,搞懂。總結別人的方法,找出差距,彌補不足。

第六、多總結對比記憶。

數學中也有很多相似或相近的定理定義,公式。要善於總結他們的區別與聯系。才能記得牢記得快。做題也是,多總結好的解題方法,技巧;才會百尺竿頭更進一步。
初中數學學習攻略
1.讀的方法。同學們往往不善於讀數學書,在讀的過程中,易沿用死記硬背的方法。那麼如何有效地讀數學書呢?平時應做到:

一是粗讀。先粗略瀏覽教材的枝幹,並能粗略掌握本章節知識的概貌,重、難點;

二是細讀。對重要的概念、性質、判定、公式、法則、思想方法等反復閱讀、體會、思考,領會其實質及其因果關系,並在不理解的地方作上記號(以便求教);

三是研讀。要研究知識間的內在聯系,研討書本知識安排意圖,並對知識進行分析、歸納、總結,以形成知識體系,完善認知結構。

讀書,先求讀懂,再求讀透,使得自學能力和實際應用能力得到很好的訓練。

2.聽的方法。“聽”是直接用感官去接受知識,而初中同學往往對課程增多、課堂學習量加大不適應,顧此失彼,精力分散,使聽課效果下降。因此應在聽課程時注意做到:

(1)聽每節課的學習要求;

(2)聽知識的引入和形成過程;

(3)聽懂教學中的重、難點(尤其是預習中不理解的或有疑問的知識點);

(4)聽例題關鍵部分的提示及應用的數學思想方法;

(5)做好課後小結。

3.思考的方法。“思”指同學的思維。數學是思維的體操,學習離不開思維,數學更離不開思維活動,善於思考則學得活,效率高;不善於思考則學得死,效果差。可見,科學的思維方法是掌握好知識的前提。七年級學生的思維往往還停留在小學的思維中,思維狹窄。因此在學習中要做到:

(1)敢於思考、勤於思考、隨讀隨思、隨聽隨思。在看書、聽講、練習時要多思考;

(2)善於思考。會抓住問題的關鍵、知識的重點進行思考;

(3)反思。要善於從回顧解題策略、方法的優劣進行分析、歸納、總結。

4.問的方法。孔子曰:“敏而好學,不恥不問。”愛因斯坦說過:“提出問題比解決問題更重要。”問能解惑,問能知新,任何學科的學習無不是從問題開始的。因此,同學在平時學習中應掌握問問題的一些方法,主要有:

(1)追問法。即在某個問題得到回答後,順其思路對問題緊追不舍,刨根到底繼續發問;

(2)反問法。根據教材和教師所講的內容,從相反的方向把問題提出來;

(3)類比提問法。據某些相似的概念、定理、性質等的相互關系,通過比較和類推提出問題;

(4)聯系實際提問法。結合某些知識點,通過對實際生活中一些現象的觀察和分析提出問題。

此外,在提問時不僅要問其然,還要問其所以然。

5.記筆記的方法。很大一部分學生認為數學沒有筆記可記,有記筆記的學生也是記得不夠合理。通常是教師在黑板上所寫的都記下來,用“記”代替“聽”和“思”。有的筆記雖然記得很全,但收效甚微。因此,學生作筆記時應做到以下幾點:

(1)在“聽”,“思”中有選擇地記錄;

(2)記學習內容的要點,記自己有疑問的疑點,記書中沒有的知識及教師補充的知識點;

(3)記解題思路、思想方法;

(4)記課堂小結。明確筆記是為補充“聽”“思”的不足,是為最後復習准備的,好的筆記能使復習達到事倍功半的效果。

正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐。所以暑期期間每天給自己一些時間學習數學是很有必要的。

猜你喜歡:

1. 中考數學知識點總結

2. 初中數學三角形知識點總結

3. 初一數學知識點整理

4. 初一數學基本知識點總結

5. 初一數學必考知識點