A. 高中數學必修五知識點歸納有哪些
高中數學必修五知識點歸納如下:
1、偶次方根的被開方數不小於零。
2、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射。
3、若題設給出復合函數f[g(x)]的表達式時,可用換元法求函數f(x)的表達式,這時必須求出g(x)的值域,這相當於求函數的定義域。
4、反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可採用此法求得。
5、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便於判斷函數的奇偶性,有時需要將函數化簡或應用定義的等價形式。
B. 高中數學人教版必修二、必修五的所有公式
對數的性質及推導 用^表示乘方,用log(a)(b)表示以a為底,b的對數 *表示乘號,/表示除號 定義式: 若a^n=b(a>0且a≠1) 則n=log(a)(b) 基本性質: 1.a^(log(a)(b))=b 2.log(a)(MN)=log(a)(M)+log(a)(N); 3.log(a)(M/N)=log(a)(M)-log(a)(N); 4.log(a)(M^n)=nlog(a)(M) 推導 1.這個就不用推了吧,直接由定義式可得(把定義式中的[n=log(a)(b)]帶入a^n=b) 2. MN=M*N 由基本性質1(換掉M和N) a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)] 由指數的性質 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因為指數函數是單調函數,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3.與2類似處理 MN=M/N 由基本性質1(換掉M和N) a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)] 由指數的性質 a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因為指數函數是單調函數,所以 log(a)(M/N) = log(a)(M) - log(a)(N) 4.與2類似處理 M^n=M^n 由基本性質1(換掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指數的性質 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因為指數函數是單調函數,所以 log(a)(M^n)=nlog(a)(M) 其他性質: 性質一:換底公式 log(a)(N)=log(b)(N) / log(b)(a) 推導如下 N = a^[log(a)(N)] a = b^[log(b)(a)] 綜合兩式可得 N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 又因為N=b^[log(b)(N)] 所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {這步不明白或有疑問看上面的} 所以log(a)(N)=log(b)(N) / log(b)(a) 性質二:(不知道什麼名字) log(a^n)(b^m)=m/n*[log(a)(b)] 推導如下 由換底公式[lnx是log(e)(x),e稱作自然對數的底] log(a^n)(b^m)=ln(a^n) / ln(b^n) 由基本性質4可得 log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]} 再由換底公式 log(a^n)(b^m)=m/n*[log(a)(b)] --------------------------------------------(性質及推導 完) 公式三: log(a)(b)=1/log(b)(a) 證明如下: 由換底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b為底的對數,log(b)(b)=1 =1/log(b)(a) 還可變形得: log(a)(b)*log(b)(a)=1 三角函數的和差化積公式 sinα+sinβ=2sin(α+β)/2·cos(α-β)/2 sinα-sinβ=2cos(α+β)/2·sin(α-β)/2 cosα+cosβ=2cos(α+β)/2·cos(α-β)/2 cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2 三角函數的積化和差公式 sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)] cosα ·sinβ=1/2 [sin(α+β)-sin(α-β)] cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)] sinα ·sinβ=-1/2 [cos(α+β)-cos(α-β)] 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理 判別式 b2-4a=0 註:方程有相等的兩實根 b2-4ac>0 註:方程有一個實根 b2-4ac<0 註:方程有共軛復數根 某些數列前n項和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n*2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑 餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角 圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標 圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0 拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py 直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h 正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h' 圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l 弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長 柱體體積公式 ;V=s*h 圓柱體 V=pi*r2h
求採納
C. 高二數學必修五教學知識點
人是在失敗中長大,每一個名人背後都有不為人知的 故事 寒窗苦的讀聖賢書,既然我們沒在哪社會而感到高興,既然古人為我們創造知識何必不去珍惜古人的汗水。下面是我給大家帶來的 高二數學 必修五教學知識點,希望能幫助到你!
高二數學必修五教學知識點1
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定 方法 有:定義法(作差比較和作商比較)
導數法(適用於多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:
定義:注意區間是否關於原點對稱,比較f(_)與f(-_)的關系。f(_)-f(-_)=0f(_)=f(-_)f(_)為偶函數;
f(_)+f(-_)=0f(_)=-f(-_)f(_)為奇函數。
判別方法:定義法,圖像法,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(_)對定義域內的任意_滿足:f(_+T)=f(_),則T為函數f(_)的周期。
其他:若函數f(_)對定義域內的任意_滿足:f(_+a)=f(_-a),則2a為函數f(_)的周期.
應用:求函數值和某個區間上的函數解析式。
四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規律。
常見圖像變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)
平移變換y=f(_)→y=f(_+a),y=f(_)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2_)經過平移得到函數y=f(2_+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量(m,n)平移的意義。
對稱變換y=f(_)→y=f(-_),關於y軸對稱
y=f(_)→y=-f(_),關於_軸對稱
y=f(_)→y=f|_|,把_軸上方的圖象保留,_軸下方的圖象關於_軸對稱
y=f(_)→y=|f(_)|把y軸右邊的圖象保留,然後將y軸右邊部分關於y軸對稱。(注意:它是一個偶函數)
伸縮變換:y=f(_)→y=f(ω_),
y=f(_)→y=Af(ω_+φ)具體參照三角函數的圖象變換。
一個重要結論:若f(a-_)=f(a+_),則函數y=f(_)的圖像關於直線_=a對稱;
高二數學必修五教學知識點2
一、集合、簡易邏輯(14課時,8個)
1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。
二、函數(30課時,12個)
1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。
三、數列(12課時,5個)
1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。
四、三角函數(46課時,17個)
1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。
五、平面向量(12課時,8個)
1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。
六、不等式(22課時,5個)
1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。
七、直線和圓的方程(22課時,12個)
1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程。
八、圓錐曲線(18課時,7個)
1.橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質。
九、直線、平面、簡單何體(36課時,28個)
1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球。
十、排列、組合、二項式定理(18課時,8個)
1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。
十一、概率(12課時,5個)
1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗。
選修Ⅱ(24個)
十二、概率與統計(14課時,6個)
1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態分布;6.線性回歸。
十三、極限(12課時,6個)
1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。
十四、導數(18課時,8個)
1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的值和最小值。
十五、復數(4課時,4個)
1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二項方程的解法。
高二數學必修五教學知識點3
考點一:求導公式。
例1.f(_)是f(_)13_2_1的導函數,則f(1)的值是3
考點二:導數的幾何意義。
例2.已知函數yf(_)的圖象在點M(1,f(1))處的切線方程是y
1_2,則f(1)f(1)2
,3)處的切線方程是例3.曲線y_32_24_2在點(1
點評:以上兩小題均是對導數的幾何意義的考查。
考點三:導數的幾何意義的應用。
例4.已知曲線C:y_33_22_,直線l:yk_,且直線l與曲線C相切於點_0,y0_00,求直線l的方程及切點坐標。
點評:本小題考查導數幾何意義的應用。解決此類問題時應注意「切點既在曲線上又在切線上」這個條件的應用。函數在某點可導是相應曲線上過該點存在切線的充分條件,而不是必要條件。
考點四:函數的單調性。
例5.已知f_a_3__1在R上是減函數,求a的取值范圍。32
點評:本題考查導數在函數單調性中的應用。對於高次函數單調性問題,要有求導意識。
考點五:函數的極值。
例6.設函數f(_)2_33a_23b_8c在_1及_2時取得極值。
(1)求a、b的值;
(2)若對於任意的_[0,3],都有f(_)c2成立,求c的取值范圍。
點評:本題考查利用導數求函數的極值。求可導函數f_的極值步驟:
①求導數f'_;
②求f'_0的根;③將f'_0的根在數軸上標出,得出單調區間,由f'_在各區間上取值的正負可確定並求出函數f_的極值。
考點六:函數的最值。
例7.已知a為實數,f__24_a。求導數f'_;(2)若f'10,求f_在區間2,2上的值和最小值。
點評:本題考查可導函數最值的求法。求可導函數f_在區間a,b上的最值,要先求出函數f_在區間a,b上的極值,然後與fa和fb進行比較,從而得出函數的最小值。
考點七:導數的綜合性問題。
例8.設函數f(_)a_3b_c(a0)為奇函數,其圖象在點(1,f(1))處的切線與直線_6y70垂直,導函數
(1)求a,b,c的值;f'(_)的最小值為12。
(2)求函數f(_)的單調遞增區間,並求函數f(_)在[1,3]上的值和最小值。
點評:本題考查函數的奇偶性、單調性、二次函數的最值、導數的應用等基礎知識,以及推理能力和運算能力。
高二數學必修五教學知識點相關 文章 :
★ 高二數學必修5知識點總結
★ 高二數學必修五知識點
★ 高二數學必修五知識點總結
★ 高中數學必修5數列知識點總結
★ 高中數學必修5全部公式
★ 高二數學必修5等差數列知識點
★ 必修五數學知識點
★ 高二數學必修5數列知識點
★ 高中數學學霸提分秘籍:必修五知識點總結
★ 高二數學必修五不等式知識點總結
D. 高中數學必修一到必修五的知識點歸納有哪些
高中數學必修一到必修五的知識點歸納有:
1、向量的基本概念
(1)向量
既有大小又有方向的量叫做向量。物理學中又叫做矢量。如力、速度、加速度、位移就是向量。
(2)平行向量
方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共線向量。
(3)相等向量
長度相等且方向相同的向量叫做相等向量。
2、對於向量概念需注意
(1)向量是區別於數量的一種量,既有大小,又有方向,任意兩個向量不能比較大小,只可以判斷它們是否相等,但向量的模可以比較大小。
(2)向量共線與表示它們的有向線段共線不同。向量共線時,表示向量的有向線段可以是平行的,不一定在同一條直線上;而有向線段共線則是指線段必須在同一條直線上。
(3)由向量相等的定義可知,對於一個向量,只要不改變它的大小和方向,它是可以任意平行移動的,因此用有向線段表示向量時,可以任意選取有向線段的起點,由此也可得到:任意一組平行向量都可以平移到同一條直線上。
3、求函數的單調性:
利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恆f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恆f(x)0,則函數yf(x)在區間(a,b)上為常數函數。
4、求函數的極值:
設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。
5、求函數的值與最小值:
如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是一定的。
E. 高中數學必須五知識點總結
必修五知識點總結歸納必修五知識點總結歸納必修五知識點總結歸納必修五知識點總結歸納
((((一一一一))))解三角形解三角形解三角形解三角形
1、正弦定理:在C∆ΑΒ中,a、b、c分別為角Α、Β、C的對邊,R為C∆ΑΒ的外接圓的半徑,則有2sinsinsinabcRC===ΑΒ.
正弦定理的變形公式:①2sinaR=Α,2sinbR=Β,2sincRC=;
②sin2aRΑ=,sin2bRΒ=,sin2cCR=;
③::sin:sin:sinabcC=ΑΒ;
④sinsinsinsinsinsinabcabcCC++===Α+Β+ΑΒ.
2、三角形面積公式:111sinsinsin222CSbcabCac∆ΑΒ=Α==Β.
3、餘弦定理:在C∆ΑΒ中,有2222cosabcbc=+−Α,2222cosbacac=+−Β,
2222coscababC=+−.
4、餘弦定理的推論:222cos2bcabc+−Α=,222cos2acbac+−Β=,222cos2abcCab+−=.
5、射影定理:coscos,coscos,coscosabCcBbaCcAcaBbA=+=+=+
6、設a、b、c是C∆ΑΒ的角Α、Β、C的對邊,則:①若222abc+=,則90C=;
②若222abc+>,則90C<;③若222abc+<,則90C>.
(二二二二)數列數列數列數列
1、數列:按照一定順序排列著的一列數.
2、數列的項:數列中的每一個數.
F. 高中數學必修五全部重點
必修一、集合,函數。必修二、幾何,還有幾個方程公式,必修三、程序框圖,這些可較簡單,必修四、三角函數,平面向量、三角恆等變換,必修五、解三角形,數列,不等式。
G. 高一數學必修五知識點總結
高一是我們進入高中時期的第一階段,我們應該完善己身,好好學習。而數學也是我們必須學習的重要課程之一,我為各位同學整理了高 一年級數學 必修五知識點 總結 ,希望對你有所幫助!
高一數學 必修五知識點總結1
【差數列的基本性質】
⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.
⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.
⑶若{a}、{b}為等差數列,則{a±b}與{ka+b}(k、b為非零常數)也是等差數列.
⑷對任何m、n,在等差數列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l+k+p+…=m+n+r+…(兩邊的自然數個數相等),那麼當{a}為等差數列時,有:a+a+a+…=a+a+a+….
⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差).
⑺如果{a}是等差數列,公差為d,那麼,a,a,…,a、a也是等差數列,其公差為-d;在等差數列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項.
⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數.
⑽設a,a,a為等差數列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.
⑴數列{a}為等差數列的充要條件是:數列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數).
⑵在等差數列{a}中,當項數為2n(nN)時,S-S=nd,=;當項數為(2n-1)(n)時,S-S=a,=.
⑶若數列{a}為等差數列,則S,S-S,S-S,…仍然成等差數列,公差為.
⑷若兩個等差數列{a}、{b}的前n項和分別是S、T(n為奇數),則=.
⑸在等差數列{a}中,S=a,S=b(n>m),則S=(a-b).
⑹等差數列{a}中,是n的一次函數,且點(n,)均在直線y=x+(a-)上.
⑺記等差數列{a}的前n項和為S.①若a>0,公差d<0,則當a≥0且a≤0時,S;②若a<0,公差d>0,則當a≤0且a≥0時,S最小.
【等比數列的基本性質】
⑴公比為q的等比數列,從中取出等距離的項,構成一個新數列,此數列仍是等比數列,其公比為q(m為等距離的項數之差).
⑵對任何m、n,在等比數列{a}中有:a=a·q,特別地,當m=1時,便得等比數列的通項公式,此式較等比數列的通項公式更具有普遍性.
⑶一般地,如果t,k,p,…,m,n,r,…皆為自然數,且t+k,p,…,m+…=m+n+r+…(兩邊的自然數個數相等),那麼當{a}為等比數列時,有:a.a.a.…=a.a.a.…..
⑷若{a}是公比為q的等比數列,則{|a|}、{a}、{ka}、{}也是等比數列,其公比分別為|q|}、{q}、{q}、{}.
⑸如果{a}是等比數列,公比為q,那麼,a,a,a,…,a,…是以q為公比的等比數列.
⑹如果{a}是等比數列,那麼對任意在n,都有a·a=a·q>0.
⑺兩個等比數列各對應項的積組成的數列仍是等比數列,且公比等於這兩個數列的公比的積.
⑻當q>1且a>0或00且01時,等比數列為遞減數列;當q=1時,等比數列為常數列;當q<0時,等比數列為擺動數列.
高中數學必修五:等比數列前n項和公式S的基本性質
⑴如果數列{a}是公比為q的等比數列,那麼,它的前n項和公式是S=
也就是說,公比為q的等比數列的前n項和公式是q的分段函數的一系列函數值,分段的界限是在q=1處.因此,使用等比數列的前n項和公式,必須要弄清公比q是可能等於1還是必不等於1,如果q可能等於1,則需分q=1和q≠1進行討論.
⑵當已知a,q,n時,用公式S=;當已知a,q,a時,用公式S=.
⑶若S是以q為公比的等比數列,則有S=S+qS.⑵
⑷若數列{a}為等比數列,則S,S-S,S-S,…仍然成等比數列.
⑸若項數為3n的等比數列(q≠-1)前n項和與前n項積分別為S與T,次n項和與次n項積分別為S與T,最後n項和與n項積分別為S與T,則S,S,S成等比數列,T,T,T亦成等比數列
萬能公式:sin2α=2tanα/(1+tan^2α)(註:tan^2α是指tan平方α)
cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α)
升冪公式:1+cosα=2cos^2(α/2)1-cosα=2sin^2(α/2)1±sinα=(sin(α/2)±cos(α/2))^2
降冪公式:cos^2α=(1+cos2α)/2sin^2α=(1-cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈Z;
(2)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα
(3)sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα
(4)sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα
(5)sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα
(6)sin(π/2+α)=cosα,cos(π/2+α)=-sinα,
tan(π/2+α)=-cotα,cot(π/2+α)=-tanα
(7)sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,
tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα
(8)sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,
tan(3π/2-α)=cotα,cot(3π/2-α)=tanα(k·π/2±α),其中k∈Z
注意:為方便做題,習慣我們把α看成是一個位於第一象限且小於90°的角;
當k是奇數的時候,等式右邊的三角函數發生變化,如sin變成cos.偶數則不變;
用角(k·π/2±α)所在的象限確定等式右邊三角函數的正負.例:tan(3π/2+α)=-cotα
∵在這個式子中k=3,是奇數,因此等式右邊應變為cot
又,∵角(3π/2+α)在第四象限,tan在第四象限為負值,因此為使等式成立,等式右邊應為-cotα.三角函數在各象限中的正負分布
sin:第一第二象限中為正;第三第四象限中為負cos:第一第四象限中為正;第二第三象限中為負cot、tan:第一第三象限中為正;第二第四象限中為負。
高一數學必修五知識點總結2
(一)、映射、函數、反函數
1、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射.
2、對於函數的概念,應注意如下幾點:
(1)掌握構成函數的三要素,會判斷兩個函數是否為同一函數.
(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變數間的函數關系式,特別是會求分段函數的解析式.
(3)如果y=f(u),u=g(x),那麼y=f[g(x)]叫做f和g的復合函數,其中g(x)為內函數,f(u)為外函數.
3、求函數y=f(x)的反函數的一般步驟:
(1)確定原函數的值域,也就是反函數的定義域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)將x,y對換,得反函數的習慣表達式y=f-1(x),並註明定義域.
注意①:對於分段函數的反函數,先分別求出在各段上的反函數,然後再合並到一起.
②熟悉的應用,求f-1(x0)的值,合理利用這個結論,可以避免求反函數的過程,從而簡化運算.
(二)、函數的解析式與定義域
1、函數及其定義域是不可分割的整體,沒有定義域的函數是不存在的,因此,要正確地寫出函數的解析式,必須是在求出變數間的對應法則的同時,求出函數的定義域.求函數的定義域一般有三種類型:
(1)有時一個函數來自於一個實際問題,這時自變數x有實際意義,求定義域要結合實際意義考慮;
(2)已知一個函數的解析式求其定義域,只要使解析式有意義即可.如:
①分式的分母不得為零;
②偶次方根的被開方數不小於零;
③對數函數的真數必須大於零;
④指數函數和對數函數的底數必須大於零且不等於1;
⑤三角函數中的正切函數y=tanx(x∈R,且k∈Z),餘切函數y=cotx(x∈R,x≠kπ,k∈Z)等.
應注意,一個函數的解析式由幾部分組成時,定義域為各部分有意義的自變數取值的公共部分(即交集).
(3)已知一個函數的定義域,求另一個函數的定義域,主要考慮定義域的深刻含義即可.
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.
2、求函數的解析式一般有四種情況
(1)根據某實際問題需建立一種函數關系時,必須引入合適的變數,根據數學的有關知識尋求函數的解析式.
(2)有時題設給出函數特徵,求函數的解析式,可採用待定系數法.比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定系數,根據題設條件,列出方程組,求出a,b即可.
(3)若題設給出復合函數f[g(x)]的表達式時,可用換元法求函數f(x)的表達式,這時必須求出g(x)的值域,這相當於求函數的定義域.
(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(-x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式.
(三)、函數的值域與最值
1、函數的值域取決於定義域和對應法則,不論採用何種 方法 求函數值域都應先考慮其定義域,求函數值域常用方法如下:
(1)直接法:亦稱觀察法,對於結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域.
(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元.
(3)反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可採用此法求得.
(4)配方法:對於二次函數或二次函數有關的函數的值域問題可考慮用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件「一正二定三相等」有時需用到平方等技巧.
(6)判別式法:把y=f(x)變形為關於x的一元二次方程,利用「△≥0」求值域.其題型特徵是解析式中含有根式或分式.
(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可採用單調性法求出函數的值域.
(8)數形結合法求函數的值域:利用函數所表示的幾何意義,藉助於幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域.
2、求函數的最值與值域的區別和聯系
求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.
如函數的值域是(0,16],值是16,無最小值.再如函數的值域是(-∞,-2]∪[2,+∞),但此函數無值和最小值,只有在改變函數定義域後,如x>0時,函數的最小值為2.可見定義域對函數的值域或最值的影響.
3、函數的最值在實際問題中的應用
函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為「工程造價最低」,「利潤」或「面積(體積)(最小)」等諸多現實問題上,求解時要特別關注實際意義對自變數的制約,以便能正確求得最值.
(四)、函數的奇偶性
1、函數的奇偶性的定義:對於函數f(x),如果對於函數定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那麼函數f(x)就叫做奇函數(或偶函數).
正確理解奇函數和偶函數的定義,要注意兩點:(1)定義域在數軸上關於原點對稱是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恆等式.(奇偶性是函數定義域上的整體性質).
2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便於判斷函數的奇偶性,有時需要將函數化簡或應用定義的等價形式:
注意如下結論的運用:
(1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數;
(2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那麼在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類似地有「奇±奇=奇」「奇×奇=偶」,「偶±偶=偶」「偶×偶=偶」「奇×偶=奇」;
(3)奇偶函數的復合函數的奇偶性通常是偶函數;
(4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。
3、有關奇偶性的幾個性質及結論
(1)一個函數為奇函數的充要條件是它的圖象關於原點對稱;一個函數為偶函數的充要條件是它的圖象關於y軸對稱.
(2)如要函數的定義域關於原點對稱且函數值恆為零,那麼它既是奇函數又是偶函數.
(3)若奇函數f(x)在x=0處有意義,則f(0)=0成立.
(4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱區間上的單調性是相同(反)的。
(5)若f(x)的定義域關於原點對稱,則F(x)=f(x)+f(-x)是偶函數,G(x)=f(x)-f(-x)是奇函數.
(6)奇偶性的推廣
函數y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關於直線x=a對稱,即y=f(a+x)為偶函數.函數y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關於點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數。
高一數學必修五知識點總結3
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.
注意:如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;函數的定義域、值域要寫成集合或區間的形式.
定義域補充
能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等於零
2.構成函數的三要素:定義域、對應關系和值域
再注意:
(1)構成函數三個要素是定義域、對應關系和值域.由於值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)
(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變數和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備)
值域補充
(1)、函數的值域取決於定義域和對應法則,不論採取什麼方法求函數的值域都應先考慮其定義域.(2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎.(3).求函數值域的常用方法有:直接法、反函數法、換元法、配方法、均值不等式法、判別式法、單調性法等.
3.函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.
C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}
圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成.
(2)畫法
A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x,y),最後用平滑的曲線將這些點連接起來.
B、圖象變換法(請參考必修4三角函數)
常用變換方法有三種,即平移變換、伸縮變換和對稱變換
(3)作用:
1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。
發現解題中的錯誤。
4.快去了解區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.
5.什麼叫做映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有確定的元素y與之對應,那麼就稱對應f:AB為從集合A到集合B的一個映射。記作「f:AB」
給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對於映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。
常用的函數表示法及各自的優點:
函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;解析法:必須註明函數的定義域;圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特徵;列表法:選取的自變數要有代表性,應能反映定義域的特徵.
注意啊:解析法:便於算出函數值。列表法:便於查出函數值。圖象法:便於量出函數值
補充一:分段函數(參見課本P24-25)
在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變數代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式並用一個左大括弧括起來,並分別註明各部分的自變數的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的並集,值域是各段值域的並集.
補充二:復合函數
如果y=f(u),(u∈M),u=g(x),(x∈A),則y=f[g(x)]=F(x),(x∈A)稱為f、g的復合函數。
高一數學必修五知識點總結相關 文章 :
★ 高中數學學霸提分秘籍:必修五知識點總結
★ 高中數學必修5數列知識點總結
★ 高一數學必修五數列知識點
★ 高中數學必修5公式總結
★ 高中數學必修5全部公式
★ 高一數學等比數列知識點總結
★ 高一數學必修五等比中項必考知識點
★ 高一數學必修一知識點總結
★ 高中數學必考知識點歸納整理
★ 高中數學推理知識點總結
H. 高二數學必修五知識點總結
我們在學習當中認真預習好新的課程,上課專心聽講;不懂的及時請教老師或者同學。放學回來要認真把老師布置的作業完成,並且把課堂上學過的知識好好溫習一遍;這樣才能把學過的內容牢牢地記在腦子里。以下是我給大家整理的 高二數學 必修五知識點 總結 ,希望能幫助到你!
高二數學必修五知識點總結1
1.等差數列通項公式
an=a1+(n-1)d
n=1時a1=S1
n≥2時an=Sn-Sn-1
an=kn+b(k,b為常數)推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
2.等差中項
由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。這時,A叫做a與b的等差中項(arithmeticmean)。
有關系:A=(a+b)÷2
3.前n項和
倒序相加法推導前n項和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)
∴Sn=n(a1+an)÷2
等差數列的前n項和等於首末兩項的和與項數乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差數列性質
一、任意兩項am,an的關系為:
an=am+(n-m)d
它可以看作等差數列廣義的通項公式。
二、從等差數列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_
三、若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq
四、對任意的k∈N_,有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數列。
高二數學必修五知識點總結2
一、不等關系及不等式知識點
1.不等式的定義
在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號、、連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.
2.比較兩個實數的大小
兩個實數的大小是用實數的運算性質來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
3.不等式的性質
(1)對稱性:ab
(2)傳遞性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可開方:a0
(nN,n2).
注意:
一個技巧
作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.
一種 方法
待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最後利用不等式的性質求出目標式的范圍.
高二數學必修五知識點總結3
解三角形
1、三角形三角關系:A+B+C=180°;C=180°-(A+B);
2、三角形三邊關系:a+b>c; a-b3、三角形中的基本關系:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222
4、正弦定理:在???C中,a、b、c分別為角?、?、C的對邊,R為???C的外abc???2R. 接圓的半徑,則有sin?sin?sinCsin
5、正弦定理的變形公式:
①化角為邊:a?2Rsin?,b?2Rsin?,c?2RsinC; abc,sin??,sinC?; 2R2R2R
a?b?cabc???③a:b:c?sin?:sin?:sinC;④. sin??sin??sinCsin?sin?sinC②化邊為角:sin??6、兩類正弦定理解三角形的問題:
①已知兩角和任意一邊,求其他的兩邊及一角.
②已知兩角和其中一邊的對角,求其他邊角.(對於已知兩邊和其中一邊所對的角的題型要注意解的情況(一解、兩解、三解))
7、餘弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?, 222222c2?a2?b2?2abcosC.
b2?c2?a2a2?c2?b2a2?b2?c2
8、餘弦定理的推論:cos??,cos??,cosC?. 2bc2ac2ab(餘弦定理主要解決的問題:1.已知兩邊和夾角,求其餘的量。2.已知三邊求角)
9、餘弦定理主要解決的問題:①已知兩邊和夾角,求其餘的量。②已知三邊求角)
10、如何判斷三角形的形狀:判定三角形形狀時,可利用正餘弦定理實現邊角轉化,統一成邊的形式或角的形式設a、b、c是???C的角?、?、C
的對邊,則:
①若a?b?c,則C?90;②若a?b?c,則C?90;
③若a?b?c,則C?90.
高二數學必修五知識點總結相關 文章 :
★ 高二數學必修5知識點總結
★ 高二數學必修五知識點總結
★ 高中數學學霸提分秘籍:必修五知識點總結
★ 高中數學必修5數列知識點總結
★ 高二數學必修5等差數列知識點
★ 高中數學必修5全部公式
★ 高二數學必修五知識點
★ 高二數學知識點總結
★ 高二數學必修五不等式知識點總結
★ 高二數學必修5數列知識點