當前位置:首頁 » 基礎知識 » 數控用到數學知識

數控用到數學知識

發布時間: 2022-09-03 18:14:01

Ⅰ 數控要用到數學的什麼知識

數控手工編程一般要用到三角函數、幾何,如果編宏程序還要用到解析幾何。
高中的數學知識足夠了。

Ⅱ 數控一定要用到數學

那肯定啊!生活中跟多地方都要數學啊!數控要計算工件的尺寸當然要數學了。

Ⅲ 數控與數學的關系大么(急)

通常所說的「數控」,可以理解為兩個方面:
宏觀的「數控」,可以簡單說成「數控操作」、「數控編程」、「數控應用」等等,這些和數學有點關系,具備初等數學水平就夠了;
微觀的「數控」,就不是簡單的操作使用了,而是非常復雜的「數控軟體開發」,這個和數學密切相關,任何數控軟體、數控系統,都是按照復雜的機械動作,依據各種數學演算法(包括微積分、立體幾何、解析、線性代數、邏輯、拓撲等等經典理論)進行模擬模擬,從而開發出能夠按照一種簡單程序指令進行機械加工的系統。

可以說,數控,是機械設計製造、計算機軟硬體和數學的高度融合。

行業內都這么說,學機械設計製造出身的,如果數學功底很好,進入到數控領域開展研究,是非常容易的事;但計算機和數學專業的人士,如果沒有機械知識,會遇到很多困難,相對前者,可能入門的時間會稍長,需要付出更多的努力。

很多數控領域的精英,都是數學出身,他們精密的理論基礎,會對數控系統和軟體的開發帶來極大的幫助。

總之,可以嘗試一下,這個領域是很有前途的,數控直接引領裝備製造業的發展方向,而製造業是國民經濟的支柱,是國家強盛的根本。

Ⅳ 學數控技術,都需要數學里的那些知識

數控技術需要數學功底。 數控技術也叫計算機數控技術(CNC,Computerized Numerical Control),目它是採用計算機實現數字程序控制的技術。這種技術用計算機按事先存貯的控製程序來執行對設備的運動軌跡和外設的操作時序邏輯控制功能。由於採用計算機替代原先用硬體邏輯電路組成的數控裝置,使輸入操作指令的存貯、處理、運算、邏輯判斷等各種控制機能的實現,均可通過計算機軟體來完成,處理生成的微觀指令傳送給伺服驅動裝置驅動電機或液壓執行元件帶動設備運行。 「兩課」、體育、英語、高等數學、工程力學、電工學、機械製造技術、數控加工工藝、數控編程、電氣控制與PLC、電工技術、電子技術、機械制圖、計算機繪圖(cad)、計算機基礎、可編程式控制制器、機械製造工藝與夾具、數控機床、數控機床故障與維修、典型數控系統等。

Ⅳ 數控編程需要用到的數學知識

主要是空間坐標系方面的知識,還有一些三角函數,和幾何方面的知識。

Ⅵ 數控要了解什麼數學知識

數控手工編程有高中的數學知識足夠。
宏程序要用到:代數、三角函數、幾何、解析幾何。
如果有困難可學編程軟體。
如果只干操作,當機械手,裝卸工件,弱智也行。

Ⅶ 數控機床最常用的數學公式!

數控編程的工作包括:
根據設計圖樣及技術要求分析零件的結構工藝性,
確定工藝路線;

具軌跡計算,
確定基點及節點,
編制零件數控加工程序並進行首件試切校驗。
所需要具備的
數學知識如下
:
1


平面幾何學


1


多邊形

多邊形是由一定數目的直線首尾連接組成的單元幾何元素。

多邊形內角和:
S=(N-2)
×
180
°
N
—多邊形邊數

正多邊形單角計算公式:
A=(N-2)
×
180
°
/N

2


解析幾何中常用公式

直線點斜式
y-y
1
=k(x-x
1
)
斜截式
y=kx+b

兩點式

1
2
1
y
y
y
y


=
1
2
1
x
x
x
x



一般式
Ax+By+C=0

說明:點斜式及兩點式用的最多。

直線關系

平行

直線方程式
L
1
: y=k
1
x+b
1
L
2
: y=k
2
x+b
2
充要條件
k
1=
k
2

b
1

b
2
垂直

直線方程式
L
1
: y=k
1
x+b
1
L
2
: y=k
2
x+b
2
充要條件
k
1
k
2=
1
夾角
α
(銳角)
L
1
: y=k
1
x+b
1
L
2
: y=k
2
x+b
tan
α
=
1
2
1
2
k
1
k
k
k



交點
A
1
x+B
1
y+C
1
=0 A
2
x+B
2
y+C
2
=0
解方程組

兩平行直線間距離
A
1
x+B
1
y+C
1
=0 A
2
x+B
2
y+C
2
=0 d=
2
2
2
1
B
A
C

-
C


點到直線的距離

點:
P(x
0,
y
0
)
直線
Ax+By+C=0 d=(

Ax
0
+By
0
+C

)/(A
²
+B
²
)
兩點間的距離


1

P
1
(x
1,
y
1
)

2

P
2
(x
2,
y
2
)d=
2
1
2
2
1
2
)
y

y

(
)
x
-
x
(



另:圓方程:


x-a
)²
+(y-b)
²
=R
²


a,b
)圓心坐標

橢圓方程:

2
2
2
2
a
x
b
y

=1 a,b
—長短軸

Ⅷ 學數控需要哪些數學知識

三角函數、平面幾何、解析幾何、立體幾何。

Ⅸ 學數控跟數學關系大不大數控又分為哪幾個層次

展開全部
數控和數學關系不大,數控主要分為數控機床操作、數控機床編程、數控機床維修幾個方向具體有什麼區別,你可以參考一下濟南數控模具科技研究所培訓中心的課程設置。

Ⅹ 學數控具體需要掌握哪些數學知識

就操作數控機床本身來說幾乎沒有任何技術含量的,不需要多少知識,數控機床在設好程序後,人要做的事只是裝卸工件和按開始按鈕,學一下估計最長1個月也差不多了。

如果想做得好一點的話最好先學車、銑、刨,再學數控編程等,學這些,如果課程安排緊的話1年足夠