當前位置:首頁 » 基礎知識 » 貴州省數學會考必背公式知識點
擴展閱讀
佳績教育怎麼那麼貴 2025-01-19 12:45:59

貴州省數學會考必背公式知識點

發布時間: 2022-09-03 20:56:38

A. 高中數學會考必背公式

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b^2=a^2+c^2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)^2+(y-b)^2=^r2 註:(a,b)是圓心坐標 
圓的一般方程 x^2+y^2+Dx+Ey+F=0 註:D^2+E^2-4F>0
拋物線標准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB

某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2 
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
常用導數公式
1.y=c(c為常數) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2

希望能幫到你, 祝你學習進步,不理解請追問,理解請及時採納!(*^__^*)

B. 初中數學必背公式歸納整理

很多初中同學想要初中的公式,所以我整理了一些,希望大家多多理解並進行記憶,以便考個好的數學成績。
初中數學必背公式歸納
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理

判別式

b2-4ac=0 註:方程有兩個相等的實根

b2-4ac>0 註:方程有兩個不等的實根

b2-4ac0

拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py

直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h

正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'

圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l

弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h

斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長

柱體體積公式 V=s*h 圓柱體 V=pi*r2h

常見的初中數學公式

1.過兩點有且只有一條直線

2.兩點之間線段最短

3.同角或等角的補角相等

4.同角或等角的餘角相等

5.過一點有且只有一條直線和已知直線垂直

6.直線外一點與直線上各點連接的所有線段中,垂線段最短

7.平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9.同位角相等,兩直線平行

10.內錯角相等,兩直線平行

11.同旁內角互補,兩直線平行

12.兩直線平行,同位角相等

13.兩直線平行,內錯角相等

14.兩直線平行,同旁內角互補

15.定理 三角形兩邊的和大於第三邊

16.推論 三角形兩邊的差小於第三邊

17.三角形內角和定理 三角形三個內角的和等於180°

18.推論1 直角三角形的兩個銳角互余

19.推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20.推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21.全等三角形的對應邊、對應角相等

22.邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23.角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

24.推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25.邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

26.斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

27.定理1 在角的平分線上的點到這個角的兩邊的距離相等

28.定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29.角的平分線是到角的兩邊距離相等的所有點的集合

30.等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

31.推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

32.等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33.推論3 等邊三角形的各角都相等,並且每一個角都等於60°

34.等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35.推論1 三個角都相等的三角形是等邊三角形

36.推論 2 有一個角等於60°的等腰三角形是等邊三角形

37.在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

38.直角三角形斜邊上的中線等於斜邊上的一半

39.定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

40.逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41.線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42.定理1 關於某條直線對稱的兩個圖形是全等形

43.定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44.定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

45.逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

46.勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2

47.勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形

48.定理 四邊形的內角和等於360°

49.四邊形的外角和等於360°

50.多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
初中數學學習方法
1、配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
初中數學學習方建議
一、課前認真預習,簡單梳理知識體系

每節數學課前都要好好看一看接下來老師所要講授的內容,做到心中有數,帶著自己的問題走進課堂,以便在課堂中做到有的放矢,這是學好數學的關鍵。

良好的預習習慣是學習新知識的必要前提,我在教學時對學生提出的預習要求是:動筆畫一畫,動手做一做,動腦想一想。

1、畫一畫

在閱讀新的教學內容時,要把自己認為重點的內容和自己沒有弄懂的地方分別用不同顏色的筆畫下來。自己認為是重點的內容或不確定的知識上課時要認真聽講,跟住老師的教學思路;自己沒有弄懂的內容是上課時重點突破的地方,或在課堂知識探究中小夥伴之間取長補短式的學習,或在老師重點指導時認真咀嚼。只有經常這樣做,才會對數學產生一種善思好問的好習慣。

2、做一做

每節數學課的後面的練習可以自己試著先做一做,最好是每節新授內容能看懂百分之七十,會做的練習題達到百分之八十。以便於每節新授內容學習後就很容易的按照課本的習題設置能做到從易到難,從簡到繁,一步一步地把預習過的知識與自己的實踐進行比較。找到自己所欠缺的地方,以便在課堂探究中找到准確的答案。

3、想一想

對自己預習時的知識要學會歸納,對概念、定理、公式做出初步的歸納、總結,通過例題加深對知識的理解,最好把書中的習題自己做一遍,激發自己強烈的求知慾望。對教材中的概念、定理、公式做一下簡單的推理,在頭腦中建立對知識的初步整體認知。

二、課堂中要注意集中,突破知識的重難點

每節數學課,老師大多要在課堂教學中進行集中講解或採用分組探究的模式進行教學,突破本節授課的重難點,這就要求學生在每一節課上帶著問題去聽課,帶著問題去思考,攻克本節教學任務的重點內容。學會把預習中存在的問題放在課堂上著重聽,必要時還需做好筆記,並通過練習題加以鞏固。

在課堂教學中,我要求學生做到:會聽、會記、會練

1、會聽

聽課要會聽,不是你集中經歷去聽就行,而是要結合自己預習時自己所突破不了的知識去聽,做到有的放矢,如果採用小組探究形式學習,一定要有自己的見解,不能人雲亦雲,小夥伴之間要取長補短,把重點和難點知識把握好,做到當堂課的內容一定要當堂消化理解,不要欠債。

2、會記

數學課往往涉及到很多,這些都是學生在解答數學問題的依據,要求學生對概念、定理、公理、公式等進行熟記,並逐漸養成歸納、整理的好習慣,讓學生形成一定的知識體系,形成對知識的整體認知。

上課做筆記不是簡單的記錄老師的板書,而是要把老師所講的知識點、解題技巧和容易犯的錯誤進行分類整理,還要做到經常回顧,加深理解和記憶。

3、會練

數學不同於其他學科,只把概念、定理、公理、公式等進行熟記還不夠,有時無法解決一些實際問題,只有通過不斷的練習才能做到熟能生巧,減少運算中出現的錯誤。此環節要求學生做題要快,准確率要高,書寫干凈利落。讓學生養成學習中認真、嚴謹的科學態度。

三、課後要認真復習,保證作業質量

剛步入初中階段,學生每天都要接觸很多科目的學習,有時候會感覺到力不從心,不會合理分配時間,這就要求學生在當天課業結束後馬上進行知識的反饋,即及時完成老師布置的作業任務。在這一環節需要學生做到:鞏固當天學習的知識,反思好老師的授課內容,整理好易錯的知識。

1、鞏固

完成作業前一定要再閱讀一遍教材,認真回顧老師在課堂上所講的內容,然後再去寫作業。作業一定要養成獨立思考的好習慣,針對一道問題要學會多從不同的方法,不同的角度入手,多從典型題目中探索多種解題方法,從中得到聯想和啟發。

在較短的時間里進行知識的鞏固,對知識的理解及運用的效果是最佳的,反之則效果不會明顯,要做到學而時習之。

2、反思

學生在完成學習任務的基礎上還要進行知識的梳理,多樹立數學解題的思想,比如分類的思想,整體的思想,方程的思想,數形結合的思想,方程的思想函數的思想等常用的解題思想。同時還要對重點習題多問幾個為什麼,如果把這些題目中所示的已知條件改變、添加一些條件,結論與條件互換,原來的結論還存在嗎?只有多多練習才會做到游刃有餘。

3、整理

對於數學學習中,如試卷、作業中出現的錯誤,一定要及時弄懂,分析好自己做錯題目的原因,最好在錯題本中及時記錄下來,每隔一段時間就鞏固一下。在學習中絕對不能讓同樣的錯誤出現第二次。

數學是人類文化的重要組成部分,良好的數學素養是當代社會每個公民應該具備的基本素養。作為促進學生全面發展教育的重要組成部分,數學教學既要是學生掌握現代生活和學習中所需要的數學知識與技能,更要發揮數學在培養人的思維能力和創造能力。學習數學要做到有方法、有計劃與合理的安排,只有做到循序漸進,才會獲得最終的勝利。

猜你喜歡:

1. 初中數學公式知識大全

2. 初中數學規律題公式

3. 中考數學知識點總結

4. 初中數學公式怎麼記

5. 初中數學考試規律題公式

C. 貴州會考數學公式

貴州會考常用39個數學公式,詳見鏈接https://wenku..com/view/3143a0ddb9f3f90f76c61b4e.html。
高中會考是以測量和評價學生學業水平、學校教學質量為主要目的的水平考試,是評價普通高中教學質量的一項重要手段。它的實施使高考與高中畢業有為明顯區分,既確保了高中教學質量,又能確保給高校招生輸送合格的新生,在全國各地取得了明顯的成效。

D. 高二數學會考考試必考知識點

想在學習中獲得成功,也不是不是不可能的,只要我們能做到有永不言敗+勤奮學習+有遠大的理想+堅定的信念,堅強的意志,明確地目標,而想成功也是應該有這個配方研製而成的吧!以下是我給大家整理的 高二數學 會考考試必考知識點,希望能幫助到你!

高二數學會考考試必考知識點1

等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

若假設等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:S=ab/2。

且由等腰直角三角形性質可知:底邊c上的高h=c/2,則三角面積可表示為:S=ch/2=c2/4。

等腰直角三角形是一種特殊的三角形,具有所有三角形的性質:穩定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。

高二數學會考考試必考知識點2

反函數:

(1)定義:

(2)函數存在反函數的條件:

(3)互為反函數的定義域與值域的關系:

(4)求反函數的步驟:

①將看成關於的方程,解出,若有兩解,要注意解的選擇;

②將互換,得;

③寫出反函數的定義域(即的值域)。

(5)互為反函數的圖象間的關系:

(6)原函數與反函數具有相同的單調性;

(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。

高二數學會考考試必考知識點3

1.定義法:

判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關系畫出箭頭示意圖,再利用定義判斷即可。

2.轉換法:

當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。

3.集合法

在命題的條件和結論間的關系判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:

若A?B,則p是q的充分條件。

若A?B,則p是q的必要條件。

若A=B,則p是q的充要條件。

若A?B,且B?A,則p是q的既不充分也不必要條件。

高二數學會考考試必考知識點相關 文章 :

★ 高二數學考試必考知識點

★ 高二數學常考知識點總結

★ 高二數學考點知識點總結復習大綱

★ 高二數學知識點總結

★ 高二數學上下學期知識點復習提綱

★ 高二數學會考集合知識點總結

★ 高二數學會考知識點總結(2)

★ 高二數學復習必背知識點歸納

★ 高二數學會考集合知識點總結(2)

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

E. 誰能幫我總結高中數學會考知識點

2009年高中數學會考復習必背知識點
第一章 集合與簡易邏輯 1、含n個元素的集合的所有子集有 個
第二章 函數 1、求 的反函數:解出 , 互換,寫出 的定義域;
2、對數:①:負數和零沒有對數,②、1的對數等於0: ,③、底的對數等於1: ,
④、積的對數: , 商的對數: ,
冪的對數: ; ,
第三章 數列
1、數列的前n項和: ; 數列前n項和與通項的關系:
2、等差數列 :(1)、定義:等差數列從第2項起,每一項與它的前一項的差等於同一個常數;
(2)、通項公式: (其中首項是 ,公差是 ;)
(3)、前n項和:1. (整理後是關於n的沒有常數項的二次函數)
(4)、等差中項: 是 與 的等差中項: 或 ,三個數成等差常設:a-d,a,a+d
3、等比數列:(1)、定義:等比數列從第2項起,每一項與它的前一項的比等於同一個常數,( )。
(2)、通項公式: (其中:首項是 ,公比是 )
(3)、前n項和:
(4)、等比中項: 是 與 的等比中項: ,即 (或 ,等比中項有兩個)
第四章 三角函數
1、弧度制:(1)、 弧度,1弧度 ;弧長公式: ( 是角的弧度數)
2、三角函數 (1)、定義:
3、特殊角的三角函數值
的角度

的弧度





4、同角三角函數基本關系式:
5、誘導公式:(奇變偶不變,符號看象限) 正弦上為正;餘弦右為正;正切一三為正
公式二: 公式三: 公式四: 公式五:

6、兩角和與差的正弦、餘弦、正切
: :
: :
: :
7、輔助角公式:

8、二倍角公式:(1)、 : )




(2)、降次公式:(多用於研究性質)

9、三角函數:
函數 定義域 值域 周期性 奇偶性 遞增區間 遞減區間

[-1,1]
奇函數

[-1,1]
偶函數

函數 定義域 值域 振幅 周期 頻率 相位 初相 圖象

[-A,A] A

五點法
10、解三角形:(1)、三角形的面積公式:
(2)正弦定理:
(3)、餘弦定理:
求角:
第五章、平面向量 1、坐標運算:設 ,則
數與向量的積:λ ,數量積:
(2)、設A、B兩點的坐標分別為(x1,y1),(x2,y2),則 .(終點減起點)
;向量 的模| |: ;
(3)、平面向量的數量積: , 注意: , ,
(4)、向量 的夾角 ,則 ,
2、重要結論:(1)、兩個向量平行: ,
(2)、兩個非零向量垂直 ,
(3)、P分有向線段 的:設P(x,y) ,P1(x1,y1) ,P2(x2,y2) ,且 ,
則定比分點坐標公式 , 中點坐標公式
第六章:不等式
1、 均值不等式:(1)、 ( )
(2)、a>0,b>0; 或 一正、二定、三相等
2、解指數、對數不等式的方法:同底法,同時對數的真數大於0;
第七章:直線和圓的方程
1、斜 率: , ;直線上兩點 ,則斜率為
2、直線方程:(1)、點斜式: ;(2)、斜截式: ;
(3)、一般式: (A、B不同時為0) 斜率 , 軸截距為
3、兩直線的位置關系(1)、平行: 時 , ;
垂直: ;
(2)、到角范圍: 到角公式 : 都存在,
夾角范圍: 夾角公式: 都存在,
(3)、點到直線的距離公式 (直線方程必須化為一般式)
6、圓的方程:(1)、圓的標准方程 ,圓心為 ,半徑為
(2)圓的一般方程 (配方: )
時,表示一個以 為圓心,半徑為 的圓;
第八章:圓錐曲線 1、橢圓標准方程: ,
半焦距: , 離心率的范圍: ,准線方程: ,參數方程:
2、雙曲線標准方程: ,半焦距: ,離心率的范圍:
准線方程: ,漸近線方程用 求得: ,等軸雙曲線離心率
3、拋物線: 是焦點到准線的距離 ,離心率:
:准線方程 焦點坐標 ; :准線方程 焦點坐標
:准線方程 焦點坐標 ; :准線方程 焦點坐標
第九章 直線 平面 簡單的幾何體
1、長方體的對角線長 ;正方體的對角線長
2、兩點的球面距離求法:球心角的弧度數乘以球半徑,即 ;
3、球的體積公式: ,球的表面積公式:
4、柱體 ,錐體 ,錐體截面積比:
第十章 排列 組合 二項式定理
1、排列:(1)、排列數公式: = = .( , ∈N*,且 ).0!=1
(3)、全排列:n個不同元素全部取出的一個排列; ;
2、組合:
(1)、組合數公式: = = = ( , ∈N*,且 ); ;
(3)組合數的兩個性質: = ; + = ;
3、二項式定理 :(1)、定理: ;
(2)、二項展開式的通項公式(第r +1項):
各二項式系數和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n (表示含n個元素的集合的所有子集的個數)。
奇數項二項式系數的和=偶數項二項式系數的和:Cn0+Cn2+Cn4+ Cn6+…=Cn1+Cn3+Cn5+ Cn7+…=2n -1
第十一章:概率:
1、概率(范圍):0≤P(A) ≤1(必然事件: P(A)=1,不可能事件: P(A)=0)
2、等可能性事件的概率: .
3、互斥事件有一個發生的概率:A,B互斥: P(A+B)=P(A)+P(B);A、B對立:P(A)+ P(B)=1
4、獨立事件同時發生的概率:獨立事件A,B同時發生的概率:P(A•B)= P(A)•P(B).
n次獨立重復試驗中某事件恰好發生k次的概率

F. 高中數學會考公式有哪些

高中數學會考公式如下:

1、指數式與對數式的互化式:logₐN=b,ₐᵇ=N(a>0,a≠1,N>0)。

2、(ab)ʳ=aʳbʳ(a>0,b>0,r∈Q)。

3、二倍角公式:tan2A=2tanA/[1-(tanA)^2];cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2;sin2A=2sinA*cosA。

4、圓的一般方程:x²+y²+Dx+Ey+F=0(D²+E²-4F>0)。

5、n個互斥事件分別發生的概率的和P(A₁+A₂+A₃...+Aₙ)=P(A₁)+P(A₂)+...+P(Aₙ)。

G. 高中會考數學一些重要公式

拋物線:y = ax *+ bx + c
就是y等於ax 的平方加上 bx再加上 c
a > 0時開口向上
a < 0時開口向下
c = 0時拋物線經過原點
b = 0時拋物線對稱軸為y軸
還有頂點式y = a(x+h)* + k
就是y等於a乘以(x+h)的平方+k
-h是頂點坐標的x
k是頂點坐標的y
一般用於求最大值與最小值
拋物線標准方程:y^2=2px
它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0) 准線方程為x=-p/2
由於拋物線的焦點可在任意半軸,故共有標准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
編輯本段|回到頂部關於圓的公式 體積=4/3(pi)(r^3)
面積=(pi)(r^2)
周長=2(pi)r
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
(一)橢圓周長計算公式
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等於該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
(二)橢圓面積計算公式
橢圓面積公式: S=πab
橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現橢圓周率T,但這兩個公式都是通過橢圓周率T推導演變而來。常數為體,公式為用。
橢圓形物體 體積計算公式橢圓 的 長半徑*短半徑*PAI*高sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)] 正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a| 根與系數的關系 x1+x2=-b/a x1*x2=c/a 註:韋達定理
判別式 b2-4a=0 註:方程有相等的兩實根
b2-4ac>0 註:方程有兩個不相等的個實根
b2-4ac<0 註:方程有共軛復數根 圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h弧長計算公式:l=nπr/180
145扇形面積公式:s扇形=nπr2/360=lr/2
146內公切線長= d-(r-r) 外公切線長= d-(r+r)

H. 初中數學必背公式大全及知識點整理

很多同學都會需要整理知識點,我整理了初中數學的公司及一些常考知識點,大家一起來看看吧。

數學常用公式

一元二次方程的解法

大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程變為完全平方公式,在用直接開平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

(3)公式法

這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

相交線與平行線

1、相交線

對頂角相等。

過一點有且只有一條直線與已知直線垂直。

連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。

2、平行線

經過直線外一點,有且只有一條直線與這條直線平行。

如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

直線平行的條件:

兩條直線被第三條直線所截,如果同位角相等,那麼兩直線平行。

兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行。

兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行。

3、平行線的性質

兩條平行線被第三條直線所截,同位角相等。

兩條平行線被第三條直線所截,內錯角相等。

兩條平行線被第三條直線所截,同旁內角互補。

判斷一件事情的語句,叫做命題。

以上就是一些初中數學知識點整理,希望對大家有所幫助。

I. 高三數學會考知識點整理大全

奮斗也就是我們平常所說的努力。那種不怕苦,不怕累的精神在學習中也是需要的。看到了一道有意思的題,就不惜一切代價攻克它。為了學習,廢寢忘食一點也不是難事,只要你做到了有興趣。下面是我給大家帶來的 高三數學 會考知識點整理大全,以供大家參考!

高三數學會考知識點整理大全

定義:

形如y=x^a(a為常數)的函數,即以底數為自變數冪為因變數,指數為常量的函數稱為冪函數。

定義域和值域:

當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大於0時,函數的值域總是大於0的實數。在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域。

性質:

對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:

排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

排除了為0這種可能,即對於x

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

高三數學復習知識點

考點一:集合與簡易邏輯

集合部分一般以選擇題出現,屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,並向無限集發展,考查 抽象思維 能力。在解決這些問題時,要注意利用幾何的直觀性,並注重集合表示 方法 的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯結詞、「充要關系」、命題真偽的判斷、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數學解題過程和邏輯推理。

考點二:函數與導數

函數是高考的重點內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的性質。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡單應用,如求函數的單調區間、極值與最值等,通常以客觀題的形式出現,屬於容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯系在一起以解答題的形式出現,如一些不等式恆成立問題、參數的取值范圍問題、方程根的個數問題、不等式的證明等問題。

考點三:三角函數與平面向量

一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、餘弦定理的應用,可能就是一道和解答題相互補充的三角函數的圖像、性質或三角恆等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點考查平面向量數量積的概念及應用,向量與直線、圓錐曲線、數列、不等式、三角函數等結合,解決角度、垂直、共線等問題是「新 熱點 」題型、

考點四:數列與不等式

不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數列、解析幾何、函數導數等解答題中進行考查、在選擇、填空題中考查等差或等比數列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函數、方程、不等式等解決問題的能力,它們都屬於中、高檔題目、

考點五:立體幾何與空間向量

一是考查空間幾何體的結構特徵、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。

考點六:解析幾何

一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的`位置關系、圓錐曲線的定義應用、標准方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經常與平面向量、函數與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。

考點七:演算法復數推理與證明

高考對演算法的考查以選擇題或填空題的形式出現,或給解答題披層「外衣」、考查的熱點是流程圖的識別與演算法語言的閱讀理解、演算法與數列知識的網路交匯命題是考查的主流、復數考查的重點是復數的有關概念、復數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大、推理證明部分命題的方向主要會在函數、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對於理科,數學歸納法可能作為解答題的一小問

高三數學復習知識點最新

一、充分條件和必要條件

當命題「若A則B」為真時,A稱為B的充分條件,B稱為A的必要條件。

二、充分條件、必要條件的常用判斷法

1、定義法:判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關系畫出箭頭示意圖,再利用定義判斷即可

2、轉換法:當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。

3、集合法

在命題的條件和結論間的關系判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:

若A?B,則p是q的充分條件。

若A?B,則p是q的必要條件。

若A=B,則p是q的充要條件。

若A?B,且B?A,則p是q的既不充分也不必要條件。

三、知識擴展

1、四種命題反映出命題之間的內在聯系,要注意結合實際問題,理解其關系(尤其是兩種等價關系)的產生過程,關於逆命題、否命題與逆否命題,也可以敘述為:

(1)交換命題的條件和結論,所得的新命題就是原來命題的逆命題;

(2)同時否定命題的條件和結論,所得的新命題就是原來的否命題;

(3)交換命題的條件和結論,並且同時否定,所得的新命題就是原命題的逆否命題。

2、由於「充分條件與必要條件」是四種命題的關系的深化,他們之間存在這密切的聯系,故在判斷命題的條件的充要性時,可考慮「正難則反」的原則,即在正面判斷較難時,可轉化為應用該命題的逆否命題進行判斷。一個結論成立的充分條件可以不止一個,必要條件也可以不止一個。


高三數學會考知識點整理大全相關 文章 :

★ 高三數學會考知識點

★ 高三數學考試必考的重要知識點歸納

★ 高三數學都有哪些知識點

★ 高三學年數學考試主要考的知識點

★ 高三期末數學考試知識點

★ 高三數學學業考試知識點歸納

★ 高三數學模擬考試知識點概括

★ 高考數學知識點復習考試指導文章

★ 2017中職高三數學公式大全

★ 高考數學攻略:7個易錯點絕對值函數分析