當前位置:首頁 » 基礎知識 » 數學七年級上下冊必考知識點
擴展閱讀
怎麼唱闖碼頭歌詞 2025-01-20 12:02:13
dcs計算機知識大全 2025-01-20 11:37:41

數學七年級上下冊必考知識點

發布時間: 2022-09-04 21:42:06

Ⅰ 七年級數學重要知識點總結

失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

初一下冊數學知識點 總結 北師大版

1.1正數與負數

在以前學過的0以外的數前面加上負號「-」的數叫負數(negativenumber)。

與負數具有相反意義,即以前學過的0以外的數叫做正數(positivenumber)(根據需要,有時在正數前面也加上「+」)。

1.2有理數

正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。

整數和分數統稱有理數(rationalnumber)。

通常用一條直線上的點表示數,這條直線叫數軸(numberaxis)。

數軸三要素:原點、正方向、單位長度。

在直線上任取一個點表示數0,這個點叫做原點(origin)。

只有符號不同的兩個數叫做互為相反數(oppositenumber)。(例:2的相反數是-2;0的相反數是0)

數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue),記作|a|。

一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3有理數的加減法

有理數加法法則:

1.同號兩數相加,取相同的符號,並把絕對值相加。

2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

3.一個數同0相加,仍得這個數。

有理數減法法則:減去一個數,等於加這個數的相反數。

1.4有理數的乘除法

有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

乘積是1的兩個數互為倒數。

有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。mì

求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(basenumber),n叫做指數(exponent)。

負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。

把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。

從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significantdigit)。

人教版初一數學下冊知識點總結

篇一:直線、射線、線段

(1)直線、射線、線段的表示方法

①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.

②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.

③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。

(2)點與直線的位置關系:

①點經過直線,說明點在直線上;

②點不經過直線,說明點在直線外。

篇二:兩點間的距離

(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。

(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最後的兩個字「長度」,也就是說,它是一個量,有大小,區別於線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離。

初一數學 復習方法

考試與作業邏輯不同:

我們的考試不同於作業,有些孩子作業寫的還可以,准確率挺高的,但是考試成績不理想。比如學校上完課,回家就寫當天的作業,但是考試不一樣,它是階段性的、綜合性的;再比如寫作業,可以看資料,不會的可以請教同學,但是考試就得靠自己;還有寫作業時格式不一定規范,不一定符合標准,但是考試老師會要求很嚴格;另外有些孩子考試比較焦慮,考試之前,爸爸媽媽給孩子加油鼓勁,反倒孩子考不好,有些孩子甚至在考試前後一定要上廁所,排解壓力,甚至影響到考試成績。

那具體涉及到數學的復習,我以北師大版為例,可以分4個步驟:

復習方法總結

1回歸書本,梳理章節概念公式、性質定理等

就像蓋房子,房子的地基是否扎實穩固。比如我們在復習課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復雜的公式推導一遍,費時費力,還總錯,而且重要的公式更加生疏。

比如知識點填空:

知識點填空

我們的孩子在學校大題普遍做的多,考試也能拿到一些分數,但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。

比如平行線是怎麼定義,性質定理有幾條,判定定理有幾條?他們之間有什麼聯系和區別?在這一章中,哪些地方一定要加「同一平面內」這5個字?家長們可以讓孩子找找看,捋一捋。

再比如說,三角形一章,涉及到三邊關系,角的關系,以及三角形的重要線段和它們的性質,等腰等邊三角形的性質,這些一定是期末選擇題的備選項。

還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。

2題型突破,對各章節常見的 熱點 問題歸納練習。

我們的數學、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。

大多數孩子要考的題型和難度,學校每天的作業以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應用?通過這樣一遍的分析,孩子們都會發現,其實考來考去,就是那幾種題型反復的出,反復的練。這是非常高效的學習方法。

3、熟悉套路、模型

平行線常見的模型:鉛筆模型、豬蹄模型,比如我經常和大家說的,遇見拐點,就做平行線。

三角形倒角常見模型:8字型、飛鏢型、折角型。

三角形全等模型:角平分線的性質模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。

學好這些模型相等於我們是拿著工具箱考試,效率很高,比起其他同學,省去了推導的過程,速度又快,又准確。當然前提要掌握好基礎內容,不要本末倒置。

如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學校本來要求考很難,比如壓軸題,不在於做的多,而是在精練,你做完之後不斷的復盤,用自己的語言說出思路來,找找看裡面的邏輯關系。

4、堅持改錯題

把整個學期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標記星號,問老師問同學,直到會了為止,下周繼續改,看自己是否真的懂了,對於錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復的看思路,才能在考試的時候避免在同類型的題上反復錯。


七年級數學重要知識點總結相關 文章 :

★ 初中七年級數學知識點歸納整理

★ 初中七年級數學知識點總結

★ 七年級數學人教版知識點總結

★ 七年級數學基礎知識點總結

★ 七年級數學知識點整理大全

★ 七年級數學知識點大全

★ 初一數學知識點歸納梳理

★ 七年級數學知識點梳理總結

★ 初一數學重要知識點總結

★ 初一數學學習方法指導與學習方法總結

Ⅱ 初一數學下冊重點知識歸納整理

初中學生想要學好數學,知識點的整理是很重要的,下面整理了初一數學下冊重點知識點,僅供大家參考。

相交線與平行線

1.相交線

在同一平面內,兩條直線的位置關系有相交和平行兩種。如果兩條直線只有一個公共點時,稱這兩條直線相交。

2.垂線

當兩條直線相交所成的四個角中,有一個角是直角時,即兩條直線互相垂直,其中一條直線叫做另一直線的垂線,交點叫垂足。

3.同位角

兩條直線a,b被第三條直線c所截(或說a,b相交c),在截線c的同旁,被截兩直線a,b的同一側的角,我們把這樣的兩個角稱為同位角。

4.內錯角

兩條直線被第三條直線所截,兩個角分別在截線的兩側,且夾在兩條被截直線之間,具有這樣位置關系的一對角叫做內錯角。

5.同旁內角

兩條直線被第三條直線所截,在截線同旁,且在被截線之內的兩角,叫做同旁內角。

6.平行線

幾何中,在同一平面內,永不相交(也永不重合)的兩條直線叫做平行線。

平行線的性質:①兩直線平行,同位角相等;②兩直線平行,內錯角相等;③兩直線平行,同旁內角互補。

7.平移

平移,是指在同一平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。

二元一次方程組

(1)定義

二元一次方程是指含有兩個未知數(例如x和y),並且所含未知數的項的次數都是1的方程。兩個結合在一起的共含有兩個未知數的一次方程叫二元一次方程組。

(2)解二元一次方程的方法

①代入消元法

②加減消元法

不等式與不等式組

(1)不等式

用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。

(2)不等式的性質

①對稱性;

②傳遞性;

③加法單調性,即同向不等式可加性;

④乘法單調性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可開方;

(3)一元一次不等式

用不等號連接的,含有一個未知數,並且未知數的次數都是1,未知數的系數不為0,左右兩邊為整式的式子叫做一元一次不等式。

(4)一元一次不等式組

一元一次不等式組是由幾個含有同一個未知數的一元一次不等式組成的不等式組。

同底數冪的除法

1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).

2. 在應用時需要注意以下幾點:

①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.

②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.

③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,

④運算要注意運算順序.

數據的收集與整理

用直方圖描述數據的步驟(即做直方圖的步驟)

1.計算最大值與最小值的差。

2.決定組距與組數

原則:當數據在100個以內時,按照數據的多少,分成5~12組。

組距:把所有的數據分成若干組,每個小組的兩個端點之間的距離(組內數據的取值范圍)。

3.列頻數分布表

頻數:各小組內數據的個數稱為頻數。

4.畫頻數分布直方圖。

5.小長方形的面積表示頻數。縱軸為。等距分組時,通常直接用小長方形的高表示頻數,即縱軸為「頻數」。

6.頻數分布折線圖。根據頻數分布圖畫出頻數分布折線圖:

①取每個小長方形的上邊的中點,以及x軸上與最左、最右直方相距半個組距的點。②連線。

點、線、面、體知識點

1.幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和面相交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

2.點動成線,線動成面,面動成體。

點、直線、射線和線段的表示

在幾何里,我們常用字母表示圖形。

一個點可以用一個大寫字母表示。

一條直線可以用一個小寫字母表示。

一條射線可以用端點和射線上另一點來表示。

一條線段可用它的端點的兩個大寫字母來表示。

注意:

(1)表示點、直線、射線、線段時,都要在字母前面註明點、直線、射線、線段。

(2)直線和射線無長度,線段有長度。

(3)直線無端點,射線有一個端點,線段有兩個端點。

(4)點和直線的位置關系有線面兩種:

①點在直線上,或者說直線經過這個點。

②點在直線外,或者說直線不經過這個點。

Ⅲ 七年級數學上冊、下冊重要知識點總結

初一數學上冊主要包括四個章節的內容;下冊主要包括相六章內容。為幫助大家更好地掌握 七年級數學 每個章節的重要內容,我整理了一些知識點以供學習復習參考!

七年級數學上冊知識點:第一章 有理數

一、知識框架

二.知識概念

1.有理數:

(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

(2)有理數的分類: ① ②2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為: 或 ;絕對值的問題經常分類討論;

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼 的倒數是 ;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

18.混合運演算法則:先乘方,後乘除,最後加減.

本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題.

體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。

七年級數學上冊知識點:第二章 整式的加減

一.知識框架二.知識概念

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.

2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

通過本章學習,應使學生達到以下學習目標:

1. 理解並掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯系。

2. 理解同類項概念,掌握合並同類項的 方法 ,掌握去括弧時符號的變化規律,能正確地進行同類項的合並和去括弧。在准確判斷、正確合並同類項的基礎上,進行整式的加減運算。

3. 理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合並同類項、去括弧的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。

4.能夠分析實際問題中的數量關系,並用還有字母的式子表示出來。

在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。

七年級數學上冊知識點:第三章 一元一次方程

本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。

一.知識框架

二.知識概念

1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

2.一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).

3.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).

4.列一元一次方程解應用題:

(1)讀題分析法:………… 多用於“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.

(2)畫圖分析法: ………… 多用於“行程問題”

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.

11.列方程解應用題的常用公式:

(1)行程問題: 距離=速度·時間 ;

(2)工程問題: 工作量=工效·工時 ;

(3)比率問題: 部分=全體·比率 ;

(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,

S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐= πR2h.

七年級數學上冊知識點:第四章 圖形的認識初步

一、知識框架

本章的主要內容是圖形的初步認識,從生活周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形.通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯系.在此基礎上,認識一些簡單的平面圖形——直線、射線、線段和角.

二、本章書涉及的數學思想:

1.分類討論思想。在過平面上若干個點畫直線時,應注意對這些點分情況討論;在畫圖形時,應注意圖形的各種可能性。

2.方程思想。在處理有關角的大小,線段大小的計算時,常需要通過列方程來解決。

3.圖形變換思想。在研究角的概念時,要充分體會對射線旋轉的認識。在處理圖形時應注意轉化思想的應用,如立體圖形與平面圖形的互相轉化。

4.化歸思想。在進行直線、線段、角以及相關圖形的計數時,總要劃歸到公式n(n-1)/2的具體運用上來。

>>>下一頁更多精彩“七年級數學下冊知識點”

Ⅳ 初中七年級數學知識點歸納整理

數學已成為許多國家及地區的 教育 范疇中的一部分。它應用於不同領域中,包括科學、工程、醫學、經濟學和金融學等。這次我給大家整理了初中 七年級數學 知識點歸納,供大家閱讀參考。

初中七年級數學知識點歸納

第一章 相交線與平行線

一、知識框架

二、知識概念

1.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。

2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

4.平行線:在同一平面內,不相交的兩條直線叫做平行線。

5.同位角、內錯角、同旁內角:

同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。

內錯角:∠2與∠6像這樣的一對角叫做內錯角。

同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。

6.命題:判斷一件事情的語句叫命題。

7.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

8.對應點:平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。

9.定理與性質

對頂角的性質:對頂角相等。

10垂線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

11.平行公理:經過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

12.平行線的性質:

性質1:兩直線平行,同位角相等。

性質2:兩直線平行,內錯角相等。

性質3:兩直線平行,同旁內角互補。

13.平行線的判定:

判定1:同位角相等,兩直線平行。

判定2:內錯角相等,兩直線平行。

判定3:同旁內角相等,兩直線平行。

本章使學生了解在平面內不重合的兩條直線相交與平行的兩種位置關系,研究了兩條直線相交時的形成的角的特徵,兩條直線互相垂直所具有的特性,兩條直線平行的長期共存條件和它所有的特徵以及有關圖形平移變換的性質,利用平移設計一些優美的圖案. 重點:垂線和它的性質,平行線的判定 方法 和它的性質,平移和它的性質,以及這些的組織運用. 難點:探索平行線的條件和特徵,平行線條件與特徵的區別,運用平移性質探索圖形之間的平移關系,以及進行圖案設計。

第二章 平面直角坐標系

一.知識框架

二.知識概念

1.有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)

2.平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

3.橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。

4.坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。

5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。

平面直角坐標系是數軸由一維到二維的過渡,同時它又是學習函數的基礎,起到承上啟下的作用。另外,平面直角坐標系將平面內的點與數結合起來,體現了數形結合的思想。掌握本節內容對以後學習和生活有著積極的意義。教師在講授本章內容時應多從實際情形出發,通過對平面上的點的位置確定發展學生創新能力和應用意識。

第三章 三角形

一.知識框架

二.知識概念

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

4.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

6.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

7.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

9.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

10.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

12.公式與性質

三角形的內角和:三角形的內角和為180°

三角形外角的性質:

性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。

性質2:三角形的一個外角大於任何一個和它不相鄰的內角。

多邊形內角和公式:n邊形的內角和等於(n-2)·180°

多邊形的外角和:多邊形的內角和為360°。

多邊形對角線的條數:(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。

(2)n邊形共有 條對角線。

三角形是初中數學中幾何部分的基礎圖形,在學習過程中,教師應該多鼓勵學生動腦動手,發現和探索其中的知識奧秘。注重培養學生正確的數學情操和幾何思維能力。

第四章 二元一次方程組

一.知識結構圖

二、知識概念

1.二元一次方程:含有兩個未知數,並且未知數的指數都是1,像這樣的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。

2.二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。

3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數的值叫做二元一次方程組的解。

4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。

5.消元:將未知數的個數由多化少,逐一解決的想法,叫做消元思想。

6.代入消元:將一個未知數用含有另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。

7.加減消元法:當兩個方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,這種方法叫做加減消元法,簡稱加減法。

本章通過實例引入二元一次方程,二元一次方程組以及二元一次方程組的概念,培養學生對概念的理解和完整性和深刻性,使學生掌握好二元一次方程組的兩種解法. 重點:二元一次方程組的解法,列二元一次方程組解決實際問題. 難點:二元一次方程組解決實際問題

第五章 不等式與不等式組

一.知識框架

二、知識概念

1.用符號「<」「>」「≤ 」「≥」表示大小關系的式子叫做不等式。

2.不等式的解:使不等式成立的未知數的值,叫做不等式的解。

3.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。

5.一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成6.了一個一元一次不等式組。

7.定理與性質

不等式的性質:

不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。

不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。

不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。

本章內容要求學生經歷建立一元一次不等式(組)這樣的數學模型並應用它解決實際問題的過程,體會不等式(組)的特點和作用,掌握運用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強創新精神和應用數學的意識。

第六章 數據的收集、整理與描述

一.知識框架

全面調查

抽樣調查

收集數據

描述數據

整理數據

分析數據

得出結論

二.知識概念

1.全面調查:考察全體對象的調查方式叫做全面調查。

2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查。

3.總體:要考察的全體對象稱為總體。

4.個體:組成總體的每一個考察對象稱為個體。

5.樣本:被抽取的所有個體組成一個樣本。

6.樣本容量:樣本中個體的數目稱為樣本容量。

7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數。

8.頻率:頻數與數據總數的比為頻率。

9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距。

本章要求通過實際參與收集、整理、描述和分析數據的活動,經歷統計的一般過程,感受統計在生活和生產中的作用,增強學習統計的興趣,初步建立統計的觀念,培養重視調查研究的良好習慣和科學態度。

數學考試拿高分的竅門

一、對照法

如何正確理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。

二、公式法

運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。

三、比較法

通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。

四、分類法

根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。 分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。

怎樣才能學好數學

1.打破沙鍋問到底的執著和溫故知新的毅力,被某個知識點或者某道題難住,就把它擱置,問題越來越多就積重難返了。

2.不會的問題當即解決最好,解決的方法有查資料或者請教他人等;對已經解決的問題和重要知識點,要定期復習,復習時要思考有無更好的方法。

3.學會一題多解,從各個方面來了解題目的含義,鍛煉孩子的變式思維;要敢於創新,老師可在講課過程中故意出錯,讓學生來思考,矯正,使學生處於主動思考的狀態。


初中七年級數學知識點歸納整理相關 文章 :

★ 初一數學知識點梳理歸納

★ 七年級數學知識點整理大全

★ 初一數學的知識點梳理

★ 初一數學知識點歸納梳理

★ 初一數學學習方法總結

★ 初一數學的知識點歸納

★ 初一數學考試知識點總結

★ 數學七年級下冊知識點總結之變數之間的關系

★ 七年級數學上冊知識點總結歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅳ 七年級數學課本重要知識點總結

偉大的成績和辛勤勞動是成正比例的,有一分勞動就有一分收獲,積累,從少到多,奇跡就可以創造出來。學習也是一樣的,需要積累,從少變多。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

初一上冊數學第三章《圖形認識初步》知識點

圖形認識初步

3.1 多姿多彩的圖形

現實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形。

3.1.1立體圖形與平面圖形

長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

長方形、正方形、三角形、圓等都是平面圖形。

許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

3.1.2點、線、面、體

幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、稜柱、棱錐等都是幾何體。

包圍著體的是面。面有平的面和曲的面兩種。

面和 面相 交的地方形成線。

線和線相交的地方是點。

幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素。

3.2 直線、射線、線段

經過兩點有一條直線,並且只有一條直線。

兩點確定一條直線。

點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

直線桑一點和它一旁的部分叫做射線。

兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。

3.3 角的度量

角也是一種基本的幾何圖形。

度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1;把1度的角60等分,每份叫做1分的角,記作1;把1分的角60等分,每份叫做1秒的角,記作1。

3.4角的比較與運算

3.4.1角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

3.4.2餘角和補角

如果兩個角的和等於90(直角),就說這兩個角互為餘角。

如果兩個角的和等於180(平角),就說這兩個角互為補角。

等角的補角相等。

等角的餘角相等。

初一下冊數學知識點:不等式與不等式組

1.不等式:用符號"<",">","≤","≥"表示大小關系的式子叫做不等式。

2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。

一般地,用純粹的大於號、小於號">","<"連接的不等式稱為嚴格不等式,用不小於號(大於或等於號)、不大於號(小於或等於號)"≥","≤"連接的不等式稱為非嚴格不等式,或稱廣義不等式。

3.不等式的解:使不等式成立的未知數的值,叫做不等式的解。

4.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

5.不等式解集的表示 方法 :

(1)用不等式表示:一般的,一個含未知數的不等式有無數個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3

(2)用數軸表示:不等式的解集可以在數軸上直觀地表示出來,形象地說明不等式有無限多個解,用數軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。

6.解不等式可遵循的一些同解原理

(1)不等式F(x)< G(x)與不等式 G(x)>F(x)同解。

(2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那麼不等式 F(x)< G(x)與不等式H(x)+F(x)

(3)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,並且H(x)>0,那麼不等式F(x)< G(x)與不等式H(x)F(x)0,那麼不等式F(x)< G(x)與不等式H(x)F(x)>H(x)G(x)同解。

7.不等式的性質:

(1)如果x>y,那麼yy;(對稱性)

(2)如果x>y,y>z;那麼x>z;(傳遞性)

(3)如果x>y,而z為任意實數或整式,那麼x+z>y+z;(加法則)

(4)如果x>y,z>0,那麼xz>yz;如果x>y,z<0,那麼xz

(5)如果x>y,z>0,那麼x÷z>y÷z;如果x>y,z<0,那麼x÷z

(6)如果x>y,m>n,那麼x+m>y+n(充分不必要條件)

(7)如果x>y>0,m>n>0,那麼xm>yn

(8)如果x>y>0,那麼x的n次冪>y的n次冪(n為正數)

8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的次數是1,像這樣的不等式,叫做一元一次不等式。

9.解一元一次不等式的一般順序:

(1)去分母 (運用不等式性質2、3)

(2)去括弧

(3)移項 (運用不等式性質1)

(4)合並同類項

(5)將未知數的系數化為1 (運用不等式性質2、3)

(6)有些時候需要在數軸上表示不等式的解集

初一下冊數學輔導復習資料

1.幾何圖形:點、線、面、體這些可幫助人們有效的刻畫錯綜復雜的世界,它們都稱為幾何圖形。從實物中抽象出的各種圖形統稱為幾何圖形。有些幾何圖形的各部分不在同一平面內,叫做立體圖形。有些幾何圖形的各部分都在同一平面內,叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯系的。

2.幾何圖形的分類:幾何圖形一般分為立體圖形和平面圖形。

3.直線:幾何學基本概念,是點在空間內沿相同或相反方向運動的軌跡。從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交於一點。常用直線與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對於X軸)的傾斜程度。

4.射線:在歐幾里德幾何學中,直線上的一點和它一旁的部分所組成的圖形稱為射線或半直線。

5.線段:指一個或一個以上不同線素組成一段連續的或不連續的圖線,如實線的線段或由「長劃、短間隔、點、短間隔、點、短間隔」組成的雙點長劃線的線段。

線段有如下性質:兩點之間線段最短。

6. 兩點間的距離:連接兩點間線段的長度叫做這兩點間的距離。

7. 端點:直線上兩個點和它們之間的部分叫做線段,這兩個點叫做線段的端點。

線段用表示它兩個端點的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段AB或線段BA,線段a。其中AB表示直線上的任意兩點。

8.直線、射線、線段區別:直線沒有距離。射線也沒有距離。因為直線沒有端點,射線只有一個端點,可以無限延長。

9.角:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊。

10.角的靜態定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式;數字或字母的乘積叫單項式(單獨的一個數字或字母也是單項式)。

2.系數:單項式中的數字因數叫做這個單項式的系數。所有字母的指數之和叫做這個單項式的次數。任何一個非零數的零次方等於1。

3.多項式:幾個單項式的和叫多項式。

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數。

5.常數項:不含字母的項叫做常數項。


七年級數學課本重要知識點 總結 相關 文章 :

★ 初一數學課本知識點總結

★ 初中七年級數學知識點歸納整理

★ 七年級數學課本知識點

★ 七年級數學知識點整理大全

★ 七年級數學知識點梳理總結

★ 初一上冊數學重點知識點歸納總結

★ 七年級數學知識點總結

★ 初一人教版數學上冊知識點總結歸納

★ 七年級數學知識點整理部編版

★ 初一數學知識點梳理歸納

Ⅵ 初一數學的知識點歸納

學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為主科之一,和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

初中 一年級數學 上冊知識點

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。

初一下冊數學知識點

1.認識三角形,了解三角形的意義,認識三角形的邊、內角、頂點,能用符號語言表示三角形。

2.經歷度量三角形邊長的實踐活動中,理解三角形三邊不等的關系。

3.懂得判斷三條線段可否構成一個三角形的方法,並能運用它解決有關的問題。

4.三角形的內角和定理,能用平行線的性質推出這一定理。

5.能應用三角形內角和定理解決一些簡單的實際問題。

二、重點

三角形內角和定理;

對三角形有關概念的了解,能用符號語言表示三條形。

三、難點

三角形內角和定理的推理的過程;

在具體的圖形中不重復,且不遺漏地識別所有三角形;

用三角形三邊不等關系判定三條線段可否組成三角形。

四、知識框架

五、知識點、概念 總結

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三角形的分類

3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7.高線、中線、角平分線的意義和做法

8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9.三角形內角和定理:三角形三個內角的和等於180°

推論1直角三角形的兩個銳角互余;

推論2三角形的一個外角等於和它不相鄰的兩個內角和;

推論3三角形的一個外角大於任何一個和它不相鄰的內角;

初一下學期數學知識點

相交線與平行線

一、知識網路結構

二、知識要點

1、在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。

2、在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。

3、兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是

鄰補角。鄰補角的性質:鄰補角互補。如圖1所示,與互為鄰補角,

與互為鄰補角。+=180°;+=180°;+=180°;

+=180°。

4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。如圖1所示,與互為對頂角。=;

=。

5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,

其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。

垂線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

性質3:如圖2所示,當a⊥b時,====90°。

點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

6、同位角、內錯角、同旁內角基本特徵:

①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣

的兩個角叫同位角。圖3中,共有對同位角:與是同位角;

與是同位角;與是同位角;與是同位角。

②在兩條直線(被截線)之間,並且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。

③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。


初一數學第一章知識點相關 文章 :

★ 初一數學上冊第一章知識點歸納

★ 初一數學上冊第一章知識點總結

★ 初一數學第一章知識點總結

★ 初一數學第一章知識點總結歸納

★ 初一數學重要知識點總結

★ 初一數學上冊知識點歸納

★ 初一數學第1章有理數知識點總結

★ 七年級數學上冊知識點總結第一章

★ 初一數學第一單元知識點歸納

★ 初一數學上知識點

Ⅶ 初一數學重要知識點總結

知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

初中 一年級數學 上冊知識點

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

2021七年級下冊數學知識點

概率

一、事件:

1、事件分為必然事件、不可能事件、不確定事件。

2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。

4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。

二、等可能性:是指幾種事件發生的可能性相等。

1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。

2、必然事件發生的概率為1,記作P(必然事件)=1;

3、不可能事件發生的概率為0,記作P(不可能事件)=0;

4、不確定事件發生的概率在0—1之間,記作0

三、幾何概率

1、事件A發生的概率等於此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。

2、求幾何概率:

(1)首先分析事件所佔的面積與總面積的關系;

(2)然後計算出各部分的面積;

(3)最後代入公式求出幾何概率。

初一 數學 學習 方法 技巧

1、做好預習:

單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。

2、認真聽課:

聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善於聯想、類比和歸納,二是要敢於質疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。

3、認真解題:

課堂練習是最及時最直接的反饋,一定不能錯過。不要急於完成作業,要先看看你的 筆記本 ,回顧學習內容,加深理解,強化記憶。

4、及時糾錯:

課堂練習、作業、檢測,反饋後要及時查閱,分析錯題的原因,必要時強化相關計算的訓練。不明白的問題要及時向同學和老師請教了,不能將問題處於懸而未解的狀態,養成今日事今日畢的好習慣。

5、學會 總結 :

馮老師說:「數學一環扣一環,知識間的聯系非常緊密,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,做到瞭然於心,融會貫通。

6、學會管理:

管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷。馮老師稱,這可是大考復習時最有用的資料,千萬不可疏忽。

目前初中學生學習數學存在一個嚴重的問題就是不善於讀數學教材,他們往往是死記硬背。重視閱讀方法對提高初中學生的學習能力是至關重要的。新學一個章節內容,先粗粗讀一遍,即瀏覽本章節所學內容的枝幹,然後一邊讀一邊勾,粗略懂得教材的內容及其重點、難點所在,對不理解的地方打上記號。然後細細地讀,即根據每章節後的學習要求,仔細閱讀教材內容,理解數學概念、公式、法則、思想方法的實質及其因果關系,把握重點、突破難點。再次帶著研究者的態度去讀,即帶著發展的觀點研討知識的來龍去脈、結構關系、編排意圖,並歸納要點,把書讀懂,並形成知識網路,完善認識結構,當學生掌握了這三種讀法,形成習慣之後,就能從本質上改變其學習方式,提高學習效率了。

提高聽課質量要培養會聽課,聽懂課的習慣。注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最後的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由「聽會」轉變為「會聽」。

有疑必問是提高學習效率的有效辦法學習過程中,遇到疑問,抓緊時間問老師和同學,把沒有弄懂,沒有學明白的知識,最短的時間內掌握。建立自己的錯題本,經常翻閱,提醒自己同樣的錯誤不要犯第二次。從而提高學習效率。


初一數學重要知識點總結相關 文章 :

★ 初一數學重要知識點總結

★ 初一數學上冊知識點歸納

★ 初一數學課本知識點總結

★ 初一數學上冊重點知識整理

★ 初一數學上冊知識點匯總歸納

★ 初一數學知識點歸納與學習方法

★ 初一數學知識點歸納梳理

★ 初一數學知識點歸納

★ 初一數學主要知識點

★ 初一數學知識點小歸納

Ⅷ 初一數學必考知識點總結

初一數學必考知識點總結1

正數和負數

⒈、正數和負數的概念

負數:比0小的數正數:比0大的數0既不是正數,也不是負數

注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)

②正數有時也可以在前面加「+」,有時「+」省略不寫。所以省略「+」的正數的符號是正號。

2、具有相反意義的量

若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:

零上8℃表示為:+8℃;零下8℃表示為:—8℃

3、0表示的意義

(1)0表示「沒有」,如教室里有0個人,就是說教室里沒有人;

(2)0是正數和負數的分界線,0既不是正數,也不是負數。如:

(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。

有理數

1、有理數的概念

(1)正整數、0、負整數統稱為整數(0和正整數統稱為自然數)

(2)正分數和負分數統稱為分數

(3)正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。

理解:只有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。③整數也能化成分數,也是有理數

注意:引入負數以後,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8也是偶數,—1,—3,—5也是奇數。

初一數學必考知識點總結2

有理數

1.1 正數與負數

在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。

與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。

1.2 有理數

正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。

整數和分數統稱有理數(rational number)。

通常用一條直線上的點表示數,這條直線叫數軸(number axis)。

數軸三要素:原點、正方向、單位長度。

在直線上任取一個點表示數0,這個點叫做原點(origin)。

只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)

數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。

一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

平面直角坐標系:

在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。

水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合

三個規定:

①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。

③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。

平面直角坐標系的構成

在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。

點的坐標的性質

建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:「一提」、「二套」、「三分組」、「四十字」。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。

因式分解

因式分解定義 :把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素 :①結果必須是整式②結果必須是積的形式③結果是等式④

因式分解與整式乘法的關系:m(a+b+c)

公因式: 一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定方法 :①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式注意;

①不準丟字母

②不準丟常數項注意查項數

③雙重括弧化成單括弧

④結果按數單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負號放括弧外

⑦括弧內同類項合並。

初一數學必考知識點總結3

第一章有理數

1、大於0的數是正數。

2、有理數分類:正有理數、0、負有理數。

3、有理數分類:整數(正整數、0、負整數)、分數(正分數、負分數)

4、規定了原點,單位長度,正方向的直線稱為數軸。

5、數的大小比較:

①正數大於0,0大於負數,正數大於負數。

②兩個負數比較,絕對值大的反而小。

6、只有符號不同的兩個數稱互為相反數。

7、若a+b=0,則a,b互為相反數

8、表示數a的點到原點的距離稱為數a的絕對值

9、絕對值的三句:正數的絕對值是它本身,

負數的絕對值是它的相反數,0的絕對值是0。

10、有理數的計算:先算符號、再算數值。

11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)

12、乘除:同號得正,異號的負

13、乘方:表示n個相同因數的乘積。

14、負數的奇次冪是負數,負數的偶次冪是正數。

15、混合運算:先乘方,再乘除,後加減,同級運算從左到右,有括弧的先算括弧。

16、科學計數法:用ax10n 表示一個數。(其中a是整數數位只有一位的數)

17、左邊第一個非零的數字起,所有的數字都是有效數字。

【知識梳理】

1.數軸:數軸三要素:原點,正方向和單位長度;數軸上的點與實數是一一對應的。

2.相反數實數a的相反數是-a;若a與b互為相反數,則有a+b=0,反之亦然;幾何意義:在數軸上,表示相反數的兩個點位於原點的兩側,並且到原點的距離相等。

3.倒數:若兩個數的積等於1,則這兩個數互為倒數。

4.絕對值:代數意義:正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0;

幾何意義:一個數的絕對值,就是在數軸上表示這個數的點到原點的距離.

5.科學記數法:,其中。

6.實數大小的比較:利用法則比較大小;利用數軸比較大小。

7.在實數范圍內,加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負數不能開偶次方。實數的運算基礎是有理數運算,有理數的一切運算性質和運算律都適用於實數運算。正確的確定運算結果的符號和靈活的使用運算律是掌握好實數運算的關鍵。

一元一次方程知識點

知識點1:等式的概念:用等號表示相等關系的式子叫做等式.

知識點2:方程的概念:含有未知數的等式叫方程,方程中一定含有未知數,而且必須是等式,二者缺一不可.

說明:代數式不含等號,方程是用等號把代數式連接而成的式子,且其中一定要含有未知數.

知識點3:一元一次方程的概念:只含有一個未知數,並且未知數的次數是1的方程叫一元一次方程.任何形式的一元一次方程,經變形後,總能變成形為ax=b(a≠0,a、b為已知數)的形式,這種形式的方程叫一元一次方程的一般式.注意a≠0這個重要條件,它也是判斷方程是否是一元一次方程的重要依據.

例2:如果(a+1) +45=0是一元一次方程,則a________,b________.

分析:一元一次方程需要滿足的條件:未知數系數不等於0,次數為1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.

知識點4:等式的基本性質(1)等式兩邊加上(或減去)同一個數或同一個代數式,所得的結果仍是等式.即若a=b,則a±m=b±m.

(2) 等式兩邊乘以(或除以)同一個不為0的數或代數式, 所得的結果仍是等式.

即若a=b,則am=bm.或. 此外等式還有其它性質: 若a=b,則b=a.若a=b,b=c,則a=c.

說明:等式的性質是解方程的重要依據.

例3:下列變形正確的是( )

A.如果ax=bx,那麼a=b B.如果(a+1)x=a+1, 那麼x=1

C.如果x=y,則x-5=5-y D.如果則

分析:利用等式的性質解題.應選D.

說明:等式兩邊不可能同時除以為零的數或式,這一點務必要引起同學們的高度重視.

知識點5:方程的解與解方程:使方程兩邊相等的未知數的值叫做方程的解,求方程解的過程叫解方程.

知識點6:關於移項:⑴移項實質是等式的基本性質1的運用.

⑵移項時,一定記住要改變所移項的符號.

知識點7:解一元一次方程的一般步驟:去分母、去括弧、移項、合並同類項、將未知數的系數化為1.具體解題時,有些步驟可能用不上,有些步驟可以顛倒順序,有些步驟可以合寫,以簡化運算,要根據方程的特點靈活運用.

例4:解方程 .

分析:靈活運用一元一次方程的步驟解答本題.

解答:去分母,得9x-6=2x,移項,得9x-2x=6,合並同類項,得7x=6,系數化為1,得x=.

說明:去分母時,易漏乘方程左、右兩邊代數式中的某些項,如本題易錯解為:去分母得9x-1=2x,漏乘了常數項.

知識點8:方程的檢驗

檢驗某數是否為原方程的解,應將該數分別代入原方程左邊和右邊,看兩邊的值是否相等.

注意:應代入原方程的左、右兩邊分別計算,不能代入變形後的方程的左邊和右邊.

初一數學必考知識點總結4

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17 三角形內角和定理 三角形三個內角的和等於180

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21 全等三角形的對應邊、對應角相等

22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,並且每一個角都等於60

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等於60的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等於30那麼它所對的直角邊等於斜邊的一半

38 直角三角形斜邊上的中線等於斜邊上的一半

39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?

40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理1 關於某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

初一數學必考知識點總結5

盡快地掌握科學知識,迅速提高學習能力,由編輯老師為您提供的初一年級新學期數學知識點,希望給您帶來啟發!

一、目標與要求

1.通過處理實際問題,讓學生體驗從算術方法到代數方法是一種進步;

2.初步學會如何尋找問題中的相等關系,列出方程,了解方程的概念;

3.培養學生獲取信息,分析問題,處理問題的能力。

二、重點

從實際問題中尋找相等關系;

建立列方程解決實際問題的思想方法,學會合並同類項,會解ax+bx=c類型的一元一次方程。

三、難點

從實際問題中尋找相等關系;

分析實際問題中的已經量和未知量,找出相等關系,列出方程,使學生逐步建立列方程解決實際問題的思想方法。

四、知識點、概念總結

1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。

2.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a0)。

3.條件:一元一次方程必須同時滿足4個條件:

(1)它是等式;

(2)分母中不含有未知數;

(3)未知數最高次項為1;

(4)含未知數的項的系數不為0.

4.等式的性質:

等式的性質一:等式兩邊同時加一個數或減去同一個數或同一個整式,等式仍然成立。

等式的性質二:等式兩邊同時擴大或縮小相同的倍數(0除外),等式仍然成立。

等式的性質三:等式兩邊同時乘方(或開方),等式仍然成立。

解方程都是依據等式的這三個性質等式的性質一:等式兩邊同時加一個數或減同一個數,等式仍然成立。

5.合並同類項

(1)依據:乘法分配律

(2)把未知數相同且其次數也相同的相合並成一項;常數計算後合並成一項

(3)合並時次數不變,只是系數相加減。

6.移項

(1)含有未知數的項變號後都移到方程左邊,把不含未知數的項移到右邊。

(2)依據:等式的性質

(3)把方程一邊某項移到另一邊時,一定要變號。

7.一元一次方程解法的一般步驟:

使方程左右兩邊相等的未知數的值叫做方程的解。

一般解法:

(1)去分母:在方程兩邊都乘以各分母的最小公倍數;

(2)去括弧:先去小括弧,再去中括弧,最後去大括弧;(記住如括弧外有減號的話一定要變號)

(3)移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號

(4)合並同類項:把方程化成ax=b(a0)的形式;

(5)系數化成1:在方程兩邊都除以未知數的系數a,得到方程的解x=b/a.

8.同解方程

如果兩個方程的解相同,那麼這兩個方程叫做同解方程。

9.方程的同解原理:

(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。

(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。

由編輯老師為您提供的初一年級新學期數學知識點,希望給您帶來啟發!

初一數學必考知識點總結6

一、方程的有關概念

1.方程:含有未知數的`等式就叫做方程。

2.一元一次方程:只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

3.方程的解:使方程中等號左右兩邊相等的未知數的值,叫做方程的解。

註:⑴方程的解和解方程是不同的概念,方程的解實質上是求得的結果,它是一個數值(或幾個數值),而解方程的含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗方法,首先把未知數的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論。

二、等式的性質

(1)等式兩邊都加上(或減去)同個數(或式子),結果仍相等。用式子形式表示為:如果a=b,那麼ac=bc

(2)等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等,用式子形式表示為:如果a=b,那麼ac=bc;如果a=b(c0),那麼ac=bc

三、移項法則:

把等式一邊的某項變號後移到另一邊,叫做移項。

四、去括弧法則

1.括弧外的因數是正數,去括弧後各項的符號與原括弧內相應各項的符號相同.

2.括弧外的因數是負數,去括弧後各項的符號與原括弧內相應各項的符號改變.

五、解方程的一般步驟

1.去分母(方程兩邊同乘各分母的最小公倍數)

2.去括弧(按去括弧法則和分配律)

3.移項(把含有未知數的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

4.合並(把方程化成ax=b(a0)形式)

5.系數化為1(在方程兩邊都除以未知數的系數a,得到方程的解x=ba)。

六、用方程思想解決實際問題的一般步驟

1.審:審題,分析題中已知什麼,求什麼,明確各數量之間的關系。

2.設:設未知數(可分直接設法,間接設法)。

3.列:根據題意列方程。

4.解:解出所列方程。

5.檢:檢驗所求的解是否符合題意。

6.答:寫出答案(有單位要註明答案)。

七、有關常用應用類型題及各量之間的關系

1、和、差、倍、分問題:

(1)倍數關系:通過關鍵詞語「是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……」來體現。

(2)多少關系:通過關鍵詞語「多、少、和、差、不足、剩餘……」來體現。

2、等積變形問題:

「等積變形」是以形狀改變而體積不變為前提。常用等量關系為:

①形狀面積變了,周長沒變;

②原料體積=成品體積。

3、勞力調配問題:

這類問題要搞清人數的變化,常見題型有:

(1)既有調入又有調出。

(2)只有調入沒有調出,調入部分變化,其餘不變。

(3)只有調出沒有調入,調出部分變化,其餘不變。

4、數字問題

(1)要搞清楚數的表示方法:一個三位數的百位數字為a,十位數字是b,個位數字為c(其中a、b、c均為整數,且19,09,09)則這個三位數表示為:100a+10b+c

(2)數字問題中一些表示:兩個連續整數之間的關系,較大的比較小的大1;偶數用2n表示,連續的偶數用2n+2或2n2表示;奇數用2n+1或2n1表示。

5、工程問題:

工程問題中的三個量及其關系為:工作總量=工作效率工作時間

6、行程問題:

(1)行程問題中的三個基本量及其關系:路程=速度時間。

(2)基本類型有

①相遇問題;

②追及問題;常見的還有:相背而行;行船問題;環形跑道問題。

7、商品銷售問題

有關關系式:

商品利潤=商品售價商品進價=商品標價折扣率商品進價

商品利潤率=商品利潤/商品進價

商品售價=商品標價折扣率

8、儲蓄問題

(1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數,利息與本金的比叫做利率。利息的20%付利息稅

(2)利息=本金利率期數

本息和=本金+利息

利息稅=利息稅率(20%)

今天的內容就介紹這里了。

初一數學必考知識點總結7

知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、-0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。

知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:

註:有限小數和無限循環小數都可看作分數。

知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。

知識點4:絕對值的概念:

(1)幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;

(2)代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。

註:任何一個數的絕對值均大於或等於0(即非負數).

知識點5:相反數的概念:

(1)幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;

(2)代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。

知識點6:有理數大小的比較:

有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。

數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。

用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。

知識點7:有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

知識點8:有理數加法運算律:

加法交換律:兩個數相加,交換加數的位置,和不變。

加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。

知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。

Ⅸ 初一數學重要知識點歸納

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的初一數學知識點,希望對大家有所幫助。

七年級數學 基礎知識點

三角形的高線:

1、從三角形的一個頂點向它的對邊所在的直線做垂線,頂點和垂足之間的線段叫做三角形的高線,簡稱為三角形的高。

2、任意三角形都有三條高線,它們所在的直線相交於一點。(垂心)

3、注意等底等高知識的考試

7、相關命題:

1)三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。

2)銳角三角形中的銳角的取值范圍是60≤X<90。銳角不小於60度。

3)任意一個三角形兩角平分線的夾角=90+第三角的一半。

4)鈍角三角形有兩條高在外部。

5)全等圖形的大小(面積、周長)、形狀都相同。

6)面積相等的兩個三角形不一定是全等圖形。

7)能夠完全重合的兩個圖形是全等圖形。

8)三角形具有穩定性。

9)三條邊分別對應相等的兩個三角形全等。

10)三個角對應相等的兩個三角形不一定全等。

11)兩個等邊三角形不一定全等。

12)兩角及一邊對應相等的兩個三角形全等。

13)兩邊及一角對應相等的兩個三角形不一定全等。

14)兩邊及它們的夾角對應相等的兩個三角形全等。

15)兩條直角邊對應相等的兩個直角三角形全等。

16)一條斜邊和一直角邊對應相等的兩個三角形全等。

17)一個銳角和一邊(直角邊或斜邊)對應相等的兩個三角形全等。

18)一角和一邊對應相等的兩個直角三角形不一定全等。

初一數學下冊知識點 總結

篇一:直線、射線、線段

(1)直線、射線、線段的表示方法

①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.

②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.

③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。

(2)點與直線的位置關系:

①點經過直線,說明點在直線上;

②點不經過直線,說明點在直線外。

篇二:兩點間的距離

(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。

(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最後的兩個字「長度」,也就是說,它是一個量,有大小,區別於線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離。

篇三:正方體

(1)對於此類問題一般方法是用紙按圖的樣子折疊後可以解決,或是在對展開圖理解的基礎上直接想像.

(2)從實物出發,結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵.

(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況後再認真確定哪兩個面的對面.

數學初一知識點總結

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0

初一數學重要知識點歸納

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17 三角形內角和定理 三角形三個內角的和等於180

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21 全等三角形的對應邊、對應角相等

22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,並且每一個角都等於60

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等於60的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等於30那麼它所對的直角邊等於斜邊的一半

38 直角三角形斜邊上的中線等於斜邊上的一半

39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?

40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理1 關於某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

初一數學重要知識點

正數和負數

⒈、正數和負數的概念

負數:比0小的數正數:比0大的數0既不是正數,也不是負數

注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)

②正數有時也可以在前面加「+」,有時「+」省略不寫。所以省略「+」的正數的符號是正號。

2、具有相反意義的量

若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:

零上8℃表示為:+8℃;零下8℃表示為:—8℃

3、0表示的意義

(1)0表示「沒有」,如教室里有0個人,就是說教室里沒有人;

(2)0是正數和負數的分界線,0既不是正數,也不是負數。如:

(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。

有理數

1、有理數的概念

(1)正整數、0、負整數統稱為整數(0和正整數統稱為自然數)

(2)正分數和負分數統稱為分數

(3)正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。

理解:只有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。③整數也能化成分數,也是有理數

注意:引入負數以後,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8也是偶數,—1,—3,—5也是奇數。

初一數學方法技巧

1.請概括的說一下學習的方法

曰:「像做其他事一樣,學習數學要研究方法。我為你們推薦的方法是:超前學習,展開聯想,多做總結,找出合情合理。

2.請談談超前學習的好處

曰:「首先,超前學習能挖掘出自身的潛力,培養自學能力。經過超前學習,會發現自己能獨立解決許多問題,對提高自信心,培養學習興趣很有幫助。」

其次,夠消除對新知識的「隱患」。超前學習能夠發現在現有的基礎上,自己對新知識認識的不妥之處。相反地,若直接聽別人說。似乎自己也能一開始就達到這種理解水平,實踐證明,並非這樣。

再次,超前學習中的有些內容,當時不能透徹理解,但經過深思之後,即使擱置一邊,大腦也會潛意識「加工」。當教師進度進行到這塊內容時,我們做第二次理解,會深刻的多。

最後,超前學習能提高聽課質量。超前學習以後,我們發現新知識中的多數自己完全可以理解。只有少數地方需藉助於別人。這樣,在課堂上,我們即能將可以集中注意力的時間放「這少數地方」的理解上,即「好鋼用在刀刃上」。事實上,一節課,能集中注意力的時間並不太多。

3.請談談聯想與總結

曰:聯想與總結貫穿與學習過程中的始終。對每一知識的認識,必定要有認識基礎。尋找認識基礎的過程即是聯想,而認識基礎的是對以前知識的總結。以前總結的越簡潔、清晰、合理,越容易聯想。這樣就可以把新知識熔進原來的知識結構中為以後的某次聯想奠定基礎。聯想與總結在解題中特別有效。也許你以前並沒有這樣的認識,但解題能力卻很強,這說明你很聰明,你在不自覺中使用這種做法。如果你能很明確的認識這一點,你的能力會更強。

4.那麼我們怎樣預習呢?

曰:「先 說說 學習的目標:(1)知道知識產生的背景,弄清知識形成的過程。

(2)或早或晚的知道知識的地位和作用:(3)總結出認識問題的規律(或說出認識問題使用了以前的什麼規律)。

再說具體的做法:(1)對概念的理解。數學具有高度的抽象性。通常要藉助具體的東西加以理解。有時藉助字面的含義:有時藉助其他學科知識。有時藉助圖形……理解概念的境界是意會。一定要在理解概念上下一番苦功夫後再做題。

(2)對公式定理的預習,公式定理是使用最多的「規律」的總結。如:完全平方公式,勾股定理等。往往公式的推導定理的證明蘊含著豐富的數學方法及相當有用的解題規律。如三角形內角平分線定理的證明。我們應當先自己推導公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。

(3)對於例題及習題的處理見上面的(2)及下面的第五條。

初一數學重要知識點歸納相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一數學上冊重點知識整理

★ 初一數學知識點梳理歸納

★ 初一數學上冊知識點匯總歸納

★ 七年級數學重要知識點總結

★ 初一數學知識點整理

★ 初一數學重要知識點總結

★ 初一數學知識點小歸納

★ 初一數學知識點歸納

★ 初一數學知識點歸納與學習方法

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅹ 初一數學下冊重要知識點

知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

初一下冊數學《三角形》知識點

一、目標與要求

1.認識三角形,了解三角形的意義,認識三角形的邊、內角、頂點,能用符號語言表示三角形。

2.經歷度量三角形邊長的實踐活動中,理解三角形三邊不等的關系。

3.懂得判斷三條線段可否構成一個三角形的 方法 ,並能運用它解決有關的問題。

4.三角形的內角和定理,能用平行線的性質推出這一定理。

5.能應用三角形內角和定理解決一些簡單的實際問題。

二、重點

三角形內角和定理;

對三角形有關概念的了解,能用符號語言表示三條形。

三、難點

三角形內角和定理的推理的過程;

在具體的圖形中不重復,且不遺漏地識別所有三角形;

用三角形三邊不等關系判定三條線段可否組成三角形。

四、知識框架

五、知識點、概念 總結

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三角形的分類

3.三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7.高線、中線、角平分線的意義和做法

8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9.三角形內角和定理:三角形三個內角的和等於180°

推論1直角三角形的兩個銳角互余;

推論2三角形的一個外角等於和它不相鄰的兩個內角和;

推論3三角形的一個外角大於任何一個和它不相鄰的內角;

三角形的內角和是外角和的一半。

10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

11.三角形外角的性質

(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

(2)三角形的一個外角等於與它不相鄰的兩個內角和;

(3)三角形的一個外角大於與它不相鄰的任一內角;

(4)三角形的外角和是360°。

12.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

13.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

17.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

初一數學知識點總結

代數

1.代數式:用運算符號「+-×÷……」連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式.

2.列代數式的幾個注意事項(數學規范):

(1)數與字母相乘,或字母與字母相乘通常使用「·」乘,或省略不寫;

(2)數與數相乘,仍應使用「×」乘,不用「·」乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;

(5)在代數式中出現除法運算時,一般用 分數線 將被除式和除式聯系,如3÷a寫成的形式;

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a.

3.幾個重要的代數式:(m、n表示整數)

(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;

(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;

(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續整數是:n-1、n、n+1;

(4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是:a2,非正數是:-a2.

七年級數學 公式大全(下學期)

1 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數 2 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數 3 速度×時間=路程 路程÷速度=時間 路程÷時間=速度 4 單價×數量=總價 總價÷單價=數量 總價÷數量=單價

5 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6 加數+加數=和 和-一個加數=另一個加數 7 被減數-減數=差 被減數-差=減數 差+減數=被減數 8 因數×因數=積 積÷一個因數=另一個因數 9 被除數÷除數=商 被除數÷商=除數 商×除數=被除數 小學數學圖形計算公式 1 正方形

C周長 S面積 a邊長 周長=邊長×4 C=4a

面積=邊長×邊長 S=a×a 2 正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6

體積=棱長×棱長×棱長 V=a×a×a 3 長方形

C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4 長方體

V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2

三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6 平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形

s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形

S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r

(2)面積=半徑×半徑×∏ 9 圓柱體

v:體積 h:高 s;底面積 r:底面半徑 c:底面周長

(1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑 10 圓錐體

v:體積 h:高 s;底面積 r:底面半徑

體積=底面積×高÷3 總數÷總份數=平均數 和差問題的公式 (和+差)÷2=大數 (和-差)÷2=小數 和倍問題


初一數學下冊重要知識點相關 文章 :

★ 初一數學下冊基本知識點總結

★ 初一數學下冊知識點匯總

★ 初一數學下冊知識點歸納總結

★ 初一下冊數學重點知識點總結歸納

★ 初一下期數學知識點總結

★ 初一數學下學期知識點

★ 初一下冊數學知識點總結

★ 七年級下數學知識點總結

★ 初一數學知識點歸納梳理