1. 急求有趣的數學問題(用初二或初三的數學知識解答)
1、掛鍾每小時走快20秒,在2001年1月1日正午它指著標准時。到什麼時後又指著正確時間?
(2001年4月1日正午。當它走快了12小時後走到正確時間。)
2、馬和驢馱著同樣重的口袋。驢抱怨太重,馬說:你抱怨什麼,我若給你1袋,咱倆一樣多。你要給我1袋,我就是你的兩倍。問驢馬各馱多少袋? (馬7驢5)
3、1噸棉花和1噸鐵。哪個重?問題是真正的重量!(即質量)
(物體在空氣中的重量是它的質量減去它排開的空氣質量。棉花重。)
4、假如在地球赤道上纏上一條箍,同樣也在蘋果上也纏上一條箍。如果兩條箍都增加1米,那麼箍和地面或蘋果面之間就有了縫隙。哪一個的縫隙大些? (一樣大)
(設蘋果和地球圓周長分別為a、bm,則半徑分別為2π分之a、2π分之b。圓周各加1m,周長分別為(a+1)m、(b+1)m。新半徑分別為:2π分之(a+1)m、2π分之(b+1)m.新半徑減去老半徑,都是2π分之一。
(時間晚了,如果你看可用,我再給你發。)
2. 關於小學數學的趣聞知識或腦筋急轉彎
數學故事 —— 好朋友
最近「數學商店」來了一位新服務員,它就是小「4」。
一天,小「3」到數學商店買了一支鉛筆,小「4」說:「你應付1元5角4分。」
小「3」付了1元5角後問:「還有4分可怎麼付呀?」小「4」忙說:「這4分錢你不用付了。」小「3」疑惑地問道:「那你不是要吃虧了?」「不,這是本店的一個規定,叫『四捨五入』。凡是4分錢或4分錢以下都捨去,如果是5分或5分錢以上,那就收1角錢。」小「4」和藹可親地解釋道。小「3」高興地說:「謝謝你,你真好!」
「對呀,我也特別喜歡4。」「25」跑過來說,「因為25×4=100,算起來比較簡便,例如:25×87×4=25×4×87,這樣算起來不是又快又簡便嗎?!」
「不錯,的確又快又簡便,我也喜歡4。」原來是「29」。「25」忙問道:「咦,你怎麼也會喜歡『4』了?」「29」不慌不忙地說:「這你們就不知道了,一般年份里的2月份都是28天,只有公歷年份是4的倍數的那一年,二月份才是29天,我4年才輪到一次,當然喜歡『4』了。不過公歷年份是整百的,必須是4百的倍數,二月份才有29天,這樣的年份叫閏年。」
「啊,『4』的用處可真大呀!」「25」贊嘆道。
這位「4」服務員真是個既溫柔又惹人喜歡的服務員。
韓信點兵 韓信點兵又稱為中國剩餘定理,相傳漢高祖劉邦問大將軍韓信統御兵士多少,韓信答說,每3人一列餘1人、5人一列餘2人、7人一列餘4人、13人一列餘6人……。劉邦茫然而不知其數。 我們先考慮下列的問題:假設兵不滿一萬,每5人一列、9人一列、13人一列、17人一列都剩3人,則兵有多少? 首先我們先求5、9、13、17之最小公倍數9945(註:因為5、9、13、17為兩兩互質的整數,故其最小公倍數為這些數的積),然後再加3,得9948(人)。 中國有一本數學古書「孫子算經」也有類似的問題:「今有物,不知其數,三三數之,剩二,五五數之,剩三,七七數之,剩二,問物幾何?」
答曰:「二十三」
術曰:「三三數之剩二,置一百四十,五五數之剩三,置六十三,七七數之剩二,置三十,並之,得二百三十三,以二百一十減之,即得。凡三三數之剩一,則置七十,五五數之剩一,則置二十一,七七數之剩一,則置十五,即得。」
孫子算經的作者及確實著作年代均不可考。不過根據考證,著作年代不會在晉朝之後,以這個考證來說上面這種問題的解法,中國人發現得比西方早,所以這個問題的推廣及其解法,被稱為中國剩餘定理。中國剩餘定理(Chinese Remainder Theorem)在近代抽象代數學中佔有一席非常重要的地位。 數學家的遺囑 阿拉伯數學家花拉子密的遺囑,當時他的妻子正懷著他們的第一胎小孩。「如果我親愛的妻子幫我生個兒子,我的兒子將繼承三分之二的遺產,我的妻子將得三分之一;如果是生女的,我的妻子將繼承三分之二的遺產,我的女兒將得三分之一。」。 而不幸的是,在孩子出生前,這位數學家就去世了。之後,發生的事更困擾大家,他的妻子幫他生了一對龍鳳胎,而問題就發生在他的遺囑內容。 如何遵照數學家的遺囑,將遺產分給他的妻子、兒子、女兒呢? 碑文的奧秘古希臘亞歷山大里亞的著名數學家丟番圖,人們只知道他是公元3世紀的人,其年齡和生平史籍上都沒有明確的記載。但是,在他的墓碑上可以得知一二,而且它告訴人們,他終年是84歲。丟番圖的墓碑是這樣的:丟番圖長眠於此,倘若你懂得碑文的奧秘,它會告訴你丟番圖的壽命。諸神賜予他的生命的1/6是童年,再過了生命的1/12,他長出了胡須,其後丟番圖結了婚,不過還不曾有孩子,這樣又度過了一生的1/7,再過5年,他獲得了頭生子,然而他的愛子竟然早逝,只活了丟番圖壽命的一半,喪子以後,他在數學研究中尋求慰藉,又度過了4年,終於也結束了自己的一生。反正你又不給分自己找找看哪一個合適小學吧 謝謝採納哈
3. 五年級數學趣味小知識
一天,一位百萬富翁正悠閑地散步,一個穿戴十分平常的陌生人與他搭話。那人好像知道百萬富翁愛錢似的,話沒說幾句,就談到了一個換錢的契約。陌生人說:「從今天開始,我每天給你十萬元,你今天給我一元錢,明天給我兩元,即你每天給我的錢只需是前一天的二倍。」百萬富翁簡直不敢相信自己的耳朵,反復確認不是在做夢之後,急忙與陌生人簽訂了契約,且一再強調不準反悔。日子一天天過去,富翁每天都按時收到十萬元,而僅以微小的數目付出。到了第十天,富翁已收到一百萬元,總共卻只付出去1023元!到了第二十天,富翁感覺情況不妙,他發覺自己的支出在激增! 半年後,百萬富翁變成了千萬富翁!又過了一月後,他變成了百萬富翁!一星期後,變成了十萬富翁!一天後,他變成了窮光蛋!因為他每天一百萬,兩百萬,四百萬……最後每天一千億,兩千億的交……
這個人最後被殺死了!12345張撲克牌,每相臨的兩張可以互換位置,問怎麼才能在三次互換中變成54321的順序!
答案:
1 2 3 4 5 -- 1 2 和 3 4 互換
3 4 1 2 5 -- 4 1 和 2 5 互換
3 2 5 4 1 -- 3 2 和 5 4 互換
5 4 3 2 1
4. 趣味數學小知識
講述趣味數學的小知識可以提高小學生的學習熱情,關於數學的一些趣味小知識有哪些?下面是我為你整理的趣味數學小知識,一起來看看吧。
趣味數學小知識:“+”、“-”, “×”,“÷” 的由來
減號“+”、“-”— 五百年前德國人最先使用的。據說,當時酒商在售出酒後,曾用橫線標出酒桶里的存酒,而當桶里的酒又
增加時,便用豎線條把原來畫的橫線劃掉。於是就出現用以表示減少的“-”和用來表示增加的“+”。1489年,德國數學家魏德曼在他的著作中首先使用“+”、“-”這兩個符號表示剩餘和不足,後來又經過法國數學家韋達的宣傳和提倡,開始普及,直到1630年,才得到大家的公認。
乘號“×”— 三百多年前英國著名數學家歐德萊最先使用的,他認為乘法是加法的一種特殊形式,於是他便把前人所發明的“×”
轉動45°角,這樣乘號“×”也就面世了。“×”既表示了乘法與加法的關系,又表示了相乘的 方法 。
除號“÷”— 最初這個符號是作為減號在歐洲大陸流行,最早人們用“:”表示除或比,也有人用 分數線 “-”表示比,後來有
人把二者結合起來就變成了“÷”,瑞士的數學家拉哈的著作中正式把“÷”作為除號。
趣味數學小知識:奇妙的數字12
12這個數字跟人類有緣,與我們的生活有密切的聯系。如:
一年12個月
一晝夜12個時辰
時針在鍾面上走一圈是12小時
在我國和亞洲一些國家有著12生肖的說法
我國傳統用做表示次序的符號有12個,即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥
小腸第一部分叫十二指腸,它的長度相當於本人12個手指的指幅
人體的胸部有12塊胸椎,分別與12對肋骨相接
打 排球 時場上有12個球員
足球 比賽罰點球的英制長度是12碼
趣味數學小知識:0是我國最早創造的
我們知道阿拉伯數字1、2、3、4、5、6、7、8、9原是印度人發明的,13世紀後期傳入中國,人們誤認為0也是印度人發明的。其實印度起先發明時沒有“0”,他們把“204”,寫成“2 4”,中間空著,把2004,寫成“2 4”,怎麼區別中間有幾個零呢?為了避免看不清,就用點“· ”來表示,204寫成“2·4”,那不和小數混淆了?直到公元876年才把“0”確定下來。
5. 有趣的數學科普小知識有哪些
1、假如「一拃」的長度為8厘米,量一下課桌的長為7拃,則可知課桌長為56厘米。如果每步長65厘米,上學時,數一數走了多少步,就能算出從家到學校有多遠。
2、身高也是一把尺子。如果身高是150厘米,那麼抱住一棵大樹,兩手正好合攏,這棵樹的一周的長度大約是150厘米。因為每個人兩臂平伸,兩手指尖之間的長度和身高大約是一樣的。
3、要是想量樹的高,影子也可以幫助。只要量一量樹的影子和自己的影子長度就可以了。因為樹的高度=樹影長×身高÷人影長。
4、若去遊玩,要想知道前面的山距你有多遠,可以請聲音幫量一量。聲音每秒能走331米,那麼對著山喊一聲,再看幾秒可聽到回聲,用331乘聽到回聲的時間,再除以2就能算出來了。
5、「天象記錄員」珊瑚蟲科學家們發現,珊瑚蟲會在自己身上記錄時間:它們在體壁上每天「刻畫」一條環紋,一年「刻畫」365條,既不多也不少。因此想知道它們的年齡,只要數數它們體壁上的環紋即知。科學家們還發現,3.5億年前的珊瑚蟲,每年「刻畫」在身上的環紋不是365條,而是400條。原因是,那時地球自轉一天僅為21.9小時,一年不是365天,而是400天。
6. 關於數學小知識急用
數學小知識
--------------------------------------------------------------------------------
數學符號的起源
數學除了記數以外,還需要一套數學符號來表示數和數、數和形的相互關系。數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。
例如加號曾經有好幾種,現在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。
到了十八世紀,美國數學家歐德萊確定,把"×"作為乘號。他認為"×"是"+"斜起來寫,是另一種表示增加的符號。
"÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將"÷"作為除號。
十六世紀法國數學家維葉特用"="表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號"="就從1540年開始使用起來。
1591年,法國數學家韋達在菱中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了"="號,他還在幾何學中用"∽"表示相似,用"≌"表示全等。
大於號"〉"和小於號"〈",是1631年英國著名代數學家赫銳奧特創用。至於≯""≮"、"≠"這三個符號的出現,是很晚很晚的事了。大括弧"{ }"和中括弧"[ ]"是代數創始人之一魏治德創造的。
在日常生活中,數學無處不在,比如說:買菜、賣才算多少錢…… 下面是幾個關於數學的小故事。
1、高斯級數小朋友們你們可知道數學天才高斯小時候的故事嗎?高斯在小學二年級時,有一次老師教完加法後想休息一下,所以便出了一道題目要求學生算算看,題目是: 1+2+3+4………+96+97+98+99+100=? 本以為學生們必然會安靜好一陣子,正要找借口出去時,卻被高斯叫住了!原來呀,高斯已經算出來了,小朋友你可知道他是怎麼算的嗎?高斯告訴大家他是如何算出的:將1加至100
與100加至1;排成兩排想加,也就是說: 1+2+3+4+…………+96+97+98+99+100+ 100+99+98+97+96+…………+4+3+2+1 =101+101+101+…………+101+101+101+101 共有一百個101,但算式重復兩次,所以把10100除以2便得到答案等於5050。 從此以後高斯小學的學習過程早已經超過了其他的同學,也因此奠定了他以後的數學基礎,更讓他成為——數學天才。
2、雞兔同籠你聽說過「雞兔同籠」的問題嗎?這個問題,是我國古代著名趣題之一。大約在1500年前,《孫子算經》就記載了這個有趣的問題。書中是這樣敘述的:「今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔? 你會解答這個問題嗎?你想知道《孫子算經》中是如何解答這個問題的嗎? 解答思路是這樣的:假如砍去每隻雞、每隻兔一半的腳,則每隻雞就變成了「獨角雞」,每隻兔就變成了「雙腳兔」。這樣,(1)雞和兔的腳的總數就由94隻變成了47隻;(2)如果籠子里有一隻兔子,則腳的總數就比頭的總數多1。因此,腳的總只數47與總頭數35的差,就是兔子的只數,即47-35=12(只)。顯然,雞的只數就是35-12=23(只)了。 這一思路新穎而奇特,其「砍足法」也令古今中外數學家贊嘆不已。這種思維方法叫化歸法。化歸法就是在解決問題時,先不對問題採取直接的分析,而是將題中的條件或問題進行變形,使之轉化,直到最終把它歸成某個已經解決的問題。
7. 數學趣味題
1、 兩個男孩各騎一輛自行車,從相距2O英里(1英里合1.6093千米)的兩個地方,開始沿直線相向騎行。在他們起步的那一瞬間,一輛自行車車把上的一隻蒼蠅,開始向另一輛自行車徑直飛去。它一到達另一輛自行車車把,就立即轉嚮往回飛行。這只蒼蠅如此往返,在兩輛自行車的車把之間來回飛行,直到兩輛自行車相遇為止。如果每輛自行車都以每小時1O英里的等速前進,蒼蠅以每小時15英里的等速飛行,那麼,蒼蠅總共飛行了多少英里?
答案
每輛自行車運動的速度是每小時10英里,兩者將在1小時後相遇於2O英里距離的中點。蒼蠅飛行的速度是每小時15英里,因此在1小時中,它總共飛行了15英里。
許多人試圖用復雜的方法求解這道題目。他們計算蒼蠅在兩輛自行車車把之間的第一次路程,然後是返回的路程,依此類推,算出那些越來越短的路程。但這將涉及所謂無窮級數求和,這是非常復雜的高等數學。據說,在一次雞尾酒會上,有人向約翰?馮·諾伊曼(John von Neumann, 1903~1957,20世紀最偉大的數學家之一。)提出這個問題,他思索片刻便給出正確答案。提問者顯得有點沮喪,他解釋說,絕大多數數學家總是忽略能解決這個問題的簡單方法,而去採用無窮級數求和的復雜方法。
馮·諾伊曼臉上露出驚奇的神色。「可是,我用的是無窮級數求和的方法.」他解釋道
2、 有位漁夫,頭戴一頂大草帽,坐在劃艇上在一條河中釣魚。河水的流動速度是每小時3英里,他的劃艇以同樣的速度順流而下。「我得向上游劃行幾英里,」他自言自語道,「這里的魚兒不願上鉤!」
正當他開始向上游劃行的時候,一陣風把他的草帽吹落到船旁的水中。但是,我們這位漁夫並沒有注意到他的草帽丟了,仍然向上游劃行。直到他劃行到船與草帽相距5英里的時候,他才發覺這一點。於是他立即掉轉船頭,向下游劃去,終於追上了他那頂在水中漂流的草帽。
在靜水中,漁夫劃行的速度總是每小時5英里。在他向上游或下游劃行時,一直保持這個速度不變。當然,這並不是他相對於河岸的速度。例如,當他以每小時5英里的速度向上游劃行時,河水將以每小時3英里的速度把他向下游拖去,因此,他相對於河岸的速度僅是每小時2英里;當他向下游劃行時,他的劃行速度與河水的流動速度將共同作用,使得他相對於河岸的速度為每小時8英里。
如果漁夫是在下午2時丟失草帽的,那麼他找回草帽是在什麼時候?
答案
由於河水的流動速度對劃艇和草帽產生同樣的影響,所以在求解這道趣題的時候可以對河水的流動速度完全不予考慮。雖然是河水在流動而河岸保持不動,但是我們可以設想是河水完全靜止而河岸在移動。就我們所關心的劃艇與草帽來說,這種設想和上述情況毫無無差別。
既然漁夫離開草帽後劃行了5英里,那麼,他當然是又向回劃行了5英里,回到草帽那兒。因此,相對於河水來說,他總共劃行了10英里。漁夫相對於河水的劃行速度為每小時5英里,所以他一定是總共花了2小時劃完這10英里。於是,他在下午4時找回了他那頂落水的草帽。
這種情況同計算地球表面上物體的速度和距離的情況相類似。地球雖然旋轉著穿越太空,但是這種運動對它表面上的一切物體產生同樣的效應,因此對於絕大多數速度和距離的問題,地球的這種運動可以完全不予考慮.
3、 一架飛機從A城飛往B城,然後返回A城。在無風的情況下,它整個往返飛行的平均地速(相對於地面的速度)為每小時100英里。假設沿著從A城到B城的方向筆直地刮著一股持續的大風。如果在飛機往返飛行的整個過程中發動機的速度同往常完全一樣,這股風將對飛機往返飛行的平均地速有何影響?
懷特先生論證道:「這股風根本不會影響平均地速。在飛機從A城飛往B城的過程中,大風將加快飛機的速度,但在返回的過程中大風將以相等的數量減緩飛機的速度。」「這似乎言之有理,」布朗先生表示贊同,「但是,假如風速是每小時l00英里。飛機將以每小時200英里的速度從A城飛往B城,但它返回時的速度將是零!飛機根本不能飛回來!」你能解釋這似乎矛盾的現象嗎?
答案
懷特先生說,這股風在一個方向上給飛機速度的增加量等於在另一個方向上給飛機速度的減少量。這是對的。但是,他說這股風對飛機整個往返飛行的平均地速不發生影響,這就錯了。
懷特先生的失誤在於:他沒有考慮飛機分別在這兩種速度下所用的時間。
逆風的回程飛行所用的時間,要比順風的去程飛行所用的時間長得多。其結果是,地速被減緩了的飛行過程要花費更多的時間,因而往返飛行的平均地速要低於無風時的情況。
風越大,平均地速降低得越厲害。當風速等於或超過飛機的速度時,往返飛行的平均地速變為零,因為飛機不能往回飛了。
4、 《孫子算經》是唐初作為「算學」教科書的著名的《算經十書》之一,共三卷,上卷敘述算籌記數的制度和乘除法則,中卷舉例說明籌算分數法和開平方法,都是了解中國古代籌算的重要資料。下卷收集了一些算術難題,「雞兔同籠」問題是其中之一。原題如下: 令有雉(雞)兔同籠,上有三十五頭,下有九十四足。
問雄、兔各幾何?
原書的解法是;設頭數是a,足數是b。則b/2-a是兔數,a-(b/2-a)是雉數。這個解法確實是奇妙的。原書在解這個問題時,很可能是採用了方程的方法。
設x為雉數,y為兔數,則有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根據這組公式很容易得出原題的答案:兔12隻,雉22隻。
5、我們大家一起來試營一家有80間套房的旅館,看看知識如何轉化為財富。
經調查得知,若我們把每日租金定價為160元,則可客滿;而租金每漲20元,就會失去3位客人。 每間住了人的客房每日所需服務、維修等項支出共計40元。
問題:我們該如何定價才能賺最多的錢?
答案:日租金360元。
雖然比客滿價高出200元,因此失去30位客人,但餘下的50位客人還是能給我們帶來360*50=18000元的收入; 扣除50間房的支出40*50=2000元,每日凈賺16000元。而客滿時凈利潤只有160*80-40*80=9600元。
當然,所謂「經調查得知」的行情實乃本人杜撰,據此入市,風險自擔。
6 數學家維納的年齡,全題如下: 我今年歲數的立方是個四位數,歲數的四次方是個六位數,這兩個數,剛好把十個數字0、1、2、3、4、5、6、7、8、9全都用上了,維納的年齡是多少? 解答:咋一看,這道題很難,其實不然。設維納的年齡是x,首先歲數的立方是四位數,這確定了一個范圍。10的立方是1000,20的立方是8000,21的立方是9261,是四位數;22的立方是10648;所以10=<x<=21 x四次方是個六位數,10的四次方是10000,離六位數差遠啦,15的四次方是50625還不是六位數,17的四次方是83521也不是六位數。18的四次方是104976是六位數。20的四次方是160000;21的四次方是194481; 綜合上述,得18=<x<=21,那隻可能是18,19,20,21四個數中的一個數;因為這兩個數剛好把十個數字0、1、2、3、4、5、6、7、8、9全都用上了,四位數和六位數正好用了十個數字,所以四位數和六位數中沒有重復數字,現在來一一驗證,20的立方是80000,有重復;21的四次方是194481,也有重復;19的四次方是130321;也有重復;18的立方是5832,18的四次方是104976,都沒有重復。 所以,維納的年齡應是18。
有隻猴子在樹林采了100根香蕉堆成一堆,猴子家離香蕉堆50米,猴子打算把香蕉背會家,
每次最多能背50根,可是猴子嘴饞,每走一米要吃一根香蕉,問猴子最多能背回家幾根香
蕉?
25根。
先背50根到25米處,這時,吃了25根,還有25根,放下。回頭再背剩下的50根,走到25米處時,又吃了25根,還有25根。再拿起地上的25根,一共50根,繼續往家走,一共25米,要吃25根,還剩25根到家。
S先生、P先生、Q先生他們知道桌子的 抽屜里有16張撲克牌:紅桃A、Q、4 黑桃J、8、4、2、7、3 草花K、Q、5、4、6 方塊A、5。約翰教授從這16張牌中挑出一張牌來,並把這張牌的點數告訴 P先生,把這張牌的花色告訴Q先生。這時,約翰教授問P先生和Q 先生:你們能從已知的點數或花色中推知這張牌是什麼牌嗎? 於是,S先生聽到如下的對話:
P先生:我不知道這張牌。
Q先生:我知道你不知道這張牌。
P先生:現在我知道這張牌了。
Q先生:我也知道了。
聽罷以上的對話,S先生想了一想之後,就正確地推出這張牌是什麼牌。
請問:這張牌是什麼牌?
六年級趣味數學題
1、問5條直線最多將平面分為多少份?
2、太陽落下西山坡,鴨兒嘎嘎要進窩。四分之一岸前走,一半的一半隨水波;身後還跟八隻鴨,我家鴨子共幾多?
3、 9棵樹種10行,每行3棵,問怎樣種?
4、數學謎語:(「/」是分數線)
3/4的倒數 7/8
1/100 1/2
3.4 1的任何次方
以上每條打一成語。
5、一個數,去掉百分號後比原數增加了0.4455,原數是多少?
6、甲、乙、丙三人投資55萬元辦一個商店。甲投資總數的1/5,餘下的由乙、丙承擔,且乙比丙多投資20%。乙投資多少萬元?
7、把繩子三折來量,井外餘4米;把繩子四折來量,井外餘1米。求井深和繩子各是多少?
8、一筐蘋果分給甲、乙、丙。甲分得全部蘋果的1/5加5個蘋果,乙分得全部蘋果的1/4加7個蘋果,丙分得餘下蘋果的一半,最後剩下的是一筐蘋果的1/8,求這筐蘋果有多少個?
9、某工廠三個車間共有180人,第二車間人數是第一車間人數的3倍還多1人,第三車間人數是第一車間人數的一半少1人。三個車間各有多少人?
10、 有人用車把米從甲地運往乙地,裝米的重車日行50千米,空車日行70千米,5日往返三次。甲乙兩地相距多少千米?
11、兄弟二人三年後的年齡和是26歲,弟弟今年的年齡恰好是兄弟二人年齡差的2倍。問,3年後兄弟二人各幾歲?
參考資料:http://www.318023.com/bbs1/printpage.asp?BoardID=5&ID=1461
有隻猴子在樹林采了100根香蕉堆成一堆,猴子家離香蕉堆50米,猴子打算把香蕉背會家,
每次最多能背50根,可是猴子嘴饞,每走一米要吃一根香蕉,問猴子最多能背回家幾根香
蕉?
25根。
先背50根到25米處,這時,吃了25根,還有25根,放下。回頭再背剩下的50根,問5條直線最多將平面分為多少份?
2、太陽落下西山坡,鴨兒嘎嘎要進窩。四分之一岸前走,一半的一半隨水波;身後還跟八隻鴨,我家鴨子共幾多?
3、 9棵樹種10行,每行3棵,問怎樣種?
4、數學謎語:(「/」是分數線)
3/4的倒數 7/8
1/100 1/2
3.4 1的任何次方
以上每條打一成語。
5、一個數,去掉百分號後比原數增加了0.4455,原數是多少?
6、甲、乙、丙三人投資55萬元辦一個商店。甲投資總數的1/5,餘下的由乙、丙承擔,且乙比丙多投資20%。乙投資多少萬元?
7、把繩子三折來量,井外餘4米;把繩子四折來量,井外餘1米。求井深和繩子各是多少?
8、一筐蘋果分給甲、乙、丙。甲分得全部蘋果的1/5加5個蘋果,乙分得全部蘋果的1/4加7個蘋果,丙分得餘下蘋果的一半,最後剩下的是一筐蘋果的1/8,求這筐蘋果有多少個?
9、某工廠三個車間共有180人,第二車間人數是第一車間人數的3倍還多1人,第三車間人數是第一車間人數的一半少1人。三個車間各有多少人?
10、 有人用車把米從甲地運往乙地,裝米的重車日行50千米,空車日行70千米,5日往返三次。甲乙兩地相距多少千米?
11、兄弟二人三年後的年齡和是26歲,弟弟今年的年齡恰好是兄弟二人年齡差的2倍。問,3年後兄弟二人各幾歲?走到25米處時,又吃了25根,還有25根。再拿起地上的25根,一共50根,繼續往家走,一共25米,要吃25根,還剩25根到家。
把一張紙裹在一支粉筆上,再用刀斜著把粉筆切斷,請問把紙展開後斷邊為什麼形狀?
答案:正弦曲線
S先生、P先生、Q先生他們知道桌子的 抽屜里有16張撲克牌:紅桃A、Q、4 黑桃J、8、4、2、7、3 草花K、Q、5、4、6 方塊A、5。約翰教授從這16張牌中挑出一張牌來,並把這張牌的點數告訴 P先生,把這張牌的花色告訴Q先生。這時,約翰教授問P先生和Q 先生:你們能從已知的點數或花色中推知這張牌是什麼牌嗎? 於是,S先生聽到如下的對話:
P先生:我不知道這張牌。
Q先生:我知道你不知道這張牌。
P先生:現在我知道這張牌了。
Q先生:我也知道了。
聽罷以上的對話,S先生想了一想之後,就正確地推出這張牌是什麼牌。
請問:這張牌是什麼牌?
例題1:你讓工人為你工作7天,給工人的回報是一根金條。金條平分成相連的7段,你必須在每天結束時給他們一段金條,如果只許你兩次把金條弄斷,你如何給你的工人付費?
例題2:現在小明一家過一座橋,過橋時候是黑夜,所以必須有燈。現在小明過橋要1秒,小明的弟弟要3秒,小明的爸爸要6秒,小明的媽媽要8秒,小明的爺爺要12秒。每次此橋最多可過兩人,而過橋的速度依過橋最慢者而定,而且燈在點燃後30秒就會熄滅。問小明一家如何過橋?
3、一個經理有三個女兒,三個女兒的年齡加起來等於13,三個女兒的年齡乘起來等於經理自己的年齡,有一個下屬已知道經理的年齡,但仍不能確定經理三個女兒的年齡,這時經理說只有一個女兒的頭發是黑的,然後這個下屬就知道了經理三個女兒的年齡。請問三個女兒的年齡分別是多少?為什麼?
4、有三個人去住旅館,住三間房,每一間房$10元,於是他們一共付給老闆$30,第二天,老闆覺得三間房只需要$25元就夠了於是叫小弟退回$5給三位客人,誰知小弟貪心,只退回每人$1,自己偷偷拿了$2,這樣一來便等於那三位客人每人各花了九元,於是三個人一共花了$27,再加上小弟獨吞了不$2,總共是$29。可是當初他們三個人一共付出$30那麼還有$1呢?
5、有兩位盲人,他們都各自買了兩對黑襪和兩對白襪,八對襪了的布質、大小完全相同, 而每對襪了都有一張商標紙連著。兩位盲人不小心將八對襪了混在一起。他們每人怎樣才能取回黑襪和白襪各兩對呢?
6、有一輛火車以每小時15公里的速度離開洛杉磯直奔紐約,另一輛火車以每小時20公里的速度從紐約開往洛杉磯。如果有一隻鳥,以30公里每小時的速度和兩輛火車同時啟動,從洛杉磯出發,碰到另一輛車後返回,依次在兩輛火車來回飛行,直到兩輛火車相遇,請問,這只小鳥飛行了多長距離?
7、你有兩個罐子,50個紅色彈球,50個藍色彈球,隨機選出一個罐子,隨機選取出一個彈球放入罐子,怎麼給紅色彈球最大的選中機會?在你的計劃中,得到紅球的准確幾率是多少?
8、你有四個裝葯丸的罐子,每個葯丸都有一定的重量,被污染的葯丸是沒被污染的重量+1.只稱量一次,如何判斷哪個罐子的葯被污染了?
9、對一批編號為1~100,全部開關朝上(開)的燈進行以下*作:凡是1的倍數反方向撥一次開關;2的倍數反方向又撥一次開關;3的倍數反方向又撥一次開關……問:最後為關熄狀態的燈的編號。
10、想像你在鏡子前,請問,為什麼鏡子中的影像可以顛倒左右,卻不能顛倒上下?
11、一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其它人帽子的顏色,卻看不到自己的。主持人先讓大家看看別人頭上戴的是什幺帽子,然後關燈,如果有人認為自己戴的是黑帽子,就打自己一個耳光。第一次關燈,沒有聲音。於是再開燈,大家再看一遍,關燈時仍然鴉雀無聲。一直到第三次關燈,才有劈劈啪啪打耳光的聲音響起。問有多少人戴著黑帽子?
12、兩個圓環,半徑分別是1和2,小圓在大圓內部繞大圓圓周一周,問小圓自身轉了幾周?如果在大圓的外部,小圓自身轉幾周呢?
13、 1元錢一瓶汽水,喝完後兩個空瓶換一瓶汽水,問:你有20元錢,最多可以喝到幾瓶汽水?
14 有3頂紅帽子,4頂黑帽子,5頂白帽子。讓10個人從矮到高站成一隊,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,卻只能看見站在前面那些人的帽子顏色。(所以最後一個人可以看見前面9個人頭上帽子的顏色,而最前面那個人誰的帽子都看不見。現在從最後那個人開始,問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續問他前面那個人。假設最前面那個人一定會知道自己戴的是黑帽子。為什麼?
15 10個箱子,每個箱子10個蘋果,其中一個箱子的蘋果是9兩/個,其他的都是1斤/個。 要求利用一個秤,只秤一次,找出那個裝9兩/個的箱子。
16 5個囚犯,分別按1-5號在裝有100顆綠豆的麻袋抓綠豆,規定每人至少抓一顆,而抓得最多和最少的人將被處死,而且,他們之間不能交流,但在抓的時候,可以摸出剩下的豆子數。問他們中誰的存活幾率最大?
17 假設排列著100個乒乓球,由兩個人輪流拿球裝入口袋,能拿到第100個乒乓球的人為勝利者。條件是:每次拿球者至少要拿1個,但最多不能超過5個,問:如果你是最先拿球的人,你該拿幾個?以後怎麼拿就能保證你能得到第100個乒乓球?
18 盧姆教授說:「有一次我目擊了兩只山羊的一場殊死決斗,結果引出了一個有趣的數學問題。我的一位鄰居有一隻山羊,重54磅,它已有好幾個季度在附近山區稱王稱霸。後來某個好事之徒引進了一隻新的山羊,比它還要重出3磅。 開始時,它們相安無事,彼此和諧相處。可是有一天,較輕的那隻山羊站在陡峭的山路頂上,向它的競爭對手猛撲過去,那對手站在土丘上迎接挑戰,而挑戰者顯然擁有居高臨下的優勢。不幸的是,由於猛烈碰撞,兩只山羊都一命嗚呼了。
現在要講一講本題的奇妙之處。對飼養山羊頗有研究,還寫過書的喬治·阿伯克龍比說道:「通過反復實驗,我發現,動量相當於一個自20英尺高處墜落下來的30磅重物的一次撞擊,正好可以打碎山羊的腦殼,致它死命。」如果他說得不錯,那麼這兩只山羊至少要有多大的逼近速度,才能相互撞破腦殼?你能算出來嗎?
19 據說有人給酒肆的老闆娘出了一個難題:此人明明知道店裡只有兩個舀酒的勺子,分別能舀7兩和11兩酒,卻硬要老闆娘賣給他2兩酒。聰明的老闆娘毫不含糊,用這兩個勺子在酒缸里舀酒,並倒來倒去,居然量出了2兩酒,聰明的你能做到嗎?
20 每個飛機只有一個油箱, 飛機之間可以相互加油(注意是相互,沒有加油機) 一箱油可供一架飛機繞地球飛半圈, 問題:為使至少一架飛機繞地球一圈回到起飛時的飛機場,至少需要出動幾架飛機?(所有飛機從同一機場起飛,而且必須安全返回機場,不允許中途降落,中間沒有飛機場)
http://hi..com/%D0%D0%D6%AA%B4%F3%D1%A7/blog/item/2c2a43e9dce09f38b90e2d40.html
http://t.3e.net/sx12/tk_214840.html
8. 數學趣味小知識
抽屜原理的應用
1947年,匈牙利數學家把這一原理引進到中學生數學競賽中,當年匈牙利全國數學競賽有一道這樣的試題:「證明在任何六個人中,一定可以找到三個互相認識的人,或者三個互不認識的人。」
這個問題乍看起來,似乎令人匪夷所思。但如果你懂得抽屜原理,要證明這個問題是十分簡單的。我們用A、B、C、D、E、F代表六個人,從中隨便找一個,例如A吧,把其餘五個人放到「與A認識」和「與A不認識」兩個「抽屜」里去,根據抽屜原理,至少有一個抽屜里有三個人。不妨假定在「與A認識」的抽屜里有三個人,他們是B、C、D。如果B、C、D三人互不認識,那麼我們就找到了三個互不認識的人;如果B、C、D三人中有兩個互相認識,例如B與C認識,那麼,A、B、C就是三個互相認識的人。不管哪種情況,本題的結論都是成立的。
由於這個試題的形式新穎,解法巧妙,很快就在全世界廣泛流傳,使不少人知道了這一原理。其實,抽屜原理不僅在數學中有用,在現實生活中也到處在起作用,如招生錄取、就業安排、資源分配、職稱評定等等,都不難看到抽屜原理的作用。
兔同籠
你以前聽說過「雞兔同籠」問題嗎?這個問題,是我國古代著名趣題之一。大約在1500年前,《孫子算經》中就記載了這個有趣的問題。書中是這樣敘述的:「今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?
你會解答這個問題嗎?你想知道《孫子算經》中是如何解答這個問題的嗎?
解答思路是這樣的:假如砍去每隻雞、每隻兔一半的腳,則每隻雞就變成了「獨角雞」,每隻兔就變成了「雙腳兔」。這樣,(1)雞和兔的腳的總數就由94隻變成了47隻;(2)如果籠子里有一隻兔子,則腳的總數就比頭的總數多1。因此,腳的總只數47與總頭數35的差,就是兔子的只數,即47-35=12(只)。顯然,雞的只數就是35-12=23(只)了。
這一思路新穎而奇特,其「砍足法」也令古今中外數學家贊嘆不已。這種思維方法叫化歸法。化歸法就是在解決問題時,先不對問題採取直接的分析,而是將題中的條件或問題進行變形,使之轉化,直到最終把它歸成某個已經解決的問題。
普喬柯趣題
普喬柯是原蘇聯著名的數學家。1951年寫成《小學數學教學法》一書。這本書中有下面一道有趣的題。
商店裡三天共賣出1026米布。第二天賣出的是第一天的2倍;第三天賣出的是第二天的3倍。求三天各賣出多少米布?
這道題可以這樣想:把第一天賣出布的米數看作1份。就可以畫出下面的線段圖:
第一天為1份;第二天為第一天的2倍;第三天為第二天的3倍,也就是第一天的2×3倍。
列綜合算式可求出第一天賣布的米數:
1026÷(l+2+6)=1026÷9=114(米)
而 114×2=228(米)
228×3=684(米)
所以三天賣的布分別是:114米、228米、684米。
請你接這種方法做一道題。
有四人捐款救災。乙捐款為甲的2倍,丙捐款為乙的3倍,丁捐款為丙的4倍。他們共捐款132元。求四人各捐款多少元?
鬼谷算
我國漢代有位大將,名叫韓信。他每次集合部隊,只要求部下先後按l~3、1~5、1~7報數,然後再報告一下各隊每次報數的余數,他就知道到了多少人。他的這種巧妙演算法,人們稱為鬼谷算,也叫隔牆算,或稱為韓信點兵,外國人還稱它為「中國剩餘定理」。到了明代,數學家程大位用詩歌概括了這一演算法,他寫道:
三人同行七十稀,五樹梅花廿一枝,
七子團圓月正半,除百零五便得知。
這首詩的意思是:用3除所得的余數乘上70,加上用5除所得余數乘以21,再加上用7除所得的余數乘上15,結果大於105就減去105的倍數,這樣就知道所求的數了。
比如,一籃雞蛋,三個三個地數餘1,五個五個地數餘2,七個七個地數餘3,籃子里有雞蛋一定是52個。算式是:
1×70+2×21+3×15=157
157-105=52(個)
請你根據這一演算法計算下面的題目。
新華小學訂了若干張《中國少年報》,如果三張三張地數,余數為1張;五張五張地數,余數為2張;七張七張地數,余數為2張。新華小學訂了多少張《中國少年報》呢?
是要這些么?