當前位置:首頁 » 基礎知識 » 高一數學選修知識
擴展閱讀
佳績教育怎麼那麼貴 2025-01-19 12:45:59

高一數學選修知識

發布時間: 2022-09-03 20:03:21

A. 高一數學必修一知識點總結

數學知識點是高考的基礎,掌握 高一數學 知識點將對高考復習起到重要作用,高一數學必修一知識點 總結 有哪些你知道嗎?一起來看看高一數學必修一知識點總結,歡迎查閱!

高1數學知識點總結

一、集合、簡易邏輯(14課時,8個)

1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函數(30課時,12個)

1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。

三、數列(12課時,5個)

1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

四、三角函數(46課時,17個)

1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)

1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

六、不等式(22課時,5個)

1.不等式;2.不等式的'基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程。

八、圓錐曲線(18課時,7個)

1.橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質。

九、直線、平面、簡單何體(36課時,28個)

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球。

十、排列、組合、二項式定理(18課時,8個)

1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。

十一、概率(12課時,5個)

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗。

選修Ⅱ(24個)

十二、概率與統計(14課時,6個)

1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣 方法 ;4.總體分布的估計;5.正態分布;6.線性回歸。

十三、極限(12課時,6個)

1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。

十四、導數(18課時,8個)

1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的最大值和最小值。

十五、復數(4課時,4個)

1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二二項方程的解法。

數學必修一知識點整理集合與函數概念

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:XKb1.Com

非負整數集(即自然數集)記作:N

正整數集:N_或N+

整數集:Z

有理數集:Q

實數集:R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{x?R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合

二、集合間的基本關系

1.「包含」關系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}「元素相同則兩集合相等」

即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那麼A?C

④如果A?B同時B?A那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

三、集合的運算

運算類型交集並集補集

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作『A交B』),即AB={x|xA,且xB}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作『A並B』),即AB={x|xA,或xB}).

基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈_.

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數時,當是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變數,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

函數的應用

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

方程有實數根函數的圖象與軸有交點函數有零點.

3、函數零點的求法:

求函數的零點:

1(代數法)求方程的實數根;

2(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數.

1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.

2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.

必修一函數重點知識整理

1. 函數的奇偶性

(1)若f(x)是偶函數,那麼f(x)=f(-x) ;

(2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用於求參數);

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

2. 復合函數的有關問題

(1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由「同增異減」判定;

3.函數圖像(或方程曲線的對稱性)

(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;

(6)函數y=f(x-a)與y=f(b-x)的圖像關於直線x= 對稱;

4.函數的周期性

(1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恆成立,則y=f(x)是周期為2a的周期函數;

(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數;

(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2 的周期函數;

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數;

5.方程k=f(x)有解 k∈D(D為f(x)的值域);

6.a≥f(x) 恆成立 a≥[f(x)]max,; a≤f(x) 恆成立 a≤[f(x)]min;

7.(1) (a>0,a≠1,b>0,n∈R+);

(2) l og a N= ( a>0,a≠1,b>0,b≠1);

(3) l og a b的符號由口訣「同正異負」記憶;

(4) a log a N= N ( a>0,a≠1,N>0 );

8. 判斷對應是否為映射時,抓住兩點:

(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;

9. 能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

10.對於反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個函數具有相同的單調性;(5) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

11.處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關系;

12. 依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題

13. 恆成立問題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解。


高一數學必修一知識點總結相關 文章 :

★ 高一數學必修一知識點匯總

★ 高中數學必修1知識點總結

★ 高一數學必修一知識點總結

★ 高一數學知識點匯總大全

★ 高一數學必修1對數函數知識點總結

★ 高一數學必修1函數的知識點歸納

★ 高一數學必修一知識點總結歸納

★ 高一數學必修1知識點歸納

★ 高中數學必修一復習提綱

★ 高一數學必修1知識整理

B. 數學高一知識點有哪些

數學高一知識點有:

1、直線的傾斜角定義是x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°。

2、直線的斜率定義是傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示,即斜率反映直線與軸的傾斜程度。

3、冪運算(指數運算)是一種關於冪的數學運算。同底數冪相乘,底數不變,指數相加;同底數冪相除,底數不變,指數相減。冪的冪,底數不變,指數相乘。

4、指數函數是數學中重要的函數。應用到值e上的這個函數寫為exp(x)。還可以等價的寫為ex,這里的e是數學常數,就是自然對數的底數。

5、指數函數的定義域為R,這里的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函數的定義域不連續,因此我們不予考慮,同時a等於0函數無意義一般也不考慮。

C. 高一數學主要知識點有哪些

第一章 集合與函數概念
1.集合的概念及其表示意思;2.集合間的關系;3.函數的概念及其表示;4.函數性質(單調性、最值、奇偶性)
第二章 基本初等函數(I)
一.指數與對數
1.根式;2.指數冪的擴充;3.對數;4.根式、指數式、對數式之間的關系;5.對數運算性質與指數運算性質
二.指數函數與對數函數
1.指數函數與對數函數的圖像與性質;2.指數函數y=ax的關系
三.冪函數 (定義、圖像、性質)
第三章 函數的應用
一.方程的實數解與函數的零點
二.二分法
三.幾類不同增長的函數模型
四.函數模型的應用
必修2知識點
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當時,; 當時,; 當時,不存在.
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為.
⑤一般式:(A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行於x軸的直線:(b為常數); 平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數),其中直線不在直線系中.
(6)兩直線平行與垂直
當,時,

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.
(7)兩條直線的交點
相交
交點坐標即方程組的一組解.
方程組無解 ; 方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點,

(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解.
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑.
2、圓的方程
(1)標准方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點; 當時,方程不表示任何圖形.
(3)求圓方程的方法:
一般都採用待定系數法:先設後求.確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經過切點,只有一條公切線;
當時,兩圓內含; 當時,為同心圓.
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
三、立體幾何初步
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方.
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形.
(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形.
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑.
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、
俯視圖(從上向下)
註:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度.
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半.
4、柱體、錐體、台體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和.
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

(3)柱體、錐體、台體的體積公式

(4)球體的表面積和體積公式:V= ; S=
4、空間點、直線、平面的位置關系
公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內.
應用: 判斷直線是否在平面內
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a.
符號語言:
公理2的作用:
①它是判定兩個平面相交的方法.
②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點.
③它可以判斷點在直線上,即證若干個點共線的重要依據.
公理3:經過不在同一條直線上的三點,有且只有一個平面.
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.
公理3及其推論作用:①它是空間內確定平面的依據 ②它是證明平面重合的依據
公理4:平行於同一條直線的兩條直線互相平行
空間直線與直線之間的位置關系
① 異面直線定義:不同在任何一個平面內的兩條直線
② 異面直線性質:既不平行,又不相交.
③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線
④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.
求異面直線所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上. B、證明作出的角即為所求角 C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補.
(8)空間直線與平面之間的位置關系
直線在平面內——有無數個公共點.

三種位置關系的符號表示:aα a∩α=A a‖α
(9)平面與平面之間的位置關系:平行——沒有公共點;α‖β
相交——有一條公共直線.α∩β=b
5、空間中的平行問題
(1)直線與平面平行的判定及其性質
線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行.
線線平行線面平行
線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,
那麼這條直線和交線平行.線面平行線線平行
(2)平面與平面平行的判定及其性質
兩個平面平行的判定定理
(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行.
(線線平行→面面平行),
(3)垂直於同一條直線的兩個平面平行,
兩個平面平行的性質定理
(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行.(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行.(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.
②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直.
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面.
性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行.
②面面垂直的判定定理和性質定理
判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直.
性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面.
9、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規定為.
②兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角.
③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角.
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規定為. ②平面的垂線與平面所成的角:規定為.
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角.
求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」.
在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,
在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線.
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.
②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角.
③直二面角:平面角是直角的二面角叫直二面角.
兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角
垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
同角三角函數間的基本關系式:
·平方關系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)
·積的關系:sinα=tanα*cosα cosα=cotα*sinαtanα=sinα*secα cotα=cosα*cscαsecα=tanα*cscα cscα=secα*cotα
·倒數關系:tanα·cotα=1sinα·cscα=1cosα·secα=1 三角函數恆等變形公式·兩角和與差的三角函數:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·輔助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)
·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα
·半形公式:sin(α/2)=正負√((1-cosα)/2)cos(α/2)=正負√((1+cosα)/2)tan(α/2)=正負√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式sin^2(α)=(1-cos(2α))/2cos^2(α)=(1+cos(2α))/2tan^2(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
必修5:
等差:an=a1+(n-1)d Sn=a1n+n(n-1)/2*d =n(a1+an)/2
等比:an=a1*q^n Sn=A1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =(a1-an*q)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n) (前提:q≠1)答案補充
正弦定理:a/sinA=b/sinB=c/sinC=2R(外接圓直徑)餘弦定理:a^2=b^2+c^2-2bc*conA b^2=a^2+c^2-2ac*conB c^2=b^2+c^2-2ab*conC cosA=b^2+c^2-a^2/abc cosB=a^2+c^2-b^2/2ac cosC=a^2+b^2-c^2/2ab
答案補充
基本不等式:根號下ab≤a+b/2(a≥0,b≥0)如果a,b是正數,那麼根號下ab≤a+b/2(當且僅當a=b時取"=")

D. 高一數學必修1知識點歸納有哪些

高一數學必修1知識點如下:

1、無限集含有無限個元素的集合。

2、有限集含有有限個元素的集合。

3、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

4、在多個單調區間之間不能用「或」和「」連接,只能用逗號隔開。

5、如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合。

E. 數學高一知識點歸納有哪些

數學高一知識點歸納有:

1、在等比數列中,首項a1與公比q都不為零.注意:上述公式中an表示等比數列的第n項。

2、圖想像是確定函數圖像是否連線,函數的圖像可以是連續的曲線、直線、折線、離散的點等等。

3、從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,高中地理,這點、兩個垂足及原點所圍成的矩形面積是定值。

4、冪函數定義是一般地,形如的函數稱為冪函數,其中為常數。

5、幾何法對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點。

F. 高中數學選修知識點

高中數學 選修2-3知識點
第一章 計數原理
1、分類加法計數原理:做一件事情,完成它有N類辦法,在第一類辦法中有M1種不同的方法,在第二類辦法中有M2種不同的方法,……,在第N類辦法中有MN種不同的方法,那麼完成這件事情共有M1+M2+……+MN種不同的方法。
2、分步乘法計數原理:做一件事,完成它需要分成N個步驟,做第一 步有m1種不同的方法,做第二步有M2不同的方法,……,做第N步有MN不同的方法.那麼完成這件事共有 N=M1M2...MN 種不同的方法。
3、排列:從n個不同的元素中任取m(m≤n)個元素,按照一定順序......排成一列,叫做從n個不同元素中取出m個元素的一個排列
4、排列數:從n個不同元素中取出m(m≤n)個元素排成一列,稱為從n個不同元素中取出m個元素的一
個排列. 從n個不同元素中取出m個元素的一個排列數,用符號mnA表示。
),,()!
(!
)1()1(NmnnmmnnmnnnAm


5、公式:


11mnm
n
nA
A
6、組合:從n個不同的元素中任取m(m≤n)個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合。
7、公式:)!(!!!)1()1(mnmnCmmnnnAACmn
mm
mnmn

)!(!!!)1()1(mnmnCmmnnnAACmnmmmnmn ;
m
nnmnCC

mnmnmnCCC1
1
8、二項式定理:
()
011222„„ 9、二項式通項公式展開式的通項公式:,„„TCabrnrn
rnrr
101() 10、二項式系數Cn
r
為二項式系數(區別於該項的系數) 11、楊輝三角:

()對稱性:,,,„„,1012CCrnnrnnr
 ()系數和:„2CCCnnn
nn
012

閱讀會員限時特惠 7大會員特權立即嘗鮮

(3)最值:n為偶數時,n+1為奇數,中間一項的二項式系數最大且為第
nCnnn
n
2
112
項,二項式系數為;為奇數時,為偶數,中間兩項的二項式() 系數最大即第項及第項,其二項式系數為nnCCnnn
n1212
1121
2
第二章 隨機變數及其分布

1、隨機變數:如果隨機試驗可能出現的結果可以用一個變數X來表示,並且X是隨著試驗的結果的不同而變化,那麼這樣的變數叫做隨機變數. 隨機變數常用大寫字母X、Y等或希臘字母 ξ、η等表示。 2、離散型隨機變數:在上面的射擊、產品檢驗等例子中,對於隨機變數X可能取的值,我們可以按一定次序一一列出,這樣的隨機變數叫做離散型隨機變數.
3、離散型隨機變數的分布列:一般的,設離散型隨機變數X可能取的值為x1,x2,..... ,xi ,......,xn
X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變數X 的概率分布,簡稱分布列

4、分布列性質① pi≥0, i =1,2, „ ;② p1 + p2 +„+pn= 1. 5、二項分布:如果隨機變數X的分布列為:

其中0<p<1,q=1-p,則稱離散型隨機變數X服從參數p的二點分布

6、超幾何分布:一般地, 設總數為N件的兩類物品,其中一類有M件,從所有物品中任取n(n≤N)件,這n件中所含這類物品件數X是一個離散型隨機變數,
則它取值為k時的概率為()(0,1,2,,)knkMNM
n
N
CCPXkkmC, 其中min
,mMn,且*,,,,nNMNnMNN≤≤
7、條件概率:對任意事件A和事件B,在已知事件A發生的條件下事件B發生的概率,叫做條件概率.記作P(B|A),讀作A發生的條件下B的概率 8、公式:
.
0)(,)()
()|(APAPABPABP 9、相互獨立事件:事件A(或B)是否發生對事件B(或A)發生的概率沒有影響,這樣的兩個事件叫做相互
獨立事件。)()()(BPAPBAP

10、n次獨立重復事件:在同等條件下進行的,各次之間相互獨立的一種試驗

11、概率:
12、二項分布: 設在n次獨立重復試驗中某個事件A發生的次數,A發生次數ξ是一個隨機變數.如果在一次試驗中某事件發生的概率是p,事件A不發生的概率為q=1-p,那麼在n次獨立重復試驗中
)(kPk
nkknqpC(其中 k=0,1, „„,n,q=1-p )
於是可得隨機變數ξ的概率分布如下:

這樣的隨機變數ξ服從二項分布,記作ξ~B(n,p) ,其中n,p為參數 13、數學期望:一般地,若離散型隨機變數ξ的概率分布為

則稱 Eξ=x1p1+x2p2+„+xnpn+„ 為ξ的數學期望或平均數、均值,數學期望又簡稱為期望.是離散型隨機變數。
14、兩點分布數學期望:E(X)=np
15、超幾何分布數學期望:E(X)=MnN

.
16、方差:D(ξ)=(x1-Eξ)2·P1+(x2-Eξ)2·P2 +......+(xn-Eξ)2·Pn 叫隨機變數ξ的均方差,簡稱方差。 17、集中分布的期望與方差一覽:

期望 方差
兩點分布 Eξ=p
Dξ=pq,q=1-p
超幾何分布
的超幾何分布服從參數為n,M,N
N
MnE
D(X)=np(1-p)* (N-n)/(N-1)
(不要求) 二項分布,ξ ~ B(n,p)
Eξ=np

Dξ=qEξ=npq,(q=1-p)

幾何分布,p(ξ=k)=g(k,p)
1
p
2p
qD

knkkn
nppCkP)1()(

17.正態分布:
若概率密度曲線就是或近似地是函數

)
,(,21
)(2
22)(

xexfx

的圖像,其中解析式中的實數0)
、(是參數,分別表示總體的平均數與標准差. 則其分布叫正態分布(,)N記作:,f( x )的圖象稱為正態曲線。 18.基本性質:

①曲線在x軸的上方,與x軸不相交. ②曲線關於直線x=對稱,且在x=
時位於最高點.
③當時x,曲線上升;當時x,曲線下降.並且當曲線向左、右兩邊無限延伸時,以x軸為漸近線,向它無限靠近.

④當一定時,曲線的形狀由確定.越大,曲線越「矮胖」,表示總體的分布越分散;越小,曲線越「瘦高」,表示總體的分布越集中.
⑤當σ相同時,正態分布曲線的位置由期望值μ來決定. ⑥正態曲線下的總面積等於1.
19. 3原則:

),(
)2,2(
)3,3(

從上表看到,正態總體在 )2,2( 以外取值的概率 只有4.6%,在 )3,3(以外取值的概率只有0.3% 由於這些概率很小,通常稱這些情況發生為小概率事件.也就是說,通常認為這些情況在一次試驗中幾乎是不可能發生的.
第三章 統計案例

1、獨立性檢驗
假設有兩個分類變數X和Y,它們的值域分另為{x1, x2}和{y1, y2},其樣本頻數列聯表為: y1 y2 總計 x1 a b a+b x2 c d c+d 總計
a+c
b+d
a+b+c+d
若要推斷的論述為H1:「X與Y有關系」,可以利用獨立性檢驗來考察兩個變數是否有關系,並且能較精確地給出這種判斷的可靠程度。具體的做法是,由表中的數據算出隨機變數K^2的值(即K的平方) K2 = n (ad - bc) 2 / [(a+b)(c+d)(a+c)(b+d)],其中n=a+b+c+d為樣本容量,K2的值越大,說明「X與Y有關系」成立的可能性越大。
K2≤3.841時,X與Y無關; K2>3.841時,X與Y有95%可能性有關;K2>6.635時X與Y有99%可能性有關
2、回歸分析
回歸直線方程bxay
ˆ 其中x
SSSPxxyyxxxnxyxnxyb
2
22)
())(()
(1
1
,
xbya

G. 高一數學學的什麼內容

高一數學內容有《集合》、《函數》、《三角函數》、《向量》。

根據地區不同,有些地方是學習必修一和必修二,必修二的主要內容是《立體幾何》,簡單的《解析幾何》。有些地方是學習必修一和必修四,必修四的主要內容是《三角函數》、《向量》。必修一是一定要學的,包括《集合》、《函數》。

高一數學怎麼學

首先,在課堂教學中培養好的聽課習慣是很重要的;其次,要提高數學能力,堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。

再次,要求在數學學習中一定要有節奏,這樣久而久之,思維的敏捷性和數學能力會逐步提高;最後,要沉澱下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。

H. 高一數學知識點有哪些

高一數學知識點如下:

1、如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合。

2、根據「同性則增,異性則減」來判斷原函數在其定義域內的單調性。

3、函數的定義域關於原點對稱是函數具有奇偶性的必要條件。

4、半平面:平面內的一條平行線把這個平面分為2個一部分,在其中每一個一部分稱為半平面。

5、二面角求法:立即法(做出平面角)、三垂線定理及逆定理、總面積射影定理、空間向量之法向量法(留意算出的角與所需規定的角中間的等補關聯)。

I. 高中數學必修選修知識點全總結

第十二部分 統計與統計案例1.抽樣方法⑴簡單隨機抽樣:一般地,設一個總體的個數為N,通過逐個不放回的方法從中抽取一個容量為n的樣本,且每個個體被抽到的機會相等,就稱這種抽樣為簡單隨機抽樣。註:①每個個體被抽到的概率為 ;②常用的簡單隨機抽樣方法有:抽簽法;隨機數法。⑵系統抽樣:當總體個數較多時,可將總體均衡的分成幾個部分,然後按照預先制定的規則,從每一個部分抽取一個個體,得到所需樣本,這種抽樣方法叫系統抽樣。註:步驟:①編號;②分段;③在第一段採用簡單隨機抽樣方法確定其時個體編號 ;④按預先制定的規則抽取樣本。⑶分層抽樣:當已知總體有差異比較明顯的幾部分組成時,為使樣本更充分的反映總體的情況,將總體分成幾部分,然後按照各部分佔總體的比例進行抽樣,這種抽樣叫分層抽樣。註:每個部分所抽取的樣本個體數=該部分個體數 2.總體特徵數的估計:⑴樣本平均數 ;⑵樣本方差 ;⑶樣本標准差 = ;3.相關系數(判定兩個變數線性相關性): 註:⑴ >0時,變數 正相關; <0時,變數 負相關;⑵① 越接近於1,兩個變數的線性相關性越強;② 接近於0時,兩個變數之間幾乎不存在線性相關關系。4.回歸分析中回歸效果的判定:⑴總偏差平方和: ⑵殘差: ;⑶殘差平方和: ;⑷回歸平方和: - ;⑸相關指數 。註:① 得知越大,說明殘差平方和越小,則模型擬合效果越好;② 越接近於1,,則回歸效果越好。5.獨立性檢驗(分類變數關系):隨機變數 越大,說明兩個分類變數,關系越強,反之,越弱。十、導 數1.導數的意義:曲線在該點處的切線的斜率(幾何意義)、瞬時速度、邊際成本(成本為因變數、產量為自變數的函數的導數). , (C為常數), , .2.多項式函數的導數與函數的單調性:在一個區間上 (個別點取等號) 在此區間上為增函數.在一個區間上 (個別點取等號) 在此區間上為減函數.3.導數與極值、導數與最值:(1)函數 在 處有 且「左正右負」 在 處取極大值;函數 在 處有 且「左負右正」 在 處取極小值.注意:①在 處有 是函數 在 處取極值的必要非充分條件.②求函數極值的方法:先找定義域,再求導,找出定義域的分界點,列表求出極值.特別是給出函數極大(小)值的條件,一定要既考慮 ,又要考慮驗「左正右負」(「左負右正」)的轉化,否則條件沒有用完,這一點一定要切記.③單調性與最值(極值)的研究要注意列表!(2)函數 在一閉區間上的最大值是此函數在此區間上的極大值與其端點值中的「最大值」;函數 在一閉區間上的最小值是此函數在此區間上的極小值與其端點值中的「最小值」;注意:利用導數求最值的步驟:先找定義域 再求出導數為0及導數不存在的的點,然後比較定義域的端點值和導數為0的點對應函數值的大小,其中最大的就是最大值,最小就為最小值.4.應用導數求曲線的切線方程,要以「切點坐標」為橋梁,注意題目中是「處L」還是「過L」,對「二次拋物線」過拋物線上一點的切線 拋物線上該點處的切線,但對「三次曲線」過其上一點的切線包含兩條,其中一條是該點處的切線,另一條是與曲線相交於該點.5.注意應用函數的導數,考察函數單調性、最值(極值),研究函數的性態,數形結合解決方程不等式等相關問題.十一、概率、統計、演算法第十六部分 理科選修部分1. 排列、組合和二項式定理⑴排列數公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),當m=n時為全排列 =n(n-1)(n-2)…3.2.1=n!;⑵組合數公式: (m≤n), ;⑶組合數性質: ;⑷二項式定理: ①通項: ②注意二項式系數與系數的區別;⑸二項式系數的性質:①與首末兩端等距離的二項式系數相等;②若n為偶數,中間一項(第 +1項)二項式系數最大;若n為奇數,中間兩項(第 和 +1項)二項式系數最大;③ (6)求二項展開式各項系數和或奇(偶)數項系數和時,注意運用賦值法。2. 概率與統計⑴隨機變數的分布列:①隨機變數分布列的性質:pi≥0,i=1,2,…; p1+p2+…=1;②離散型隨機變數:X x1 X2 … xn …P P1 P2 … Pn …期望:EX= x1p1 + x2p2 + … + xnpn + … ; 方差:DX= ;註: ;③兩點分布: X 0 1 期望:EX=p;方差:DX=p(1