當前位置:首頁 » 基礎知識 » 小月六年級數學必考知識點
擴展閱讀
兒童便秘用麥冬多少克 2025-01-21 16:15:13
同學畢業留念怎麼寫 2025-01-21 15:58:29

小月六年級數學必考知識點

發布時間: 2022-09-06 15:58:31

⑴ 小學六年級上冊數學必考知識點有哪些

小學六年級上冊數學必考知識點如下:

1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。

2、分數乘整數的運演算法則是:分子與整數相乘,分母不變。

3、在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。

4、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。

5、假分數的倒數小於或等於1。

⑵ 小學六年級數學畢業考必考的知識點是什麼

一、整數和小數

1、最小的一位數是1,最小的自然數是0。

2、小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。

3、小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……

4、整數和小數都是按照十進制計數法寫出的數。

5、小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。

6、小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……

小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……

二、數的整除

1、倍數、因數:A÷B=C,A、B、C均為整數,我們就說A能被B整除或B能整除A。如果數a能被數b整除,a就叫做b的倍數,b就叫做a的因數。

2、一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。一個數因數的個數是有限的,最小的因數是1,最大的因數是它本身。一個數既是它本身的因數,也是它本身的倍數。

3、按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。

4、按一個數因數的個數,非0自然數可分為1、質數、合數三類。

質數:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數。質數都有2個因數。合數:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。合數至少有3個因數。最小的質數是2,最小的合數是4

5、1~20以內的質數有:2、3、5、7、11、13、17、19

1~20以內的合數有「4、6、8、9、10、12、14、15、16、18

「1」既不是質數,也不是合數。

6、2的倍數的數的特徵:個位上的數是0、2、4、6、8。

5的倍數的數的特徵:個位上的數是0或者5。

3的倍數的數的特徵:各個數位上的數的和是3的倍數。

既是3的倍數又是5的倍數的數的特徵:個位上的數是「5」。

7、公因數、公倍數:幾個數公有的因數,叫做這幾個數的公因數;其中最大的一個,叫做這幾個數的最大公因數。幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。

8、一般關系的兩個數的最大公因數、最小公倍數用短除法來求;互質關系的兩個數最大公約數是1,最小公倍數是兩數之積;倍數關系的兩個數的最大公因數是小數,最小公倍數是大數。

11、互質數:公因數只有1的兩個數叫做互質數。

12、兩數之積等於最小公倍數和最大公約數的積。

三、四則運算

1、一個加數=和—另一個加數被減數=差+減數減數=被減數-差

一個因數=積÷另一個因數被除數=商×除數除數=被除數÷商

2、在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。

3、運算定律:

(1)加法交換律:a+b=b+a乘法交換律:a×b=b×a

兩個數相加,交換加數的位置,它們的和不變。

兩個數相加,交換因數的位置,它們的積不變。

(2)加法結合律:(a+b)+c=a+(b+c)乘法結合律:(a×b)×c=a×(b×c)

三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。

三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。

(3)乘法分配律:(a+b)×c=a×c+b×c

兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。

(4)減法的性質:a-b-c=a-(b+c)除法的性質:a÷b÷c=a÷(b×c)

從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。

一個數連續除以兩個數,等於這個數除以兩個除數的積。

四 、兩個規律

1、除法的商不變規律:被除數和除數同時乘或除以相同的數(0除外),商不變。

2、乘法的積不變規律:如果一個因數乘幾,另一個因數則除以幾,那麼它們的積不變。

3、一個因數乘以比1大的數,積比這個數大,乘以比1小的數,積比這個數小

一個因數除以比1大的數,商比這個數小,除以比1小的數,商比這個數大

五、關系式

速度×時間=路程

路程÷時間=速度

路程÷速度=時間

工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

單價×數量=總價

總價÷數量=單價

總價÷單價=數量

⑶ 六年級數學必考知識點

六年級數學必考知識點:

1、每份數×份數=總數總數÷每份數=份數總數÷份數=每份數

2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數

3、速度×時間=路程路程÷速度=時間路程÷時間=速度

4、單價×數量=總價總價÷單價=數量總價÷數量=單價

5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率

6、加數+加數=和和-一個加數=另一個加數

7、被減數-減數=差被減數-差=減數差+減數=被減數

8、因數×因數=積積÷一個因數=另一個因數

⑷ 小學六年級數學必考知識點總結

很多同學都需要整理自己學習過的知識,我整理了一些小學六年級的數學知識點,大家一起來看看吧。

常用的數量關系式

1、每份數×份數=總數總數÷每份數=份數總數÷份數=每份數

2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數

3、速度×時間=路程路程÷速度=時間路程÷時間=速度

4、單價×數量=總價總價÷單價=數量總價÷數量=單價

5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率

6、加數+加數=和和-一個加數=另一個加數

7、被減數-減數=差被減數-差=減數差+減數=被減數

8、因數×因數=積積÷一個因數=另一個因數

9、被除數÷除數=商被除數÷商=除數商×除數=被除數

表面積和體積

1.三角形的面積=底×高÷2。公式S=a×h÷2

2.正方形的面積=邊長×邊長公式S=a2

3.長方形的面積=長×寬公式S=a×b

4.平行四邊形的面積=底×高公式S=a×h

5.梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2

6.內角和:三角形的內角和=180度。

7.長方體的表面積=(長×寬+長×高+寬×高)×2公式:S=(a×b+a×c+b×c)×2

8.正方體的表面積=棱長×棱長×6公式:S=6a2

9.長方體的體積=長×寬×高公式:V=abh

10.長方體(或正方體)的體積=底面積×高公式:V=abh

11.正方體的體積=棱長×棱長×棱長公式:V=a3

12.圓的周長=直徑×π公式:L=πd=2πr

13.圓的面積=半徑×半徑×π公式:S=πr2

14.圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh

15.圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2

16.圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

17.圓錐的體積=1/3底面×積高。公式:V=1/3Sh

求倒數的方法

①求分數的倒數:交換分子、分母的位置。

②求整數的倒數:整數分之1。

③求帶分數的倒數:先化成假分數,再求倒數。

④求小數的倒數:先化成分數再求倒數。

以上就是一些小學數學知識點的相關信息,供大家參考。

⑸ 小學六年級數學必考知識點總結歸納

小學數學是初中數學的基礎,一定要把基本概念牢記,我整理了一些六年級必背的知識點。

數與計算

1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。

3、分數乘法意義分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸

5、倒數:乘積是1的兩個數叫做互為倒數。

比和比例

1、比的基本性質:比的前項和後項都乘以或除以一個不為零的數。比值不變。

比的性質用於化簡比。

比表示兩個數相除;只有兩個項:比的前項和後項。

2、比和比例的區別

(1)意義、項數、各部分名稱不同。比表示兩個數相除;只有兩個項:比的前項和後項。如:a:b這是比。比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4這是比例。

(2)比的基本性質和比例的基本性質意義不同、應用不同。

比的性質:比的前項和後項都乘或除以一個不為零的數。比值不變。

比例的性質:在比例里,兩個外項的乘積等於兩個內項的乘積相等。比例的性質用於解比例。聯系:比例是由兩個相等的比組成。

常用的數量關系

1、每份數×份數=總數;總數÷每份數=份數;總數÷份數=每份數

2、1倍數×倍數=幾倍數;幾倍數÷1倍數=倍數;幾倍數÷倍數=1倍數

3、速度×時間=路程;路程÷速度=時間;路程÷時間=速度

4、單價×數量=總價;總價÷單價=數量;總價÷數量=單價

5、工作效率×工作時間=工作總量;工作總量÷工作效率=工作時間

以上是我整理的六年級必考知識點,希望能幫到你。

⑹ 6年級數學重點知識是什麼

六年級數學必考知識點:

1、分數乘法

分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2.分數乘法的計演算法則

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

3、分數乘法意義

分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

簡介

同分母分數加法。同分母分數相加,分子相加,分母不變,能約分的要約分。

同分母分數減法。同分母分數相減,分子相減,分母不變,能約分的要約分。

異分母分數加法。異分母分數相加,先通分,再按照同分母分數加法的法則進行計算。

異分母分數減法。異分母分數相減,先通分,再按照同分母分數減法的法則進行計算。

⑺ 小學六年級數學必考知識點有哪些

小學六年級數學必考知識點有如下:

1、在熟悉的生活情境中初步認識負數,能正確的讀、寫正數和負數,知道0既不是正數也不是負數。

2、初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的密切聯系。

3、能藉助數軸初步學會比較正數、0和負數之間的大小。

4、16℃讀作十六攝氏度,表示零上16℃;-16℃讀作負十六攝氏度,表示零下16℃。

5、如果2000表示存入2000元,那麼-500表示支出了500元。向東走3m記作+3,向西4m記作-4。

6、在數軸上,從左到右的順序就是數從小到大的順序。0是正數和負數的分界點,所有的負數都在0的左邊,也就是負數都比0小,而正數都比0大,負數都比正數小。負號後面的數越大,這個數就越小。

⑻ 小學六年級數學知識點梳理

求學的三個條件是:多觀察、多吃苦、多研究。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,也是要記、要背、要講練的。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。

六年級數學知識點

分數混合運算

1、分數混合運算的運算順序與整數混合運算的運算順序完全相同,都是先算乘除,再算加減,有括弧的先算括弧里的。

①如果是同一級運算,按照從左到右的順序依次計算。

②如果是分數連乘,可先進行約分,再進行計算;

③如果是分數乘除混合運算時,要先把除法轉換成乘法,然後按乘法運算。

2、解決問題

(1)用分數運算解決「求比已知量多(或少)幾分之幾的量是多少」的實際問題,方法是:

第①種方法:可以先求出多或少的具體量,再用單位「1」的量加或減去多或少的部分,求出要求的問題。

第②種方法:也可以用單位「1」加或減去多或少的幾分之幾,求出未知數占單位「1」的幾分之幾,再用單位「1」的量乘這個分數。

(2)「已知甲與乙的和,其中甲占和的幾分之幾,求乙數是多少?」

第①種方法:首先明確誰占單位「1」的幾分之幾,求出甲數,再用單位「1」減去甲數,求出乙數。

第②種方法:先用單位「1」減去已知甲數所佔和的幾分之幾,即得未知乙數所佔和的幾分之幾,再求出乙數。

(3)用方程解決稍復雜的分數應用題的步驟:

①要找准單位「1」。

②確定好其他量和單位「1」的量有什麼關系,畫出關系圖,寫出等量關系式。

③設未知量為X,根據等量關系式,列出方程。

④解答方程。

(4)要記住以下幾種算術解法解應用題:

①對應數量÷對應分率=單位「1」 的量

②求一個數的幾分之幾是多少,用乘法計算。

③已知一個數的幾分之幾是多少,求這個數,用除法計算,還可以用列方程解答。

3、要記住以下的解方程定律:

加數 +加數 = 和;

加數 = 和–另一個加數。

被減數–減數 = 差;

被減數=差+減數;

減數=被減數–差。

因數×因數 = 積;

因數 = 積÷另一個因數。

被除數÷除數 = 商;

被除數=商×除數;

除數=被除數÷商。

4、繪制簡單線段圖的方法:

分數應用題,分兩種類型,一種是知道單位「1」的量用乘法,另一種是求單位「1」的量,用除法。這兩種類型應用題的數量關系可以分成三種:(一)一種量是另一種量的幾分之幾。(二)一種量比另一種量多幾分之幾。(三)一種量比另一種量少幾分之幾。繪制時關鍵處理好量與量之間的關系,在審題確定單位「1」的量。繪制步驟:

①首先用線段表示出這個單位「1」的量,畫在最上面,用直尺畫。

②分率的分母是幾就把單位「1」的量平均分成幾份,用直尺畫出平均的等分。標出相關的量。

③再繪制與單位「1」有關的量,根據實際是上面的三種關系中的哪一種再畫。標出相關的量。

④問題所求要標出「?」號和單位。

5、補充知識點

分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

分數乘法的計演算法則

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。

分數乘法意義

分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

分數乘整數:數形結合、轉化化歸

倒數:乘積是1的兩個數叫做互為倒數。

分數的倒數

找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。

整數的倒數

找一個整數的倒數,例如12,把12化成分數,即12/1 ,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12 ,12是1/12的倒數。

六年級數學知識點歸納

體積和表面積

三角形的面積=底×高÷2。 公式 S= a×h÷2

正方形的面積=邊長×邊長 公式 S= a2

長方形的面積=長×寬 公式 S= a×b

平行四邊形的面積=底×高 公式 S= a×h

梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2

內角和:三角形的內角和=180度。

長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2

正方體的表面積=棱長×棱長×6 公式: S=6a2

長方體的體積=長×寬×高 公式:V = abh

長方體(或正方體)的體積=底面積×高 公式:V = abh

正方體的體積=棱長×棱長×棱長 公式:V = a3

圓的周長=直徑×π 公式:L=πd=2πr

圓的面積=半徑×半徑×π 公式:S=πr2

圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2

圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

圓錐的體積=1/3底面×積高。公式:V=1/3Sh

數量關系計算公式

單價×數量=總價 2、單產量×數量=總產量

速度×時間=路程 4、工效×時間=工作總量

加數+加數=和 一個加數=和+另一個加數

被減數-減數=差 減數=被減數-差 被減數=減數+差

因數×因數=積 一個因數=積÷另一個因數

被除數÷除數=商 除數=被除數÷商 被除數=商×除數

六年級數學必考知識點

1.比和比例的意義

比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括弧的含義而另一種形式,分數有括弧的含義!

2.比的基本性質:比的前項和後項都乘以或除以一個不為零的數。比值不變。用於化簡比。

3.比例的性質:在比例里,兩個外項的乘積等於兩個內項的乘積。比例的性質用於解比例。

4.比和比例的聯系:

比和比例有著密切聯系。比是研究兩個量之間的關系,所以它有兩項;比例是研究相關聯的兩種量中兩組相對應數的關系,所以比例是由四項組成。比例是由比組成的,成比例的兩個比的比值一定相等。

5.比和比例的區別

(1)意義、項數、各部分名稱不同。比表示兩個數相除;只有兩個項:比的前項和後項。如:a:b這是比比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4這是比例。

(2)比的基本性質和比例的基本性質意義不同、應用不同。聯系:比例是由兩個相等的比組成。

6.正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。比例尺:圖上距離與實際距離的比叫做比例尺。

六年級 數學學習方法

良好的學習習慣是一種良好的非智力因素,是學生必備的素質,是學好數學的最基本保證。小學數學學習習慣的培養,需要堅持不懈,持之以恆。

1. 課前預習 的習慣。

有效的預習,能提高學習新知識的目的性和針對性,可以提高學習的質量。通過布置預習提綱的方法來進行,以後逐步過渡到只布置預習內容,讓學生自己去讀書、去發現問題,讓學生課前對新知識有所了解。有些課上沒有條件、沒有時間做的活動,也可以讓學生課前去做。如講統計表時,就可以讓學生課前調查好同組同學的身高、體重等數據。

2.認真聽「講」的習慣。

這里的聽「講」,應包括兩方面的意思:一是說課堂上,精力要集中,不做與學習無關的動作,要認真傾聽老師的點撥、指導,要抓住新知識的生長點,新舊知識的聯系,弄清公式、法則的來龍去脈。二是說要認真地聽其他同學的發言,對他人的觀點、回答能做出評價和必要的補充。

3.認真完成作業的習慣。

完成作業,是學生最基本、最經常的學習實踐活動。要求學生從小就養成:(1)規范書寫,保持書寫清潔的習慣。作業的格式、數字的書寫、數學符號的書寫都要規范。(2)良好的行為習慣。要獨立思考,獨立完成作業,不要跟別人對算式和結果,更不要抄襲別人的作業。(3)認真審題,仔細運算的習慣。(4)驗算的習慣。

小學六年級數學知識點梳理相關 文章 :

★ 小學六年級數學知識點總結

★ 小學六年級數學上冊知識點總結

★ 六年級數學知識點梳理

★ 小學六年級數學學習方法和技巧大全

★ 六年級數學總復習知識點整理(完整版)

★ 六年級數學期末復習知識點匯總

★ 小學六年級數學知識點、難點及學習方法

★ 六年級數學知識點歸納

★ 六年級數學期末復習知識點匯總

★ 六年級上冊數學知識點整理歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑼ 小學六年級數學知識點歸納

小學六年級數學知識點歸納 篇1

位置與方向:

1、什麼是數對?

數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即「先列後行」。

數對的作用:確定一個點的位置。經度和緯度就是這個原理。

2、確定物體位置的方法:

(1)先找觀測點;

(2)再定方向(看方向夾角的度數);

(3)最後確定距離(看比例尺)。

描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。

位置關系的相對性:兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。

相對位置:東——西;南——北;南偏東——北偏西。

小學六年級數學知識點歸納 篇2

分數乘法

(一)分數乘法的計演算法則:

1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)

2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。

3、為了計算簡便,能約分的要先約分,再計算。

注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。

(二)規律:(乘法中比較大小時)

一個數(0除外)乘大於1的數,積大於這個數。

一個數(0除外)乘小於1的數(0除外),積小於這個數。

一個數(0除外)乘1,積等於這個數。

(三)分數混合運算的運算順序和整數的運算順序相同。

(四)整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用。

乘法交換律:axb=bxa

乘法結合律:(axb)xc=ax(bxc)

乘法分配律:(a+b)xc=ac+bc ac+bc=(a+b)xc

小學六年級數學知識點歸納 篇3

1、認識圓柱和圓錐,掌握它們的基本特徵。認識圓柱的底面、側面和高。認識圓錐的底面和高。

2、探索並掌握圓柱的側面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關的.簡單實際問題。

3、通過觀察、設計和製作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯系,發展學生的空間觀念。

4、圓柱的兩個圓面叫做底面,周圍的面叫做側面,底面是平面,側面是曲面。

5、圓柱的側面沿高展開後是長方形,長方形的長等於圓柱底面的周長,長方形的寬等於圓柱的高,當底面周長和高相等時,側面沿高展開後是一個正方形。

6、圓柱的表面積=圓柱的側面積+底面積x2即S表=S側+S底x2或2πrxh+2xπ。

7、圓柱的側面積=底面周長x高即S側=Ch或2πrx。

8、圓柱的體積=圓柱的底面積x高,即V=sh或πr2x。進一法:實際中,使用的材料都要比計算的結果多一些,因此,要保留數的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。

9、圓錐只有一個底面,底面是個圓。圓錐的側面是個曲面。

10、從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離)

11、把圓錐的側面展開得到一個扇形。

12、圓錐的體積等於與它等底等高的圓柱體積的三分之一,即V錐=1/3Sh或πr2xh÷。

13、常見的圓柱圓錐解決問題:

①壓路機壓過路面面積(求側面積);

②壓路機壓過路面長度(求底面周長);

③水桶鐵皮(求側面積和一個底面積);

④廚師帽(求側面積和一個底面積);通風管(求側面積)

小學六年級數學知識點歸納 篇4

1.1 整數和整除的意義

1.在數物體的時候,用來表示物體個數的數1,2,3,4,5,??,叫做整數

2.在正整數1,2,3,4,5,??,的前面添上「—」號,得到的數—1,—2,—3,—4,—5,??,叫做負整數

3. 零和正整數統稱為自然數

4.正整數、負整數和零統稱為整數

5.整數a除以整數b,如果除得的商正好是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a。

1.2 因數和倍數

1.如果整數a能被整數b整除,a就叫做b倍數,b就叫做a的因數

3.一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身

4.一個數的倍數的個數是無限的,其中最小的倍數是它本身

1.3能被2,5整除的數

1.個位數字是0,2,4,6,8的數都能被2整除

2.在正整數中(除1外),與奇數相鄰的兩個數是偶數

3.在正整數中,與偶數相鄰的兩個數是奇數

4.個位數字是0,5的數都能被5整除

5. 0是偶數

1.4 素數、合數與分解素因數

1.只含有因數1及本身的整數叫做素數或質數

2.除了1及本身還有別的因數,這樣的數叫做合數

3. 1既不是素數也不是合數

4.奇數和偶數統稱為正整數,素數、合數和1統稱為正整數

5.每個合數都可以寫成幾個素數相乘的形式,這幾個素數都叫做這個合數的素因數

6.把一個合數用素因數相乘的形式表示出來,叫做分解素因數。

7.通常用什麼方法分解素因數: 樹枝分解法,短除法

1.5 公因數與最大公因數

1.幾個數公有的因數,叫做這幾個數的公因數,其最大的一個叫做這幾個數的最大公因數

4.如果兩個數中,較小數是較大數的因數,那麼這兩個數的最大公因數較小的數

5.如果兩個數是互素數,那麼這兩個數的最大公因數是

小學六年級數學知識點歸納 篇5

1、簡單應用題

(1) 簡單應用題:只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。

(2) 解題步驟:

a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。

b選擇演算法和列式計算:這是解答應用題的中心工作。從題目中告訴什麼,要求什麼著手,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,確定演算法,進行解答並標明正確的單位名稱。

C檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發現錯誤,馬上改正。

2、復合應用題

(1)有兩個或兩個以上的基本數量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。

(2)含有三個已知條件的兩步計算的應用題。

求比兩個數的和多(少)幾個數的應用題。

比較兩數差與倍數關系的應用題。

(3)含有兩個已知條件的兩步計算的應用題。

已知兩數相差多少(或倍數關系)與其中一個數,求兩個數的和(或差)。

已知兩數之和與其中一個數,求兩個數相差多少(或倍數關系)。

(4)解答連乘連除應用題。

(5)解答三步計算的應用題。

(6)解答小數計算的應用題:小數計算的加法、減法、乘法和除法的應用題,他們的數量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數或未知數中間含有小數。

(7)常見的數量關系:

總價= 單價×數量

路程= 速度×時間

工作總量=工作時間×工效

總產量=單產量×數量

3、典型應用題

具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。

(1)平均數問題:平均數是等分除法的發展。

解題關鍵:在於確定總數量和與之相對應的總份數。

算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。

(2) 歸一問題:已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。

數量關系式:單一量×份數=總數量(正歸一)

總數量÷單一量=份數(反歸一)

(7)行程問題:

關於走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。

(13)雞兔問題:已知「雞兔」的總頭數和總腿數。求「雞」和「兔」各多少只的一類應用題。通常稱為「雞兔問題」又稱雞兔同籠問題

解題關鍵:解答雞兔問題一般採用假設法,假設全是一種動物(如全是「雞」或全是「兔」,然後根據出現的腿數差,可推算出某一種的頭數。

解題規律:(總腿數-雞腿數×總頭數)÷一隻雞兔腿數的差=兔子只數

兔子只數=(總腿數-2×總頭數)÷2

如果假設全是兔子,可以有下面的式子:

雞的只數=(4×總頭數-總腿數)÷2

兔的頭數=總頭數-雞的只數

例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?

兔子只數 ( 170-2 × 50 )÷ 2 =35 (只)

雞的只數 50-35=15 (只)

⑽ 小學六年級數學必考知識點

小學六年級數學內容多,是小學階段所學數學知識的綜合。本文整理了六年級必背考點,歡迎閱讀。

六年級數學考點

數與計算

(1)分數的乘法和除法,分數乘法的意義,分數乘法,乘法的運算定律推廣到分數,倒數,分數除法的意義,分數除法。

(2)分數四則混合運算,分數四則混合運算。

(3)百分數,百分數的意義和寫法,百分數和分數、小數的互化。

比和比例

比的意義和性質,比例的意義和基本性質,解比例,成正比例的量和成反比例的量。

幾何初步知識

圓的認識,圓周率,畫圓,圓的周長和面積,扇形的認識,軸對稱圖形的初步認識,圓柱的認識,圓柱的表面積和體積,圓錐的認識,圓錐的體積,球和球的半徑、直徑的初步認識。

求倒數地方法

①求分數的倒數:交換分子、分母的位置。

②求整數的倒數:整數分之1。

③求帶分數的倒數:先化成假分數,再求倒數。

④求小數的倒數:先化成分數再求倒數。

按比例分配解題技巧

小技巧:a.把比轉化成為分數,用分數方法解答,即先求出總分數,然後求出各部分量占總量的幾分之幾,最後按照求一個數的幾分之幾多少的解題方法,分別求出各部分的量是多少

b.把比看做分得的分數,先求出各部分的總分數,然後再用「總量總份數=平均每份的量(歸一)」,再用「一份的量各部分量所對應的份數」,求出各部分的量。

c.用比例知識解答:首先設未知量為。再根據題中「已知比等於相對應的量的比」作為等量關系式列出含有x的比例式,再解比例求出x。

用正、反比例知識解答應用題的步驟

小技巧:(1)分析數量關系。判斷成什麼比例。(2)找等量關系。如果成正比例,則按等比找等量關系式;如果成反比例,則按等積找等量關系式。(3)解比例式。設未知數為x,並代入等量關系式,得正比例式或反比例式。(4)解比例。(5)檢驗並寫出答語。

知識體系

一、整除問題:

(1)數的整除的特徵和性質(小學六年級常考內容)

(2)位值原理的應用(用字母和數字混合表示多位數)

二、質數合數:

(1)質數、合數的概念和判斷(2)分解質因數(重點)

三、約數倍數:

(1)最大公約最小公倍數(2)約數個數決定法則(小學六年級常考內容)

四、余數問題:

1、帶余除式的理解和運用;

2、同餘的性質和運用;

3、中國剩餘定理奇偶問題:

(1)奇偶與四則運算;

4、奇偶性質在實際解題過程中的應用完全平方數:

(1)完全平方數的判斷和性質

(2)完全平方數的運用整數及分數的分解與分拆(重點、難點)