當前位置:首頁 » 基礎知識 » 高二數學必修二知識點
擴展閱讀
alliwannado歌詞什麼意思 2024-12-27 00:39:13
哪個動漫中有個叫簡書的 2024-12-27 00:20:51
交互時怎麼切換成經典 2024-12-27 00:11:29

高二數學必修二知識點

發布時間: 2022-02-26 02:00:41

① 高二數學知識點總結

一、求雙曲線的標准方程
求雙曲線的標准方程 或 (a、b>0),通常是利用雙曲線的有關概念及性質再 結合其它知識直接求出a、b或利用待定系數法.
例1 求與雙曲線 有公共漸近線,且過點 的雙曲線的共軛雙曲線方程.
解 令與雙曲線 有公共漸近線的雙曲線系方程為 ,將點 代入,得 ,∴雙曲線方程為 ,由共軛雙曲線的定義,可得此雙曲線的共軛雙曲線方程為 .
評 此例是「求與已知雙曲線共漸近線的雙曲線方程」類型的題.一般地,與雙曲線 有公共漸近線的雙曲線的方程可設為 (kR,且k≠0);有公共焦點的雙曲線方程可設為 ,本題用的是待定系數法.
例2 雙曲線的實半軸與虛半軸長的積為 ,它的兩焦點分別為F1、F2,直線 過F2且與直線F1F2的夾角為 ,且 , 與線段F1F2的垂直平分線的交點為P,線段PF2與雙曲線的交點為Q,且 ,建立適當的坐標系,求雙曲線的方程.
解 以F1F2的中點為原點,F1、F2所在直線為x軸建立坐標系,則所求雙曲線方程為 (a>0,b>0),設F2(c,0),不妨設 的方程為 ,它與y軸交點 ,由定比分點坐標公式,得Q點的坐標為 ,由點Q在雙曲線上可得 ,又 ,
∴ , ,∴雙曲線方程為 .
評 此例用的是直接法.
二、雙曲線定義的應用
1、第一定義的應用
例3 設F1、F2為雙曲線 的兩個焦點,點P在雙曲線上,且滿足∠F1PF2=900,求ΔF1PF2的面積.
解 由雙曲線的第一定義知, ,兩邊平方,得 .
∵∠F1PF2=900,∴ ,
∴ ,
∴ .
2、第二定義的應用
例4 已知雙曲線 的離心率 ,左、右焦點分別為F1、F2,左准線為l,能否在雙曲線左支上找到一點P,使 是 P到l的距離d與 的比例中項?
解 設存在點 ,則 ,由雙曲線的第二定義,得 ,
∴ , ,又 ,
即 ,解之,得 ,
∵ ,
∴ , 矛盾,故點P不存在.
評 以上二例若不用雙曲線的定義得到焦半徑 、
或其關系,解題過程將復雜得多.
三、雙曲線性質的應用

例5 設雙曲線 ( )的半焦距為c,
直線l過(a,0)、(0,b)兩點,已知原點到 的距離為 ,
求雙曲線的離心率.
解析 這里求雙曲線的離心率即求 ,是個幾何問題,怎麼把
題目中的條件與之聯系起來呢?如圖1,
∵ , , ,由面積法知ab= ,考慮到 ,
知 即 ,亦即 ,注意到a<b的條件,可求得 .
四、與雙曲線有關的軌跡問題
例6 以動點P為圓心的圓與⊙A: 及⊙B: 都外切,求點P的軌跡方程.
解 設動點P(x,y),動圓半徑為r,由題意知 , , .
∴ .∴ , ,據 雙曲線的定義知,點P的軌跡是以A、B為焦點的雙曲線的右支,方程為 : .
例 7 如圖2,從雙曲線 上任一點Q引直線 的垂線,垂足為N,求線段QN的中點P的軌跡方程.
解析 因點P隨Q的運動而運動,而點Q在已知雙曲線上,
故可從尋求 Q點的坐標與P點的坐標之間的關系入手,用轉移法達到目的.
設動點P的坐標為 ,點Q的坐標為 ,
則 N點的坐標為 .
∵點 N在直線 上,∴ ……①
又∵PQ垂直於直線 ,∴ ,
即 ……②
聯立 ①、②解得 .又∵點N 在雙曲線 上,
∴ ,
即 ,化簡,得點P的軌跡方程為: .
五、與雙曲線有關的綜合題
例8 已知雙曲線 ,其左右焦點分別為F1、F2,直線l過其右焦點F2且與雙曲線 的右支交於A、B兩點,求 的最小值.
解 設 , ,( 、 ).由雙曲線的第二定義,得
, ,
∴ ,
設直線l的傾角為θ,∵l與雙曲線右支交於兩點A、B,∴ .
①當 時,l的方程為 ,代入雙曲線方程得
.
由韋達定理得: .
∴ .
②當 時,l的方程為 ,∴ ,∴ .
綜①②所述,知所求最小值為 .

② 高中數學必修(2)知識點總結

高中數學必修2知識點一、直線與方程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線的斜率①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。當時, ; 當時, ; 當時, 不存在。②過兩點的直線的斜率公式: 注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。(3)直線方程①點斜式: 直線斜率k,且過點 注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。②斜截式: ,直線斜率為k,直線在y軸上的截距為b③兩點式: ( )直線兩點 , ④截矩式: 其中直線 與 軸交於點 ,與 軸交於點 ,即與軸、 軸的截距分別為 。⑤一般式: (A,B不全為0)注意:各式的適用范圍 特殊的方程如:平行於x軸的直線: (b為常數); 平行於y軸的直線: (a為常數);(5)直線系方程:即具有某一共同性質的直線(一)平行直線系平行於已知直線 ( 是不全為0的常數)的直線系: (C為常數)(二)垂直直線系垂直於已知直線 ( 是不全為0的常數)的直線系: (C為常數)(三)過定點的直線系(ⅰ)斜率為k的直線系: ,直線過定點 ;(ⅱ)過兩條直線 , 的交點的直線系方程為 ( 為參數),其中直線 不在直線系中。(6)兩直線平行與垂直當 ,時, ; 注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。(7)兩條直線的交點 相交交點坐標即方程組 的一組解。方程組無解 ; 方程組有無數解 與 重合(8)兩點間距離公式:設 是平面直角坐標系中的兩個點,則 (9)點到直線距離公式:一點 到直線 的距離 (10)兩平行直線距離公式在任一直線上任取一點,再轉化為點到直線的距離進行求解。二、圓的方程1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。2、圓的方程(1)標准方程 ,圓心 ,半徑為r;(2)一般方程 當時,方程表示圓,此時圓心為 ,半徑為 當時,表示一個點; 當時,方程不表示任何圖形。(3)求圓方程的方法:一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。3、直線與圓的位置關系:直線與圓的位置關系有相離,相切,相交三種情況:(1)設直線 ,圓 ,圓心 到l的距離為 ,則有 ;;(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。設圓 , 兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。當 時兩圓外離,此時有公切線四條;當 時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;當 時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當時,兩圓內切,連心線經過切點,只有一條公切線;當時,兩圓內含; 當時,為同心圓。注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線 圓的輔助線一般為連圓心與切線或者連圓心與弦中點三、立體幾何初步1、柱、錐、台、球的結構特徵(1)稜柱:幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。(2)棱錐幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。(3)稜台: 幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。2、空間幾何體的三視圖定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)註:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。3、空間幾何體的直觀圖——斜二測畫法斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;②原來與y軸平行的線段仍然與y平行,長度為原來的一半。4、柱體、錐體、台體的表面積與體積(1)幾何體的表面積為幾何體各個面的面積的和。(2)特殊幾何體表面積公式(c為底面周長,h為高, 為斜高,l為母線) (3)柱體、錐體、台體的體積公式 (4)球體的表面積和體積公式:V = ; S = 4、空間點、直線、平面的位置關系公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內。應用: 判斷直線是否在平面內用符號語言表示公理1: 公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線符號:平面α和β相交,交線是a,記作α∩β=a。符號語言: 公理2的作用: ①它是判定兩個平面相交的方法。②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。③它可以判斷點在直線上,即證若干個點共線的重要依據。公理3:經過不在同一條直線上的三點,有且只有一個平面。推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。公理3及其推論作用:①它是空間內確定平面的依據 ②它是證明平面重合的依據公理4:平行於同一條直線的兩條直線互相平行空間直線與直線之間的位置關系① 異面直線定義:不同在任何一個平面內的兩條直線② 異面直線性質:既不平行,又不相交。③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。求異面直線所成角步驟:A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。 B、證明作出的角即為所求角 C、利用三角形來求角(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補。(8)空間直線與平面之間的位置關系直線在平面內——有無數個公共點.三種位置關系的符號表示:a α a∩α=A a‖α(9)平面與平面之間的位置關系:平行——沒有公共點;α‖β相交——有一條公共直線。α∩β=b5、空間中的平行問題(1)直線與平面平行的判定及其性質線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。 線線平行 線面平行線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那麼這條直線和交線平行。線面平行 線線平行(2)平面與平面平行的判定及其性質兩個平面平行的判定定理(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行(線面平行→面面平行),(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行。(線線平行→面面平行),(3)垂直於同一條直線的兩個平面平行,兩個平面平行的性質定理(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行。(面面平行→線面平行)(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行。(面面平行→線線平行)7、空間中的垂直問題(1)線線、面面、線面垂直的定義①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。(2)垂直關系的判定和性質定理①線面垂直判定定理和性質定理判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面。性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。②面面垂直的判定定理和性質定理判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直。性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面。9、空間角問題(1)直線與直線所成的角①兩平行直線所成的角:規定為 。②兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角。③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角。(2)直線和平面所成的角①平面的平行線與平面所成的角:規定為 。 ②平面的垂線與平面所成的角:規定為 。③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」。在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。(3)二面角和二面角的平面角①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角④求二面角的方法定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

記得採納啊

③ 高中數學必修二完全學不懂了該怎麼辦啊必

新知識學不懂是因為老知識沒學通,初中知識可能知識死記硬背下來的,沒有真正理解,導致現在學新知識不理解。也可能是語文水平太差,語言文字理解能力弱。
必修二主要講的是直線和圓的方程、立體幾何
直線方程是初二的一次函數、正比例函數,根本相同,高中深化了而已,多了點和直線的距離、多直線之間的相交、垂直、平行關系及平行直線之間的距離等,多了個個斜率和傾斜角的知識點,和三角函數知識點進行交叉。
圓方程就是讓你了解一個圓在平面直角坐標系中如何表示的方式,圓方程多簡單啊,只要把握住標准方程中各個數據的意義就行了,看到方程表達式就知道圓心坐標和半徑了。然後會涉及到點和圓的關系,直線和圓的關系,這都是初三平面幾何知識,不過是用坐標系精確化了。
立體幾何對於空間感好的人是簡單而又有意思的知識,對於空間感差的人來說就比較麻煩,只要善於把空間幾何轉化為平面幾何就很簡單,當然對於平面幾何和空間幾何知識點要非常熟練,看到一個已知條件腦子里就迅速用一個條件推導出所有能推導的隱含條件,比如已知條件里有個AD是正三角形ABC的中線,那麼就要立刻知道,AD垂直並平分BC,AD是∠BAC的角平分線,∠BAD=30°,BD:AB:AD=1:2:根號3,這些都是一個已知條件引申出來的隱形已知條件。
加油少年。

④ 高中數學必修二有哪些重要的公式

高 中 數學 必 修 2知識點

第一章 空間幾何體

1.1柱、錐、台、球的結構特徵
1.2空間幾何體的三視圖和直觀圖

1 三視圖:
正視圖:從前往後
側視圖:從左往右
俯視圖:從上往下
2 畫三視圖的原則:
長對齊、高對齊、寬相等
3直觀圖:斜二測畫法
4斜二測畫法的步驟:
(1).平行於坐標軸的線依然平行於坐標軸;
(2).平行於y軸的線長度變半,平行於x,z軸的線長度不變;
(3).畫法要寫好。
5 用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側棱(4)成圖

1.3 空間幾何體的表面積與體積
(一 )空間幾何體的表面積
1稜柱、棱錐的表面積: 各個面面積之和

2 圓柱的表面積
3 圓錐的表面積
4 圓台的表面積
5 球的表面積
(二)空間幾何體的體積
1柱體的體積
2錐體的體積
3台體的體積
4球體的體積
第二章 直線與平面的位置關系

2.1空間點、直線、平面之間的位置關系

2.1.1
1 平面含義:平面是無限延展的
2 平面的畫法及表示
(1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)
(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點或者相對的兩個頂點的大寫字母來表示,如平面AC、平面ABCD等。
3 三個公理:
(1)公理1:如果一條直線上的兩點在一個平面內,那麼這條直線在此平面內
符號表示為
A∈L
B∈L => L α
A∈α
B∈α
公理1作用:判斷直線是否在平面內
(2)公理2:過不在一條直線上的三點,有且只有一個平面。
符號表示為:A、B、C三點不共線 => 有且只有一個平面α,
使A∈α、B∈α、C∈α。
公理2作用:確定一個平面的依據。
(3)公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線。
符號表示為:P∈α∩β =>α∩β=L,且P∈L
公理3作用:判定兩個平面是否相交的依據

2.1.2 空間中直線與直線之間的位置關系

1 空間的兩條直線有如下三種關系:
相交直線:同一平面內,有且只有一個公共點;
平行直線:同一平面內,沒有公共點;
異面直線: 不同在任何一個平面內,沒有公共點。
2 公理4:平行於同一條直線的兩條直線互相平行。
符號表示為:設a、b、c是三條直線
a∥b
c∥b
強調:公理4實質上是說平行具有傳遞性,在平面、空間這個性質都適用。
公理4作用:判斷空間兩條直線平行的依據。
3 等角定理:空間中如果兩個角的兩邊分別對應平行,那麼這兩個角相等或互補
4 注意點:
① a'與b'所成的角的大小隻由a、b的相互位置來確定,與O的選擇無關,為了簡便,點O一般取在兩直線中的一條上;
② 兩條異面直線所成的角θ∈(0, );
③ 當兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作a⊥b;
④ 兩條直線互相垂直,有共面垂直與異面垂直兩種情形;
⑤ 計算中,通常把兩條異面直線所成的角轉化為兩條相交直線所成的角。
2.1.3 — 2.1.4 空間中直線與平面、平面與平面之間的位置關系
1、直線與平面有三種位置關系:
(1)直線在平面內 —— 有無數個公共點
(2)直線與平面相交 —— 有且只有一個公共點
(3)直線在平面平行 —— 沒有公共點
指出:直線與平面相交或平行的情況統稱為直線在平面外,可用a α來表示

a α a∩α=A a∥α
2.2.直線、平面平行的判定及其性質

2.2.1 直線與平面平行的判定

1、直線與平面平行的判定定理:平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。
簡記為:線線平行,則線面平行。
符號表示:
a α
b β => a∥α
a∥b
2.2.2 平面與平面平行的判定
1、兩個平面平行的判定定理:一個平面內的兩條交直線與另一個平面平行,則這兩個平面平行。

符號表示:
a β
b β
a∩b = P β∥α
a∥α
b∥α
2、判斷兩平面平行的方法有三種:
(1)用定義;
(2)判定定理;
(3)垂直於同一條直線的兩個平面平行。
2.2.3 — 2.2.4直線與平面、平面與平面平行的性質
1、定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。
簡記為:線面平行則線線平行。
符號表示:

a∥α
a β a∥b
α∩β= b
作用:利用該定理可解決直線間的平行問題。

2、定理:如果兩個平面同時與第三個平面相交,那麼它們的交線平行。
符號表示:
α∥β
α∩γ= a a∥b
β∩γ= b
作用:可以由平面與平面平行得出直線與直線平行

2.3直線、平面垂直的判定及其性質

2.3.1直線與平面垂直的判定
1、定義
如果直線L與平面α內的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。如圖,直線與平面垂直時,它們唯一公共點P叫做垂足。
L

p
α

2、判定定理:一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直。
注意點: a)定理中的「兩條相交直線」這一條件不可忽視;
b)定理體現了「直線與平面垂直」與「直線與直線垂直」互相轉化的數學思想。
2.3.2平面與平面垂直的判定
1、二面角的概念:表示從空間一直線出發的兩個半平面所組成的圖形
A
梭 l β
B
α
2、二面角的記法:二面角α-l-β或α-AB-β
3、兩個平面互相垂直的判定定理:一個平面過另一個平面的垂線,則這兩個平面垂直。
2.3.3 — 2.3.4直線與平面、平面與平面垂直的性質

1、定理:垂直於同一個平面的兩條直線平行。
2性質定理: 兩個平面垂直,則一個平面內垂直於交線的直線與另一個平面垂直。
本章知識結構框圖

第三章 直線與方程

3.1直線的傾斜角和斜率
3.1傾斜角和斜率
1、直線的傾斜角的概念:當直線l與x軸相交時, 取x軸作為基準, x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當直線l與x軸平行或重合時, 規定α= 0°.
2、 傾斜角α的取值范圍: 0°≤α<180°.
當直線l與x軸垂直時, α= 90°.
3、直線的斜率:
一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是
k = tanα
⑴當直線l與x軸平行或重合時, α=0°, k = tan0°=0;
⑵當直線l與x軸垂直時, α= 90°, k 不存在.
由此可知, 一條直線l的傾斜角α一定存在,但是斜率k不一定存在.
4、 直線的斜率公式:
給定兩點P1(x1,y1),P2(x2,y2),x1≠x2,用兩點的坐標來表示直線P1P2的斜率:
斜率公式:
3.1.2兩條直線的平行與垂直
1、兩條直線都有斜率而且不重合,如果它們平行,那麼它們的斜率相等;反之,如果它們的斜率相等,那麼它們平行,即
注意: 上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結論並不成立.即如果k1=k2, 那麼一定有L1∥L2
2、兩條直線都有斜率,如果它們互相垂直,那麼它們的斜率互為負倒數;反之,如果它們的斜率互為負倒數,那麼它們互相垂直,即

3.2.1 直線的點斜式方程
1、 直線的點斜式方程:直線 經過點 ,且斜率為

2、、直線的斜截式方程:已知直線 的斜率為 ,且與 軸的交點為

3.2.2 直線的兩點式方程
1、直線的兩點式方程:已知兩點 其中

2、直線的截距式方程:已知直線 與 軸的交點為A ,與 軸的交點為B ,其中

3.2.3 直線的一般式方程
1、直線的一般式方程:關於 的二元一次方程 (A,B不同時為0)
2、各種直線方程之間的互化。

3.3直線的交點坐標與距離公式

3.3.1兩直線的交點坐標
1、給出例題:兩直線交點坐標
L1 :3x+4y-2=0
L1:2x+y +2=0

解:解方程組

得 x=-2,y=2
所以L1與L2的交點坐標為M(-2,2)

3.3.2 兩點間距離
兩點間的距離公式

3.3.3 點到直線的距離公式
1.點到直線距離公式:
點 到直線 的距離為:
2、兩平行線間的距離公式:
已知兩條平行線直線 和 的一般式方程為 : ,
: ,則 與 的距離為

第四章 圓與方程
4.1.1 圓的標准方程
1、圓的標准方程:
圓心為A(a,b),半徑為r的圓的方程
2、點 與圓 的關系的判斷方法:
(1) > ,點在圓外
(2) = ,點在圓上
(3) < ,點在圓內
4.1.2 圓的一般方程

1、圓的一般方程:
2、圓的一般方程的特點:
(1)①x2和y2的系數相同,不等於0.
②沒有xy這樣的二次項.
(2)圓的一般方程中有三個特定的系數D、E、F,因之只要求出這三個系數,圓的方程就確定了.
(3)、與圓的標准方程相比較,它是一種特殊的二元二次方程,代數特徵明顯,圓的標准方程則指出了圓心坐標與半徑大小,幾何特徵較明顯。
4.2.1 圓與圓的位置關系

1、用點到直線的距離來判斷直線與圓的位置關系.
設直線 : ,圓 : ,圓的半徑為 ,圓心 到直線的距離為 ,則判別直線與圓的位置關系的依據有以下幾點:
(1)當 時,直線 與圓 相離;
(2)當 時,直線 與圓 相切;
(3)當 時,直線 與圓 相交;
4.2.2 圓與圓的位置關系
兩圓的位置關系.
設兩圓的連心線長為 ,則判別圓與圓的位置關系的依據有以下幾點:
(1)當 時,圓 與圓 相離;
(2)當 時,圓 與圓 外切;
(3)當 時,圓 與圓 相交;
(4)當 時,圓 與圓 內切;
(5)當 時,圓 與圓 內含;
4.2.3 直線與圓的方程的應用
1、利用平面直角坐標系解決直線與圓的位置關系;
2、過程與方法
用坐標法解決幾何問題的步驟:
第一步:建立適當的平面直角坐標系,用坐標和方程表示問題中的幾何元素,將平面幾何問題轉化為代數問題;
第二步:通過代數運算,解決代數問題;
第三步:將代數運算結果「翻譯」成幾何結論.
4.3.1空間直角坐標系

1、點M對應著唯一確定的有序實數組 , 、 、 分別是P、Q、R在 、 、 軸上的坐標
2、有序實數組 ,對應著空間直角坐標系中的一點
3、空間中任意點M的坐標都可以用有序實數組 來表示,該數組叫做點M在此空間直角坐標系中的坐標,記M , 叫做點M的橫坐標, 叫做點M的縱坐標, 叫做點M的豎坐標。

4.3.2空間兩點間的距離公式
1、空間中任意一點 到點 之間的距離公式

⑤ 高二數學必修2學些啥

高二上學期的是不等式、直線和圓的方程、圓椎曲線方程
下學期是空間的直線與平面,空間向量,夾角與距離,柱體、球及歐拉公式,椎體,排列與組合,二項式,概率

⑥ 高中數學知識點總結

《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載

鏈接:

提取碼: i8i2

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

⑦ 高中數學必修二知識點總結

高中數學必修2知識點
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即 .斜率反映直線與軸的傾斜程度.
當 時, ; 當 時, ; 當 時, 不存在.
②過兩點的直線的斜率公式:
注意下面四點:(1)當 時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.
(3)直線方程
①點斜式: 直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.
②斜截式: ,直線斜率為k,直線在y軸上的截距為b
③兩點式: ( )直線兩點 ,
④截矩式:
其中直線 與 軸交於點 ,與 軸交於點 ,即 與 軸、 軸的截距分別為 .
⑤一般式: (A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行於x軸的直線: (b為常數); 平行於y軸的直線: (a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線 ( 是不全為0的常數)的直線系: (C為常數)
(二)垂直直線系
垂直於已知直線 ( 是不全為0的常數)的直線系: (C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系: ,直線過定點 ;
(ⅱ)過兩條直線 , 的交點的直線系方程為
( 為參數),其中直線 不在直線系中.
(6)兩直線平行與垂直
當 , 時,

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.
(7)兩條直線的交點
相交
交點坐標即方程組 的一組解.
方程組無解 ; 方程組有無數解 與 重合
(8)兩點間距離公式:設 是平面直角坐標系中的兩個點,

(9)點到直線距離公式:一點 到直線 的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解.
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑.
2、圓的方程
(1)標准方程 ,圓心 ,半徑為r;
(2)一般方程
當 時,方程表示圓,此時圓心為 ,半徑為
當 時,表示一個點; 當 時,方程不表示任何圖形.
(3)求圓方程的方法:
一般都採用待定系數法:先設後求.確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線 ,圓 ,圓心 到l的距離為 ,則有 ; ;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設圓 ,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
當 時兩圓外離,此時有公切線四條;
當 時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當 時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當 時,兩圓內切,連心線經過切點,只有一條公切線;
當 時,兩圓內含; 當 時,為同心圓.
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
三、立體幾何初步
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方.
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;

⑧ 高中數學必修二知識點總結(第一單元和第二單元)

卡上的飛機哦啊是電話費