當前位置:首頁 » 基礎知識 » 七年級數學上冊第二章知識能力

七年級數學上冊第二章知識能力

發布時間: 2022-09-04 17:36:25

A. 人教版七年級數學上冊知識點總結

習中的困難莫過於一節一節的台階,雖然台階很陡,但只要一步一個腳印的踏,攀登一層一層的台階,才能實現學習的理想。 下面我給大家帶來人教版 七年級數學 上冊知識點 總結 ,希望大家喜歡!

人教版七年級數學上冊知識點總結

(一)正負數

1.正數:大於0的數。

2.負數:小於0的數。

3.0即不是正數也不是負數。

4.正數大於0,負數小於0,正數大於負數。

(二)有理數

1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

2.整數:正整數、0、負整數,統稱整數。

3.分數:正分數、負分數。

(三)數軸

1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2.數軸的三要素:原點、正方向、單位長度。

3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(四)有理數的加減法

1.先定符號,再算絕對值。

2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。

4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。5.a?b=a+(?b)減去一個數,等於加這個數的相反數。

(五)有理數乘法(先定積的符號,再定積的大小)

1.同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

2.乘積是1的兩個數互為倒數。

3.乘法交換律:ab=ba

4.乘法結合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理數除法

1.先將除法化成乘法,然後定符號,最後求結果。

2.除以一個不等於0的數,等於乘這個數的倒數。

3.兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。(七)乘方1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。3.同底數冪相乘,底不變,指數相加。

4.同底數冪相除,底不變,指數相減。

(八)有理數的加減乘除混合運演算法則

1.先乘方,再乘除,最後加減。

2.同級運算,從左到右進行。

3.如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

(九)科學記數法、近似數、有效數字。

第二章整式(一)整式

1.整式:單項式和多項式的統稱叫整式。

2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。

3.系數;一個單項式中,數字因數叫做這個單項式的系數。

4。次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。

5.多項式:幾個單項式的和叫做多項式。

6.項:組成多項式的每個單項式叫做多項式的項。

7.常數項:不含字母的項叫做常數項。

8.多項式的次數:多項式中,次數的項的次數叫做這個多項式的次數。

9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。

10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

人教版七年級數學上冊知識學習技巧

一、要不斷培養學習數學的興趣和求知渴望

有許多同學在小學都曾有過這樣的感受,每當你認識了一個數學規律,解決了一個較難的應用問題,成功的喜悅是無法用別的東西來替代的,它激勵你的學習熱情和好奇心,越學越愛學。學習的興趣和求知慾是要不斷地培養的,況且同學們剛剛邁進「數學王國」的大花園里,許多奧妙無窮的數學問題還等著你們去學習、觀賞、研究。

二、要養成認真讀書,獨立思考的好習慣

過去有些同學認為:學習數學主要是靠上課聽老師講明白,而把我們手中的數學課本僅僅當成做作業的「習題集」。這就有兩個認識問題必須要解決。

一是同學們要認識到,我們的教科書記載了由數學工作者整理的、大家必須掌握的基礎知識,以及如何運用這些知識解決問題等。因此,要想真正獲得知識,認真讀書、培養自學能力是一條根本途徑。我們希望同學們在中學老師的指導、幫助下,從過去不讀書、不會讀書轉變為愛讀書、學會讀書,進而養成認真讀書的好習慣。

二是同學們還要認識到,許多數學問題不是單靠老師講明白的,主要是靠同學們自己想明白的。孔子日:」學而不思則罔,思而不學則殆。」這句話極力精闢地闡述了學習和思考的辯證關系,即要學而恩、又要思而學。大家學習數學的過程主要是自己不斷深入思考的過程。我們希望大家今後在上數學課時。無論老師講新課,還是復習、講評作業練習,都要使自己的注意力高度集中,邊聽邊積極思考問題,捕捉有用的信息,隨時抓住萌發出的靈感。對於沒弄明白的問題,一定要及時、主動去解決它,直到弄懂為止。

人教版七年級數學上冊知識點 復習 方法

復習目標(包括重點難點)

針對全班的學習程度,初步把復習目標定為盡力提高全班學生學習成績,提高優良率和平均分,提高學生運用基礎知識解決實際問題的能力。

復習重點難點:

第五章重點:復習兩條直線的相交和平行的位置關系,以及相交平行的綜合應用。難點:垂直、平行的性質和判定的綜合應用。第六章重點:在平面直角坐標糸中,由已知點的坐標確定這一點的位置,由已知點的位置確定這一點的坐標和平面直角坐標系的應用。難點:建立坐標平面內點與有序實數對之間的一一對應關系和由坐標變化探求圖形之間的變化。

第七章重點:平面直角坐標系,重點是理解平面直角坐標系的有關概念,會畫平面直角坐標系,能在平面直角坐標系中根據坐標找出點,由點找出坐標;加深對數形結合思想的體會。難點是平面直角坐標系的實際應用。

第八章重點:二元一次方程組及相關概念,消元思想和代入法、加減法解二元一次方程組,利用二元一次方程組解決實際問題。難點:以方程組為工具分析問題、解決含有多個未知數的問題。

第九章重點:一元一次不等式(組)的解法及應用。難點:一元一次不等式(組)的解集和應用一元一次不等式(組)解決實際問題。

第十章重點:收集、整理和描述數據。

難點:樣本的抽取,頻數分布直方圖的畫法。

復習策略( 措施 )

預設1.「先分後總」的復習策略,先按章復習,後匯總復習;

2.「邊學邊練」的策略,在復習知識的同時,緊緊抓住練這個環節;

3.「環節檢測」的策略,每復習一個環節,就檢測一次,發現問題及時解決;

3.「模擬模擬」的復習策略,在總復習中,進行幾次模擬測試,來發現問題,並及時解決問題,促進學生學習質量的提高。

4.及時「總結歸納」的策略,對於一個知識環節或相聯系的知識點,要及時進行歸納與總結,讓學生系統掌握知識,提高能力。


人教版七年級數學上冊知識點總結相關 文章 :

★ 人教版七年級數學上冊知識點總結

★ 初一人教版數學上冊知識點總結歸納

★ 人教版七年級數學上冊復習提綱

★ 人教版數學七年級上冊復習提綱

★ 七年級數學上冊知識點總結第一章

★ 人教版初一數學上冊知識點

★ 初一數學上冊知識點歸納

★ 人教版初一數學知識點整理

★ 七年級人教版上冊數學復習提綱

★ 新人教版七年級上冊數學知識點

B. 蘇教版七年級數學上冊單元知識點匯總

快要 七年級數學 考試了,同學們要全力以赴的認真復習知識點。我整理了關於蘇教版七年級數學上冊單元知識點匯總,希望對大家有幫助!

蘇教版七年級數學上冊單元知識點匯總(一)
正數和負數

⒈正數和負數的概念

負數:比0小的數 正數:比0大的數 0既不是正數,也不是負數

注意:①字母a可以表示任意數,當a表示正數時,-a是負數;當a表示負數時,-a是正數;當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)

②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。

2.具有相反意義的量

若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:

零上8℃表示為:+8℃;零下8℃表示為:-8℃

3.0表示的意義 ⑴0表示“ 沒有”,如教室里有0個人,就是說教室里沒有人;

⑵0是正數和負數的分界線,0既不是正數,也不是負數。
蘇教版七年級數學上冊單元知識點匯總(二)
絕對值

⒈絕對值的幾何定義

一般地,數軸上表示數a的點與原點的距離叫做a的絕對值,記作|a|。

2.絕對值的代數定義

⑴一個正數的絕對值是它本身; ⑵一個負數的絕對值是它的相反數; ⑶0的絕對值是0.

可用字母表示為:

①如果a>0,那麼|a|=a; ②如果a<0,那麼|a|=-a; ③如果a=0,那麼|a|=0。

可歸納為①:a≥0,<═> |a|=a (非負數的絕對值等於本身;絕對值等於本身的數是非負數。)

②a≤0,<═> |a|=-a (非正數的絕對值等於其相反數;絕對值等於其相反數的數是非正數。)

3.絕對值的性質

任何一個有理數的絕對值都是非負數,也就是說絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數是0.即:a=0 <═> |a|=0;

⑵一個數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;

⑶任何數的絕對值都不小於原數。即:|a|≥a;

⑷絕對值是相同正數的數有兩個,它們互為相反數。即:若|x|=a(a>0),則x=±a;

⑸互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;

⑹絕對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;

⑺若幾個數的絕對值的和等於0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。

(非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)

4.有理數大小的比較

⑴利用數軸比較兩個數的大小:數軸上的兩個數相比較,左邊的總比右邊的小;

⑵利用絕對值比較兩個負數的大小:兩個負數比較大小,絕對值大的反而小;異號兩數比較大小,正數大於負數。

5.絕對值的化簡

①當a≥0時, |a|=a ; ②當a≤0時, |a|=-a

6.已知一個數的絕對值,求這個數

一個數a的絕對值就是數軸上表示數a的點到原點的距離,一般地,絕對值為同一個正數的有理數有兩個,它們互為相反數,絕對值為0的數是0,沒有絕對值為負數的數。
蘇教版七年級數學上冊單元知識點匯總(三)
用字母表示數

一、代數式

代數式:用基本運算符號把數和字母連接而成的式子叫做代數式,如n,-1,2n+500,abc。單獨的一個數或一個字母也是代數式。

單項式:表示數與字母的乘積的代數式叫單項式。單獨的一個數或一個字母也是代數式。

單項式的系數:單項式中的數字因數

單項式的次數:一個單項式中,所有字母的指數和

多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數項。

多項式里次數最高項的次數,叫做這個多項式的次數。常數項的次數為0。

整式:單項式和多項式統稱為整式。

注意:分母上含有字母的不是整式。

代數式書寫規范:

① 數與字母、字母與字母中的乘號可以省略不寫或用“²”表示,並把數字放到字母前;

② 出現除式時,用分數表示;

③ 帶分數與字母相乘時,帶分數要化成假分數;

④ 若運算結果為加減的式子,當後面有單位時,要用括弧把整個式子括起來。

二、合並同類項

同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項的法則:同類項的系數相加,所得的結果作為系數,字母和字母的指數不變。

合並同類項的步驟:(1)准確的找出同類項;(2)運用加法交換律,把同類項交換位置後結合在一起;(3)利用法則,把同類項的系數相加,字母和字母的指數不變;(4)寫出合並後的結果。

三、去括弧的法則

(1)括弧前面是“+”號,把括弧和它前面的“+”號去掉,括弧里各項的符號都不變;

(2)括弧前面是“—”號,把括弧和它前面的“—”號去掉,括弧里各項的符號都要改變。

整式的加減:進行整式的加減運算時,如果有括弧先去括弧,再合並同類項。

整式加減的步驟:(1)列出代數式;(2)去括弧;(3)合並同類項。

七年級數學上冊單元知識點匯總相關 文章 :

1. 七年級數學上冊知識點總結免費

2. 七年級上冊數學知識點總結

3. 七年級數學上冊知識點總結

4. 七年級數學知識點歸納

5. 初一數學上冊知識點歸納:有理數

C. 七年級上冊數學知識點

第一章 豐富的圖形世界

1、幾何圖形

從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

2、點、線、面、體

(1)幾何圖形的組成

點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

線:面和面相交的地方是線,分為直線和曲線。

面:包圍著體的是面,分為平面和曲面。

體:幾何體也簡稱體。

(2)點動成線,線動成面,面動成體。

3、生活中的立體圖形

生活中的立體圖形

柱:稜柱:三稜柱、四稜柱(長方體、正方體)、五稜柱、……

第二章 有理數

正有理數 整數

有理數 零 有理數

負有理數 分數

2、相反數:只有符號不同的兩個數叫做互為相反數,零的相反數是零

3、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。

4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和-1。零沒有倒數。

5、絕對值:在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0。互為相反數的兩個數的絕對值相等。

6、有理數比較大小:正數大於0,負數小於0,正數大於負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。

7、有理數的運算:

(1)五種運算:加、減、乘、除、乘方

多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。

有理數加法法則:

同號兩數相加,取相同的符號,並把絕對值相加。

異號兩數相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。

一個數同0相加,仍得這個數。

互為相反數的兩個數相加和為0。

有理數減法法則:減去一個數,等於加上這個數的相反數!

有理數乘法法則:

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積仍為0。

有理數除法法則:

兩個有理數相除,同號得正,異號得負,並把絕對值相除。

0除以任何非0的數都得0。

注意:0不能作除數。

有理數的乘方:求n個相同因數a的積的運算叫做乘方。

正數的任何次冪都是正數,負數的偶次冪是正數,負數的奇次冪是負數。

(2)有理數的運算順序

先算乘方,再算乘除,最後算加減,如果有括弧,先算括弧裡面的。

(3)運算律

加法交換律 加法結合律

乘法交換律 乘法結合律

乘法對加法的分配律

8、科學記數法

一般地,一個大於10的數可以表示成的形式,其中,n是正整數,這種記數方法叫做科學記數法。(n=整數位數-1)

第三章 整式及其加減

1、代數式

用運算符號(加、減、乘、除、乘方、開方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。

注意:①代數式中除了含有數、字母和運算符號外,還可以有括弧;

②代數式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;

③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。

※代數式的書寫格式:

①代數式中出現乘號,通常省略不寫,如vt;

②數字與字母相乘時,數字應寫在字母前面,如4a;

③帶分數與字母相乘時,應先把帶分數化成假分數,如應寫作;

④數字與數字相乘,一般仍用“×”號,即“×”號不省略;

⑤在代數式中出現除法運算時,一般寫成分數的形式,如4÷(a-4)應寫作;注意:分數線具有“÷”號和括弧的雙重作用。

⑥在表示和(或)差的代數式後有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的後面,如平方米。

2、整式:單項式和多項式統稱為整式。

①單項式:都是數字和字母乘積的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個單項式的次數;數字因數叫做這個單項式的系數。

注意:1.單獨的一個數或一個字母也是單項式;2.單獨一個非零數的次數是0;3.當單項式的系數為1或-1時,這個“1”應省略不寫,如-ab的系數是-1,a3b的系數是1。

②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。

3、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數也相同。

②同類項與系數無關,與字母的排列順序無關;

③幾個常數項也是同類項。

4、合並同類項法則:把同類項的系數相加,字母和字母的指數不變。

5、去括弧法則

①根據去括弧法則去括弧:

括弧前面是“+”號,把括弧和它前面的“+”號去掉,括弧里各項都不改變符號;括弧前面是“-”號,把括弧和它前面的“-”號去掉,括弧里各項都改變符號。

②根據分配律去括弧:

括弧前面是“+”號看成+1,括弧前面是“-”號看成-1,根據乘法的分配律用+1或-1去乘括弧里的每一項以達到去括弧的目的。

6、添括弧法則

添“+”號和括弧,添到括弧里的各項符號都不改變;添“-”號和括弧,添到括弧里的各項符號都要改變。

7、整式的運算:

整式的加減法:(1)去括弧;(2)合並同類項。

第四章 基本平面圖形

2、直線的性質

(1)直線公理:經過兩個點有且只有一條直線。(兩點確定一條直線。)

(2)過一點的直線有無數條。

(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

3、線段的性質

(1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)

(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

(3)線段的大小關系和它們的長度的大小關系是一致的。

4、線段的中點:

點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。

5、角:

有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉而成的。

6、角的表示

角的表示方法有以下四種:

①用數字表示單獨的角,如∠1,∠2,∠3等。

②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

7、角的度量

角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

1°=60’,1’=60”

8、角的平分線

從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

9、角的性質

(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

(2)角的大小可以度量,可以比較,角可以參與運算。

10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。

11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。

從一個n邊形的同一個頂點出發,分別連接這個頂點與其餘各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。

12、圓:平面上,一條線段繞著一個端點旋轉一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。

第五章 一元一次方程

1、方程

含有未知數的等式叫做方程。

2、方程的解

能使方程左右兩邊相等的未知數的值叫做方程的解。

3、等式的性質

(1)等式的兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。

(2)等式的兩邊同時乘以同一個數((或除以同一個不為0的數),所得結果仍是等式。

4、一元一次方程

只含有一個未知數,並且未知數的最高次數是1的整式方程叫做一元一次方程。

5、移項:把方程中的某一項,改變符號後,從方程的一邊移到另一邊,這種變形叫做移項.

6、解一元一次方程的一般步驟:

(1)去分母(2)去括弧(3)移項(把方程中的某一項改變符號後,從方程的一邊移到另一邊,這種變形叫移項。)(4)合並同類項(5)將未知數的系數化為1

第六章 數據的收集與整理

1、普查與抽樣調查

為了特定目的對全部考察對象進行的全面調查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體抽取的一部分個體叫做總體的一個樣本。

2、扇形統計圖

扇形統計圖:利用圓與扇形來表示總體與部分的關系,扇形的大小反映部分佔總體的百分比的大小,這樣的統計圖叫做扇形統計圖。(各個扇形所佔的百分比之和為1)

圓心角度數=360°×該項所佔的百分比。(各個部分的圓心角度數之和為360°)

3、頻數直方圖

頻數直方圖是一種特殊的條形統計圖,它將統計對象的數據進行了分組畫在橫軸上,縱軸表示各組數據的頻數。

4、各種統計圖的特點

條形統計圖:能清楚地表示出每個項目的具體數目。

折線統計圖:能清楚地反映事物的變化情況。

扇形統計圖:能清楚地表示出各部分在總體中所佔的百分比。

D. 七年級上冊數學第二章知識點歸納總結

七年級上冊數學第二章為整式的加減,知識點主要有單項式、多項式和同類項幾部分。

單項式

1、定義:對數字和若干個字母施行有限次乘法運算,所得的代數式叫做單項式。單獨一個數或一個字母也是單項式。

2、系數:單項式中的數字因數叫做這個單項式的系數。

3、單項式的次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數。

多項式

幾個單項式的和叫做多項式。

1、多項式的項:多項式中每一個單項式叫做多項式的項。

2、常數項:多項式中不含字母的項叫常數項。

3、多項式的次數:多項式中次數最高的項的次數,叫做多項式的次數。

同類項

1、定義:所含字母相同,並且相同字母的指數也相同的項叫做同類項。幾個常數項也是同類項。

2、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

3、合並同類項法則:合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母連同它的指數不變。

4、整式的加減:整式的加減就是合並同類項的過程。

以上為我整理的七年級上冊數學第二章的知識點,希望能夠幫到你。

E. 初一數學第二章知識點歸納總結

同學們都知道初一第二章整式的加減的知識重要吧,為了幫助大家更好的學習,以下是我分享給大家的初一數學第二章知識點歸納,希望可以幫到你!
初一數學第二章知識點歸納
2.1整式

①在含有字母的式子中如果出現乘號,通常將乘號寫作“·”或省略不寫。例如,100×t可以寫成100·t或100t。

②我們來看幾個式子:

100t,0.8p,mn,a2h,-n,

這些式子有什麼特點呢?

這些式子都是數或字母的積,像這樣的式子叫做單項式(monomial)。

③解釋一下:

⑴單項式中的數字因數叫做這個單項式的系數(coefficient)。例如,單項式100t,a2h,-n的系數分別是100,1,-1。單項式表示數與字母相乘時,通常把數寫在前面。

⑵一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree of a monomial)。例如,在單項式100t中,字母t的指數是1,100t的次數是1;在單項式a2h中,字母a與h的指數的和是3,a2h的次數是3.

溫馨提示:對於單獨一個非常的數,規定它的次數為0.

④舉個栗子:

x2+2x+18

⑴像這樣,幾個單項式的和叫做多項式(polynomial)。其中每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constant term)。例如,多項式u-2.5的項是u與-2.5,其中-2.5是常數項;多項式x2,2x與18,其中18是常數項。

⑵多項式里,次數最高項的次數,叫做這個多項式的次數(degree of a polynomial)。例如,多項式u-2.5中次數最高項是一次項u,這個多項式的次數是1;多項式x2+2x+18中次數最高項是二次項x2,這個多項式的次數是2。

⑤單項式與多項式統稱為整式(integral expression)。例如,上面見到的單項式100t,0.8p,mn,a2h,-n,以及多項式u+2.5,u-2.5,3x+5y+2z,ab-πr2,x2+2x+18等都是等式。

考考你:

u+2.5,3x+5y+2z,ab-πr2的項分別是什麼?次數分別是什麼?

解(自己試著做一做):

22.2整式的加減

①像100t與-252t,3x2與2x2,3ab2與-4ab2這樣,所含字母相同,並且相同字母的指數也相同的項叫做同類項。幾個常數項也是同類項。

②把多項式中的同類項合並成一項,叫做合並同類項。

合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母連同它的指數不變。

溫馨提示:

注意分配律的使用哦!

溫馨提示:通常我們把一個多項式的各項按照某個字母的指數從大到小(降冪)或者從小到大(升冪)的順序排列,如-4x2+5x+5也可以寫成5+5x-4x2。

③去括弧時符號變化的規律:

⑴如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同;

⑵如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3)。

利用分配律,可以將式子中的括弧去掉,得

+(x-3)=x-3,

-(x-3)=-x+3.

這也符合以上發現的去括弧規律。

我們可以利用上面的去括弧規律進行整式化簡。

小知識:

順水航速=船速+水速

逆水航速=船速-水速

④整式加減的運演算法則:

一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。

溫馨提示:如遇x-2(x-y2)+(-x+y2),其中x= -2,y=。像這樣求這個算式的值,可以先將式子化簡,再代入數值進行計算比較簡便
初一數學第二章重點知識點
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.

2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

通過本章學習,應使學生達到以下學習目標:

1.理解並掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯系。

2.理解同類項概念,掌握合並同類項的方法,掌握去括弧時符號的變化規律,能正確地進行同類項的合並和去括弧。在准確判斷、正確合並同類項的基礎上,進行整式的加減運算。

3.理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合並同類項、去括弧的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。

4.能夠分析實際問題中的數量關系,並用還有字母的式子表示出來。

在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。
初一數學第一章重點知識
有理數

知識點一 有理數的分類

有理數的另一種分類(①定義;②符號)

想一想:①零是整數嗎?自然數一定是整數嗎?自然數一定是正整數嗎?整數一定是自然數嗎?

②零是整數;自然數一定是整數;自然數不一定是正整數,因為零也是自然數;整數不一定是自然數,因為負整數不是自然數。

知識點二 數軸

1.填空

① 規定了唯一的原點,正方向和單位長度 (三要素)的直線叫做數軸。

② 比-3大的負整數是-2,-1。

③與原點的距離為三個單位的點有2個,他們分別表示的有理數是3,-3。

2.請畫一個數軸,並檢查它是否具備數軸三要素?

3.選擇題

① 在數軸上,原點及原點左邊所表示的數是()

A整數 B負數 C非負數 D非正數

②下列語句中正確的是()

A數軸上的點只能表示整數

B數軸上的點只能表示分數

C數軸上的點只能表示有理數

D所有有理數都可以用數軸上的點表示出來

知識點三 相反數

相反數:只有符號不同的兩個數互為相反數,0的相反數是0。在數軸上位於原點兩側且離原點距離相等。

知識點四 絕對值

1.絕對值的幾何意義:一個數所對應的點離原點的距離叫做該數的絕對值。

2.絕對值的代數定義:(1)一個正數的絕對值是它本身;(2)一個負數數的絕對值是它的相反數;(3)0的絕對值是0;(4)|a|大於或者等於0。

3.比較兩個數的大小關系

數學中規定:在數軸上表示有理數,它們從左到右的順序,就是從大到小的順序,即左邊的數小於右邊的數,由此可知:(1)正數大於0,0大於負數,正數大於負數;(2)兩個負數,絕對值大的反而小。

知識點五 有理數加減法

1.同號兩數相加,取相同的符號,並把絕對值相加。

絕對值不相等的異號兩數相加, 取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。

2.互為相反數的兩個數相加得0。

3.一個數同0相加,仍得這個數。

4.減去一個數,等於加上這個數的相反數。

知識點六 乘除法法則

1.兩數相乘,同號得 正 ,異號得 負 ,並把絕對值 相乘 。 0乘以任何數,都得 0 。

2.幾個不為0的數相乘,積的符號由負因數的個數確定,負因數的個數為 偶數 時,積為正;負因數的個數為 奇數 時,積為負。

3.兩數相除,同號得 正 ,異號得 負 ,並把絕對值 相除 。0除以任何一個不等於0的數,都得 0 。

4.有理數中仍然有:乘積是1的兩個數互為 倒數 。

5.除以一個不等於0的數等於乘以這個數的 倒數 。

知識點七 乘方

乘方定義:求n個相同因數的積的運算,叫做乘方。

在a的n次方中,底數是a,指數是n,冪是乘方的結果;讀作:a的n次方 或a 的n次冪。

負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0。

知識點八 運算律及混合運算

1.加法交換律:a+b=b+a

1.加法交換律:a+b=b+a

2.乘法交換律:a·b=b·a

3.加法結合律:a+(b+c)=(a+b)+c

4.乘法結合律:a·(b·c)=(a·b)·c

5.乘法分配律:a·(b+c)=ab+ac

6.有理數混合運算順序:先乘方;再乘除;最後算加減。

7.有括弧,先算括弧內的運算,按小括弧、中括弧、大括弧依次進行 。

8.同級運算, 從左到右進行 。

知識點九 近似數

1.近似數:在一定程度上反映被考察量的大小,能說明實際問題的意義,與准確數非常地接近,像這樣的數我們稱它為近似數。

2.近似數的分類

(1)具體近似數(如30.2、58.0 …)

(2)帶單位近似數(如2.4萬…)

(3)科學記數法

3.精確度:用位數較少的近似數替代位數較多或位數無限的數,有一個近似程度的問題,這個近似程度就是精確度。四捨五入到哪一位,就說精確到哪一位(看精確度得到原數中去看在哪一位上,如:2.4萬精確到千位,而非十分位,因為2.4萬就是24000,4在千位上)。

4.有效數字:對於一個不為0的近似數,從左邊第一個不為0的數字起,到末尾數止,所有數字都是這個近似數的有效數字。

求近似數要求保留n個有效數字時,第n+1個有效數字作四捨五入處理。

例:0.0109有三個有效數字1、0、9,要求保留2個有效數字時,0.0109的第三個有效數字9四捨五入,變為0.0110,保留兩個有效數字1、1後求出近似數0.0109≈0.011。

猜你喜歡:

1. 7年級上冊數學知識點歸納

2. 初一數學上冊知識點匯總整理

3. 初一數學知識點整理

4. 七年級數學上冊、下冊重要知識點總結

5. 初一數學第一章知識點總結大全

F. 七年級數學上冊、下冊重要知識點總結

初一數學上冊主要包括四個章節的內容;下冊主要包括相六章內容。為幫助大家更好地掌握 七年級數學 每個章節的重要內容,我整理了一些知識點以供學習復習參考!

七年級數學上冊知識點:第一章 有理數

一、知識框架

二.知識概念

1.有理數:

(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

(2)有理數的分類: ① ②2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為: 或 ;絕對值的問題經常分類討論;

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼 的倒數是 ;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

18.混合運演算法則:先乘方,後乘除,最後加減.

本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題.

體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。

七年級數學上冊知識點:第二章 整式的加減

一.知識框架二.知識概念

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.

2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

通過本章學習,應使學生達到以下學習目標:

1. 理解並掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯系。

2. 理解同類項概念,掌握合並同類項的 方法 ,掌握去括弧時符號的變化規律,能正確地進行同類項的合並和去括弧。在准確判斷、正確合並同類項的基礎上,進行整式的加減運算。

3. 理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合並同類項、去括弧的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。

4.能夠分析實際問題中的數量關系,並用還有字母的式子表示出來。

在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。

七年級數學上冊知識點:第三章 一元一次方程

本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。

一.知識框架

二.知識概念

1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

2.一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).

3.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).

4.列一元一次方程解應用題:

(1)讀題分析法:………… 多用於“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.

(2)畫圖分析法: ………… 多用於“行程問題”

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.

11.列方程解應用題的常用公式:

(1)行程問題: 距離=速度·時間 ;

(2)工程問題: 工作量=工效·工時 ;

(3)比率問題: 部分=全體·比率 ;

(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,

S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐= πR2h.

七年級數學上冊知識點:第四章 圖形的認識初步

一、知識框架

本章的主要內容是圖形的初步認識,從生活周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形.通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯系.在此基礎上,認識一些簡單的平面圖形——直線、射線、線段和角.

二、本章書涉及的數學思想:

1.分類討論思想。在過平面上若干個點畫直線時,應注意對這些點分情況討論;在畫圖形時,應注意圖形的各種可能性。

2.方程思想。在處理有關角的大小,線段大小的計算時,常需要通過列方程來解決。

3.圖形變換思想。在研究角的概念時,要充分體會對射線旋轉的認識。在處理圖形時應注意轉化思想的應用,如立體圖形與平面圖形的互相轉化。

4.化歸思想。在進行直線、線段、角以及相關圖形的計數時,總要劃歸到公式n(n-1)/2的具體運用上來。

>>>下一頁更多精彩“七年級數學下冊知識點”

G. 七年級數學上冊第二章整式知識點

一、知識梳理:

現實世界、其他學科、數學中的問題情境

①整式的加減

②整式及其運算

③整式的乘法

④整式的除法

二、知識要點:

1、單項式、多項式、單項式的次數、多項式的次數、整式、同類項

1.單項式

(1)單項式的概念:數與字母的積這樣的代數式叫做單項式,單獨一個數或一個字母也是單項式。

注意:數與字母之間是乘積關系。

(2)單項式的系數:單項式中的字母因數叫做單項式的系數。

如果一個單項式,只含有字母因數,是正數的單項式系數為1,是負數的單項式系數為—1。

(3)單項式的次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2.多項式

(1)多項式的概念:幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數項。一個多項式有幾項就叫做幾項式。多項式中的符號,看作各項的性質符號。

(2)多項式的次數:多項式中,次數最高的項的次數,就是這個多項式的次數。

(3)多項式的排列:

1.把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

2.把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

3.整式: 單項式和多項式統稱為整式。

4.同類項的概念:

所含字母相同,並且相同字母的次數也相同的項叫做同類項,幾個常數項也叫同類項。

2、整式的加減(合並同類項)

1.合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

2.合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

3.合並同類項步驟:

⑴.准確的找出同類項。

⑵.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

⑶.寫出合並後的結果。

3、冪的運演算法則:

(m、n都是正整數)

(m、n都是正整數) 冪的乘方:底數不變,指數相乘。

(n是正整數) 積的乘方:把積的每一個因式分別乘方,再把所得的冪相乘。

(a≠0,m、n都是正整數,且m>n) 同底數冪相除:底數不變,指數相減。

(a≠0)

(a≠0,p是正整數)

4、整式的'乘法:

單項式乘以單項式、單項式乘以多項式、多項式乘以多項式

單項式與單項式相乘有以下法則:單項式與單項式相乘,把它們的系數、同底數冪分別相乘,其餘字母連同它的指數不變,作為積的因式。

單項式與多項式相乘有以下法則:單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

多項式與多項式相乘有下面的法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

平方差公式:

完全平方公式:

平方差公式:兩數和與這兩數差的積等於這兩數的平方差。

完全平方公式:兩數和的平方,等於這兩數的平方和,加上這兩數積的2倍。 兩數差的平方,等於這兩數的平方和,減去這兩積的2倍。

5、整式的除法

單項式除以單項式,多項式除以單項式

單項式與單項式相除有以下法則:單項式與單項式相除,把它們的系數,同底數冪分別相除,除數中多餘的字母連同它的指數不變,作為積的形式。

單項式與多項式相除有以下法則:多項式與單項式相除,先用多項式的每一項除以這個單項式,再把所得的積相加。

H. 七年級數學上冊知識點總結

七年級數學上冊知識點總結(通用8篇)
總結在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,它可以促使我們思考,為此要我們寫一份總結。那麼如何把總結寫出新花樣呢?下面是小編為大家整理的七年級數學上冊知識點總結(通用8篇),歡迎大家分享。

七年級數學上冊知識點總結 篇1
數軸
1、數軸的概念
規定了原點,正方向,單位長度的直線叫做數軸。
注意:(1)數軸是一條向兩端無限延伸的直線;(2)原點、正方向、單位長度是數軸的三要素,三者缺一不
可;(3)同一數軸上的單位長度要統一;(4)數軸的三要素都是根據實際需要規定的。
2、數軸上的點與有理數的關系
(1)所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
(2)所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)
3、利用數軸表示兩數大小
(1)在數軸上數的大小比較,右邊的數總比左邊的數大;
(2)正數都大於0,負數都小於0,正數大於負數;
(3)兩個負數比較,距離原點遠的數比距離原點近的數小。
4、數軸上特殊的(小)數
(1)最小的自然數是0,無的自然數;
(2)最小的正整數是1,無的正整數;
(3)的負整數是-1,無最小的負整數
5、a可以表示什麼數
(1)a>0表示a是正數;反之,a是正數,則a>0;
(2)a
(3)a=0表示a是0;反之,a是0,,則a=0
七年級數學上冊知識點總結 篇2
第一章 有理數
(一)正負數
1、正數:大於0的數。
2、負數:小於0的數。
3、0即不是正數也不是負數。
4、正數大於0,負數小於0,正數大於負數。
(二)有理數
1、有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整數之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)
2、整數:正整數、0、負整數,統稱整數。
3、分數:正分數、負分數。
(三)數軸
1、數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2、數軸的三要素:原點、正方向、單位長度。
3、相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
4、絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數比較大小,絕對值大的反而小。
(四)有理數的加減法
1、先定符號,再算絕對值。
2、加法運演算法則:同號相加,取相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
3、加法交換律:a+b= b+ a 兩個數相加,交換加數的位置,和不變。
4、加法結合律:(a+b)+ c = a +(b+ c )三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
5、 ab = a +(b) 減去一個數,等於加這個數的相反數。
(五)有理數乘法(先定積的符號,再定積的大小)
1、同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
2、乘積是1的兩個數互為倒數。
3、乘法交換律:ab= ba
4、乘法結合律:(ab)c = a (b c)
5、乘法分配律:a(b +c)= a b+ ac
(六)有理數除法
1、先將除法化成乘法,然後定符號,最後求結果。
2、除以一個不等於0的數,等於乘這個數的倒數。
3、兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。
(七)乘方
1、求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)
2、負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。
(八)有理數的加減乘除混合運演算法則
1、先乘方,再乘除,最後加減。
2、同級運算,從左到右進行。
3、如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
(九)科學記數法、近似數、有效數字。
第二章 整式
(一)整式
1、整式:單項式和多項式的統稱叫整式。
2、單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。
3、系數:一個單項式中,數字因數叫做這個單項式的系數。
4、次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
5、多項式:幾個單項式的和叫做多項式。
6、項:組成多項式的每個單項式叫做多項式的項。
7、常數項:不含字母的項叫做常數項。
8、多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。
9、同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。
10、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
(二)整式加減
整式加減運算時,如果遇到括弧先去括弧,再合並同類項。
1、去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。
如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
2、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變
第三章 一元一次方程
分析實際問題中的數量關系,利用其中的相等關系列出方程,是用數學解決實際問題的一種方法。
(一)方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫方程。
(二)一元一次方程:
1、一元一次方程:方程里只含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程。
2、解:求出的方程中未知數的值叫做方程的解。
(二)等式的性質
1、等式兩邊加(或減)同一個數(或式子),結果仍相等。
如果a= b,那麼a± c= b± c
2、等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
如果a= b,那麼a c= b c;
如果a= b,(c0),那麼a ?Mc = b ?M c。
(三)解方程的步驟
解一元一次方程的步驟:去分母、去括弧、移項、合並同類項,未知數系數化為1。
1、去分母:把系數化成整數。
2、去括弧
3、移項:把等式一邊的某項變號後移到另一邊。
4、合並同類項
5、系數化為1
第四章 圖形認識初步
一、圖形認識初步
1、幾何圖形:把從實物中抽象出來的各種圖形的統稱。
2、平面圖形:有些幾何圖形的各部分都在同一平面內,這樣的圖形是平面圖形。
3、立體圖形:有些幾何圖形的各部分不都在同一平面內,這樣的圖形是立體圖形。
4、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。
5、點,線,面,體
1圖形是由點,線,面構成的。
2線與線相交得點,面與面相交得線。
3點動成線,線動成面,面動成體。
二、直線、線段、射線
1、線段:線段有兩個端點。
2、射線:將線段向一個方向無限延長就形成了射線。射線只有一個端點。
3、直線:將線段的兩端無限延長就形成了直線。直線沒有端點。
4、兩點確定一條直線:經過兩點有一條直線,並且只有一條直線。
5、相交:兩條直線有一個公共點時,稱這兩條直線相交。
6、兩條直線相交有一個公共點,這個公共點叫交點。
7、中點:M點把線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。
8、線段的性質:兩點的所有連線中,線段最短。(兩點之間,線段最短)
9、距離:連接兩點間的線段的長度,叫做這兩點的距離。
三、角
1、角:有公共端點的兩條射線組成的圖形叫做角。
2、角的度量單位:度、分、秒。
3、角的度量與表示:
1角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
2一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60進制。
4、角的比較:
1角也可以看成是由一條射線繞著他的端點旋轉而成的。
2平角和周角:一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。平角等於180度。周角等於360度。直角等於90度。
3平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
4工具:量角器、三角尺、經緯儀。
5、餘角和補角
1餘角:兩個角的和等於90度,這兩個角互為餘角。即其中每一個是另一個角的餘角。
2補角:兩個角的和等於180度,這兩個角互為補角。即其中一個是另一個角的補角。
3補角的性質:等角的補角相等。
4餘角的性質:等角的餘角相等。
七年級數學上冊知識點總結 篇3
1、用加、減、乘(乘方)、除等運算符號把數或表示數的字母連接而成的式子,叫做代數式。(注:單獨一個數字或字母也是代數式)
2、代數式的寫法:數學與字母相乘時,「×」號省略,數字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數字與數字相乘時,「×」號不能省略;式中出現除法時,一般寫成分數形式。式中出現帶分數時,一般寫成假分數形式。
3、分段問題書寫代數式時要分段考慮,有單位時要考慮是否要();如:電費、水費、計程車、商店優惠。
4、單項式:由數字和字母乘積組成的式子。單獨一個數或一個字母也是單項式、因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,若1分母中不含有字母,2式子中含有加、減運算關系,也不是單項式、
單項式的系數:是指單項式中的數字因數;(不要漏負號和分母)
單項數的次數:是指單項式中所有字母的指數的和、(注意指數1)
5、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式、每個單項式稱項,(其中不含字母的項叫常數項)多項式的次數是指多項式里次數最高項的次數(選代表);多項式的項是指在多項式中每一個單項式、特別注意多項式的項包括它前面的性質符號、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。