『壹』 高中選修數學知識點總結
第十二部分 統計與統計案例1.抽樣方法⑴簡單隨機抽樣:一般地,設一個總體的個數為N,通過逐個不放回的方法從中抽取一個容量為n的樣本,且每個個體被抽到的機會相等,就稱這種抽樣為簡單隨機抽樣。註:①每個個體被抽到的概率為 ;②常用的簡單隨機抽樣方法有:抽簽法;隨機數法。⑵系統抽樣:當總體個數較多時,可將總體均衡的分成幾個部分,然後按照預先制定的規則,從每一個部分抽取一個個體,得到所需樣本,這種抽樣方法叫系統抽樣。註:步驟:①編號;②分段;③在第一段採用簡單隨機抽樣方法確定其時個體編號 ;④按預先制定的規則抽取樣本。⑶分層抽樣:當已知總體有差異比較明顯的幾部分組成時,為使樣本更充分的反映總體的情況,將總體分成幾部分,然後按照各部分佔總體的比例進行抽樣,這種抽樣叫分層抽樣。註:每個部分所抽取的樣本個體數=該部分個體數 2.總體特徵數的估計:⑴樣本平均數 ;⑵樣本方差 ;⑶樣本標准差 = ;3.相關系數(判定兩個變數線性相關性): 註:⑴ >0時,變數 正相關; <0時,變數 負相關;⑵① 越接近於1,兩個變數的線性相關性越強;② 接近於0時,兩個變數之間幾乎不存在線性相關關系。4.回歸分析中回歸效果的判定:⑴總偏差平方和: ⑵殘差: ;⑶殘差平方和: ;⑷回歸平方和: - ;⑸相關指數 。註:① 得知越大,說明殘差平方和越小,則模型擬合效果越好;② 越接近於1,,則回歸效果越好。5.獨立性檢驗(分類變數關系):隨機變數 越大,說明兩個分類變數,關系越強,反之,越弱。十、導 數1.導數的意義:曲線在該點處的切線的斜率(幾何意義)、瞬時速度、邊際成本(成本為因變數、產量為自變數的函數的導數). , (C為常數), , .2.多項式函數的導數與函數的單調性:在一個區間上 (個別點取等號) 在此區間上為增函數.在一個區間上 (個別點取等號) 在此區間上為減函數.3.導數與極值、導數與最值:(1)函數 在 處有 且「左正右負」 在 處取極大值;函數 在 處有 且「左負右正」 在 處取極小值.注意:①在 處有 是函數 在 處取極值的必要非充分條件.②求函數極值的方法:先找定義域,再求導,找出定義域的分界點,列表求出極值.特別是給出函數極大(小)值的條件,一定要既考慮 ,又要考慮驗「左正右負」(「左負右正」)的轉化,否則條件沒有用完,這一點一定要切記.③單調性與最值(極值)的研究要注意列表!(2)函數 在一閉區間上的最大值是此函數在此區間上的極大值與其端點值中的「最大值」;函數 在一閉區間上的最小值是此函數在此區間上的極小值與其端點值中的「最小值」;注意:利用導數求最值的步驟:先找定義域 再求出導數為0及導數不存在的的點,然後比較定義域的端點值和導數為0的點對應函數值的大小,其中最大的就是最大值,最小就為最小值.4.應用導數求曲線的切線方程,要以「切點坐標」為橋梁,注意題目中是「處L」還是「過L」,對「二次拋物線」過拋物線上一點的切線 拋物線上該點處的切線,但對「三次曲線」過其上一點的切線包含兩條,其中一條是該點處的切線,另一條是與曲線相交於該點.5.注意應用函數的導數,考察函數單調性、最值(極值),研究函數的性態,數形結合解決方程不等式等相關問題.十一、概率、統計、演算法第十六部分 理科選修部分1. 排列、組合和二項式定理⑴排列數公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),當m=n時為全排列 =n(n-1)(n-2)…3.2.1=n!;⑵組合數公式: (m≤n), ;⑶組合數性質: ;⑷二項式定理: ①通項: ②注意二項式系數與系數的區別;⑸二項式系數的性質:①與首末兩端等距離的二項式系數相等;②若n為偶數,中間一項(第 +1項)二項式系數最大;若n為奇數,中間兩項(第 和 +1項)二項式系數最大;③ (6)求二項展開式各項系數和或奇(偶)數項系數和時,注意運用賦值法。2. 概率與統計⑴隨機變數的分布列:①隨機變數分布列的性質:pi≥0,i=1,2,…; p1+p2+…=1;②離散型隨機變數:X x1 X2 … xn …P P1 P2 … Pn …期望:EX= x1p1 + x2p2 + … + xnpn + … ; 方差:DX= ;註: ;③兩點分布: X 0 1 期望:EX=p;方差:DX=p(1
『貳』 高中數學知識點清單
高中數學基礎知識梳理(數學小飛俠)
鏈接:https://pan..com/s/1IXqAIoe__3VdXS8yHKjxOw
若資源有問題,歡迎追問~
『叄』 求高中數學選修知識點
選修課程
(一)選修1-1
本模塊包括常用邏輯用語、圓錐曲線與方程、導數及其應用。
1.常用邏輯用語
(1)命題及其關系
(2)簡單的邏輯聯結詞
通過數學實例,了解邏輯聯結詞「或」「且」「非」的含義。
(3)全稱量詞與存在量詞
2.圓錐曲線與方程
(1)了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現實世界和解決實際問題中的作用。
(2)經歷從具體情境中抽象出橢圓模型的過程,掌握橢圓的定義、標准方程、幾何圖形及簡單性質。
(3)了解拋物線、雙曲線的定義、幾何圖形和標准方程,知道它們的簡單幾何性質。
(4)通過圓錐曲線與方程的學習,進一步體會數形結合的思想。
(5)了解圓錐曲線的簡單應用。
3.導數及其應用
(1)導數概念及其幾何意義
(2)導數的運算
① 能根據導數定義
(3)導數在研究函數中的應用
(4)生活中的優化問題舉例
例如,通過使利潤最大、用料最省、效率最高等優化問題,體會導數在解決實際問題中的作用。
(5)數學文化
收集有關微積分創立的時代背景和有關人物的資料,並進行交流,體會微積分的建立在人類文化發展中的意義和價值。
微積分的創立是數學發展中的里程碑,它的發展和廣泛應用開創了向近代數學過渡的新時期,為研究變數和函數提供了重要的方法和手段。導數概念是微積分的核心概念之一,它有極其豐富的實際背景和廣泛的應用。
導數的概念應從其實際背景加以引入,教學中,可以通過研究曲線的切線、增長率、膨脹率、效率、密度、速度等反映導數應用的實例,突出幾何形象描述,引導學生經歷由平均變化率到瞬時變化率的過程,得到對導數概念抽象和形象的理解。
在教學中,要防止將導數僅僅作為一些規則和步驟來學習,而忽視它的思想和價值。應使學生認識到,任何事物的變化率都可以用導數來描述,應當避免過量的形式化運算練習。
利用導數判斷函數的單調性,是導數應用的重點,教學中應多選取具體的函數(如: ),利用它們的圖象,藉助幾何直觀,了解函數的導數與函數單調性之間的本質聯系,學會用導數研究函數的單調性,進而完成對函數的最值(極值)以及生活中的優化問題的教學。在學習利用導數研究函數性質的同時,感受導數在研究函數和解決實際問題中的作用,體會導數的思想及其內涵,幫助學生理解導數的背景、思想和作用。
本章內容的教學,整體上要貫穿用形象展示抽象,用微觀說明宏觀,注重研究問題的方法和學生認識的過程,注重培養學生的研究探索能力,注重數形結合思想的滲透。
(二)選修1-2
本模塊包括統計案例、推理與證明、數系擴充及復數的引入、框圖。
1.統計案例
通過典型案例,學習下列一些常見的統計方法,並能初步應用這些方法解決一些實際問題。
(1)通過對典型案例 (如「肺癌與吸煙有關嗎」 等)的探究,了解獨立性檢驗 (只要求2×2列聯表) 的基本思想、方法及初步應用。
(2)通過對典型案例(如「人的體重與身高的關系」等)的探究,了解回歸的基本思想、方法及其初步應用。
本部分內容是學生在初中階段和高中數學必修課程已學習統計的基礎上,通過對典型案例的討論,了解和使用一些常用的統計方法,進一步體會運用統計方法解決實際問題,認識統計方法在決策中的作用。
本部分內容的《課程標准》要求都是了解,因此教學中要注意難度的把握,宜採用案例教學的方式。本部分的內容公式多,但重點應放在通過統計案例,讓學生了解回歸分析和獨立性檢驗的基本思想及其初步應用,對於其理論基礎不做要求,避免學生單純記憶和機械套用公式。
教學中,應鼓勵學生經歷數據處理的過程,培養他們對數據的直觀感覺,認識統計方法的特點(如統計推斷可能犯錯誤,估計結果的隨機性),體會統計方法應用的廣泛性。應盡量給學生提供一定的實踐活動機會,可結合數學建模的活動,選擇一個案例,要求學生親自實踐。
教學中,應鼓勵學生使用計算器、計算機等現代技術手段來處理數據,有條件的學校還可運用一些常見的統計軟體解決實際問題。
在統計案例中,還應介紹所學統計方法在社會生活中的廣泛應用,以豐富學生對數學文化價值的認識。
2.推理與證明
(1)合情推理與演繹推理
① 結合已學過的數學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會並認識合情推理在數學發現中的作用。
② 結合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,並能運用它們進行一些簡單推理。
③ 通過具體實例,了解合情推理和演繹推理之間的聯系和差異。
(2)直接證明與間接證明
① 結合已經學過的數學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。
② 結合已經學過的數學實例,了解間接證明的一種基本方法——反證法;了解反證法的思考過程、特點。
(3)數學文化
① 通過對實例的介紹(如歐幾里得《幾何原本》、馬克思《資本論》、傑弗遜《獨立宣言》、牛頓三定律),體會公理化思想。
② 介紹計算機在自動推理領域和數學證明中的作用。
「推理與證明」是數學的基本思維過程,也是人們學習和生活中經常使用的思維方式。推理一般包括合情推理和演繹推理,證明通常包括邏輯證明和實驗、實踐證明。合情推理得出的結論不一定正確,數學結論是否正確,必須通過演繹推理或邏輯證明來保證,即在前提正確的基礎上,通過正確使用推理規則得出結論。
在本部分內容中,學生將通過對已學知識的回顧,進一步體會合情推理、演繹推理以及二者之間的聯系與差異;體會數學證明的特點,了解數學證明的基本方法,包括直接證明的方法(如分析法、綜合法)和間接證明的方法(如反證法);感受邏輯證明在數學以及日常生活中的作用,養成言之有理、論證有據的習慣。
教學中應通過實例,引導學生運用合情推理去探索、猜測一些數學結論,並用演繹推理確認所得結論的正確性,或者用反例推翻錯誤的猜想。教學的重點在於通過具體實例理解合情推理與演繹推理,而不追求對概念的抽象表述。
本部分設置的證明內容是對學生已學過的基本證明方法的總結。在教學中,應通過實例,引導學生認識各種證明方法的特點,體會證明的必要性。對證明的技巧性不宜作過高的要求。
教學中,可從已學知識中的問題出發,體會兩種推理方法的應用,而在對新問題的解決過程中,自然的理解和區分兩種推理,把握兩種推理在解決問題中的協調應用。推理過程中,要注重學生信息檢索、觀察、分析、判斷等能力的培養,還要注重對學生在文字語言表達、數學語言應用,以及規范書寫證明過程等方面的要求。
為了讓學生初步體會公理化方法,在教學中一定要重視實例的作用,使學生了解數學知識的產生和發展過程,體會公理化思想的發展及對科學發現、社會進步等的作用。
3.數系擴充與復數的引入
(1)在問題情境中了解數系的擴充過程,體會實際需求與數學內部的矛盾(數的運算規則、方程理論)在數系擴充過程中的作用,感受人類理性思維的作用以及數與現實世界的聯系。
(2)理解復數的基本概念以及復數相等的充要條件。
(3)了解復數的代數表示法及其幾何意義。
(4)能進行復數代數形式的四則運算,了解復數代數形式的加減運算的幾何意義。
數系擴充的過程體現了數學的發現和創造過程,同時體現了數學發生發展的客觀需求和背景,復數的引入是中學階段數系的又一次擴充。本部分知識的教學,可結合數學文化的學習,進行數系擴充的介紹,使學生感受人類理性思維的作用以及數與現實世界的聯系。
在復數概念與運算的教學中,應注意避免繁瑣的計算與技巧訓練。對於感興趣的學生,可以安排一些引申的內容,如求 的根,介紹代數基本定理等。
4.框圖
(1)流程圖
① 通過具體實例,進一步認識程序框圖。
② 通過具體實例,了解工序流程圖(即統籌圖)。
③ 能繪制簡單實際問題的流程圖,體會流程圖在解決實際問題中的作用。
(2)結構圖
① 通過實例,了解結構圖;運用結構圖梳理已學過的知識、整理收集到的資料信息。
② 結合做出的結構圖與他人進行交流,體會結構圖在揭示事物聯系中的作用。
框圖是表示一個系統各部分和各環節之間關系的圖示,它的作用在於能夠清晰地表達比較復雜的系統各部分之間的關系。框圖已經廣泛應用於演算法、計算機程序設計、工序流程的表述、設計方案的比較等方面,也是表示數學計算與證明過程中主要邏輯步驟的工具,並將成為日常生活和各門學科中進行交流的一種常用表達方式。
框圖是新增內容,通過框圖的學習過程能夠提高學生的抽象概括能力和邏輯思維能力,能幫助學生清晰地表達和交流思想。尤其對希望在人文、社會科學方面發展的學生是十分必要的。
框圖的教學,應從分析實例入手,結合必修中的演算法,引導學生運用框圖表示數學計算與證明過程中的主要思路與步驟、實際問題中的工序流程、某一數學知識系統的結構關系等。使學生在運用框圖的過程中理解流程圖和結構圖的特徵,掌握框圖的用法,體驗用框圖表示解決問題過程的優越性。
(三)選修2-1
本模塊包括常用邏輯用語、圓錐曲線與方程、空間中的向量(簡稱空間向量)與立體幾何。
1.常用邏輯用語
(1)命題及其關系
① 了解命題的逆命題、否命題與逆否命題。
② 理解必要條件、充分條件與充要條件的意義,會分析四種命題的相互關系。
(2)簡單的邏輯聯結詞
通過數學實例,了解邏輯聯結詞「或」「且」「非」的含義。
(3)全稱量詞與存在量詞
① 通過生活和數學中的豐富實例,理解全稱量詞與存在量詞的意義。
② 能正確地對含有一個量詞的命題進行否定。
本部分教學的目的是讓學生體會邏輯用語在表述和論證中的作用,利用這些邏輯用語准確地表達數學內容,更好地進行交流,而不是進行邏輯學的教學。因此,教學中要注意把握尺度,不宜過難。
這里考慮的命題是指明確地給出條件和結論的命題,對逆命題、否命題、逆否命題的概念,只要求作一般性的了解,重點關注四種命題的相互關系和命題的必要條件、充分條件、充要條件。
教學中要多用實例,通過實例理解邏輯聯結詞及量詞的含義,避免對邏輯用語的機械記憶和抽象解釋,也不要求使用真值表。注意引導學生使用常用邏輯用語,在運用的過程中,加深對常用邏輯用語的認識,糾正出現的邏輯錯誤,體會運用常用邏輯用語表述數學內容的准確性、簡潔性,感受數學的美。
對於部分感興趣的同學,還可以引導他們進一步選修「開關電路與布爾代數」,繼續接觸有關命題的一些知識。
2.圓錐曲線與方程
(1)圓錐曲線
① 了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現實世界和解決實際問題中的作用。
② 經歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義、標准方程、幾何圖形及簡單性質。
③ 了解雙曲線的定義、幾何圖形和標准方程,知道它的有關性質。
④ 能用坐標法解決一些與圓錐曲線有關的簡單幾何問題(直線與圓錐曲線的位置關系)和實際問題。
⑤ 通過圓錐曲線的學習,進一步體會數形結合的思想。
(2)曲線與方程
結合已學過的曲線及其方程的實例,了解曲線與方程的對應關系,進一步感受數形結合的基本思想。
本部分內容所滲透的幾何直觀和數形結合的思想,對於後續的數學學習是很有幫助的,教學中要充分地重視這一點。
教學中可通過多種方式向學生介紹圓錐曲線的背景和應用,有意識地強調數學的科學價值、文化價值和美學價值,一方面引發學生學習的興趣,另一方面,也可以對曲線和方程的關系有進一步的認識。
圓錐曲線在實踐中的應用相當廣泛,是體現數學應用價值的好素材,因此,教學中可以通過豐富的實例,使學生了解其背景和應用。
在學習了橢圓之後,可引導學生運用類比的方法去研究拋物線,雙曲線的幾何性質。對於感興趣的學生,教師也可以引導學生了解圓錐曲線的離心率與統一方程。
有條件的學校,要充分發揮現代教育技術的作用,通過一些軟體演示方程中參數的變化對曲線的影響,使學生進一步理解曲線和方程的關系,把握好曲線的「幾何性質」與方程的「數量關系」之間的對應關系。
3.空間向量與立體幾何
(1)空間向量及其運算
① 經歷向量及其運算由平面向空間推廣的過程。
② 了解空間向量的概念,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標表示。
③ 掌握空間向量的線性運算及其坐標表示。
④ 掌握空間向量的數量積及其坐標表示;能運用向量的數量積判斷向量的共線與垂直。
(2)空間向量的應用
① 理解直線的方向向量與平面的法向量。
② 能用向量語言表述線線、線面、面面的垂直、平行關系。
③ 能用向量方法證明有關線、面位置關系的一些定理(包括三垂線定理)。
④ 能用向量方法解決線線、線面、面面的夾角的計算問題。
空間向量的教學應引導學生運用類比的方法,經歷向量及其運算由平面向空間推廣的過程,體會維數增加所帶來的影響。
在必修的基礎上繼續學習立體幾何,可以鼓勵學生靈活選擇運用向量方法與綜合方法,從不同角度解決立體幾何問題。
用空間向量處理立體幾何問題,關鍵在於理解直線的方向向量、平面的法向量、兩個向量的數量積的定義,以及實數與向量乘積的幾何意義——平行向量。
向量是代數的,它可以進行豐富的運算,通過這些運算可以解決很多問題;向量又是幾何的,向量可以描述、刻畫幾何中的基本研究對象:點、線、面以及它們之間的關系。向量所發揮的作用,是用代數方法處理幾何問題思想的集中反映。向量不僅僅是一個計算的工具,更重要的是,它還是連接代數與幾何的天然「橋梁」。教學中要讓學生體會向量方法在研究幾何問題中的作用,發展學生的幾何直觀和數形結合的能力,並充分挖掘向量的實際背景,如向量的物理學背景等。
(四)選修2—2
本模塊包括導數及其應用、推理與證明、數系擴充與復數的引入。
1.導數及其應用
(1)導數概念及其幾何意義
① 通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數概念的實際背景,知道瞬時變化率就是導數,體會導數的思想及其內涵。
② 通過函數圖象直觀地理解導數的幾何意義。
(2)導數的運算
① 能根據導數定義求函數 , , , , , 的導數。
② 能利用給出的基本初等函數的導數公式和導數的四則運演算法則求簡單函數的導數,能求簡單的復合函數(僅限於形如 )的導數。
③ 會使用導數公式表。
(3)導數在研究函數中的應用
① 結合實例,藉助幾何直觀探索並了解函數的單調性與導數的關系;能利用導數研究函數的單調性,會求不超過三次的多項式函數的單調區間。
② 結合函數的圖象,了解函數在某點取得極值的必要條件和充分條件;會用導數求不超過三次的多項式函數的極大值、極小值,以及閉區間上不超過三次的多項式函數最大值、最小值;體會導數方法在研究函數性質中的一般性和有效性。
(4)生活中的優化問題舉例
例如,通過使利潤最大、用料最省、效率最高等優化問題,體會導數在解決實際問題中的作用。
(5)定積分與微積分基本定理
① 通過實例(如求曲邊梯形的面積、變力做功等),從問題情境中了解定積分的實際背景;藉助幾何直觀體會定積分的基本思想,初步了解定積分的概念。
② 通過實例(如變速運動物體在某段時間內的速度與路程的關系),直觀了解微積分基本定理的含義。
(6)數學文化
收集有關微積分創立的時代背景和有關人物的資料,並進行交流;體會微積分的建立在人類文化發展中的意義和價值。
微積分的創立是數學發展中的里程碑,它的發展和廣泛應用開創了向近代數學過渡的新時期,為研究變數和函數提供了重要的方法和手段。導數概念是微積分的核心概念之一,它有極其豐富的實際背景和廣泛的應用。
導數的概念應從其實際背景加以引入,教學中可以通過研究曲線的切線、增長率、膨脹率、效率、密度、速度等反映導數應用的實例,突出幾何形象描述,引導學生經歷由平均變化率到瞬時變化率的認識過程,得到對導數概念形象的理解。
在教學中,要防止將導數僅僅作為一些規則和步驟來學習,而忽視它的思想和價值。應使學生認識到,任何事物的變化率都可以用導數來描述。
利用導數判斷函數的單調性是導數應用的重點,也是本部分內容的重點之一。教學中應選取具體的函數(如: ),利用它們的圖象,藉助幾何直觀,了解函數的導數與函數單調性之間的本質聯系,學會用導數研究函數的單調性,進而完成對函數的最值(極值)以及生活中的優化問題的教學。在學習利用導數研究函數性質的同時,感受導數在研究函數和解決實際問題中的作用,體會導數的思想及其內涵,幫助學生理解導數的背景、思想和作用。
教師應引導學生在解決具體問題的過程中,將研究函數的導數方法與初等方法作比較,以體會導數方法在研究函數性質中的一般性和有效性。
本章內容的教學,整體上要貫穿用形象展示抽象,用微觀說明宏觀,注重研究問題的方法和學生認識的過程,注重培養學生的研究探索能力,注重數形結合思想的滲透。
2.推理與證明
(1)合情推理與演繹推理
① 結合已學過的數學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會並認識合情推理在數學發現中的作用。
② 結合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,並能運用它們進行一些簡單推理。
③ 通過具體實例,了解合情推理和演繹推理之間的聯系和差異。
(2)直接證明與間接證明
① 結合已經學過的數學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。
② 結合已經學過的數學實例,了解間接證明的一種基本方法——反證法;了解反證法的思考過程、特點。
(3)數學歸納法
了解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。
(4)數學文化
① 通過對實例的介紹(如歐幾里得《幾何原本》、馬克思《資本論》、傑弗遜《獨立宣言》、牛頓三定律),體會公理化思想。
② 介紹計算機在自動推理領域和數學證明中的作用。
「推理與證明」是數學的基本思維過程,也是人們學習和生活中經常使用的思維方式。推理一般包括合情推理和演繹推理,證明通常包括邏輯證明和實驗、實踐證明。合情推理得出的結論不一定正確,數學結論是否正確,必須通過演繹推理或邏輯證明來保證,即在前提正確的基礎上,通過正確使用推理規則得出結論。
教學中應通過實例,引導學生運用合情推理去探索、猜測一些數學結論,並用演繹推理確認所得結論的正確性,或者用反例推翻錯誤的猜想。教學的重點在於通過具體實例理解合情推理與演繹推理,而不必追求對概念的抽象表述。
本部分設置的證明內容是對學生已學過的基本證明方法的總結。在教學中,應通過實例,引導學生認識各種證明方法的特點,體會證明的必要性。對證明的技巧性不宜作過高的要求。
教師應藉助具體實例讓學生了解數學歸納法的原理,對證明的問題要控制難度。
教學中,可從已學知識中的問題出發,體會兩種推理方法的應用,而在對新問題的解決過程中,自然的理解和區分兩種推理,把握兩種推理在解決問題中的協調應用。推理過程中,要注重學生信息檢索、觀察、分析、判斷等能力的培養,還要注重對學生在文字語言表達、數學語言應用,以及規范書寫證明過程等方面的要求。
為了讓學生初步體會公理化方法,在教學中一定要重視實例的作用,使學生了解數學知識的產生和發展過程,體會公理化思想的發展及對科學發現、社會進步等的作用。
3.數系擴充與復數的引入
(1)在問題情境中了解數系的擴充過程,體會實際需求與數學內部的矛盾(數的運算規則、方程理論)在數系擴充過程中的作用,感受人類理性思維的作用以及數與現實世界的聯系。
(2)理解復數的基本概念以及復數相等的充要條件。
(3)了解復數的代數表示法及其幾何意義。
(4)能進行復數代數形式的四則運算,了解復數代數形式的加減運算的幾何意義。
數系擴充的過程體現了數學的發現和創造過程,同時體現了數學發生發展的客觀需求和背景,復數的引入是中學階段數系的又一次擴充。本部分知識的教學,可結合數學文化的學習,進行數系擴充的介紹,使學生感受人類理性思維的作用以及數與現實世界的聯系。
在復數概念與運算的教學中,應注意避免繁瑣的計算與技巧訓練。對於感興趣的學生,可以安排一些引申的內容,如求 的根,介紹代數基本定理等。
(五)選修2—3
本模塊包括計數原理、統計案例、概率。
1.計數原理
(1)分類加法計數原理、分步乘法計數原理
通過實例,總結出分類加法計數原理、分步乘法計數原理;能根據具體問題的特徵,選擇分類加法計數原理或分步乘法計數原理解決一些簡單的實際問題。
(2)排列與組合
通過實例,理解排列、組合的概念;能利用計數原理推導排列數公式、組合數公式,並能解決簡單的實際問題。
(3)二項式定理
能用計數原理證明二項式定理; 會用二項式定理解決與二項展開式有關的簡單問題.
教學中要突出分類加法計數原理、分步乘法計數原理的基礎性作用。分類加法計數原理、分步乘法計數原理是處理計數問題的兩種基本方法。當面臨一個復雜問題時,通過分類或分步將它分解成為一些簡單的問題,先解決簡單問題,然後再將它們整合起來得到整個問題的解決,這是一種重要而基本的思想方法。
引導學生體會兩個計數原理在排列數公式、組合數公式和二項式定理推導中的工具性作用。以上知識的學習都是兩個計數原理的重要應用,這樣有利於避免學生單純記憶和機械套用公式進行計算。
通過學生熟悉和感興趣的實例,理解排列組合的概念,區分排列問題中元素的「有序」和組合問題中元素的「無序」,這是解決這兩類問題的關鍵,也是初學者容易犯錯誤的地方。
教學中,應避免繁瑣的、技巧性過高的計數問題。
對於有興趣和能力的學生可自主探究組合數的兩個性質,但在教學中不作統一要求。
在二項式定理的教學過程中可介紹我國古代數學成就「楊輝三角」及數學家楊輝其人其事,激發學生的學習熱情,豐富學生對數學文化價值的認識。
2.統計案例
通過典型案例,學習下列一些常見的統計方法,並能初步應用這些方法解決一些實際問題。
(1)通過對典型案例(如「肺癌與吸煙有關嗎」等)的探究,了解獨立性檢驗(只要求2×2列聯表)的基本思想、方法及初步應用。
(2)通過對典型案例(如「人的體重與身高的關系」等)的探究,了解回歸的基本思想、方法及其初步應用。
本部分內容是學生在初中階段和高中數學必修課程已學習統計的基礎上,通過對典型案例的討論,了解和使用一些常用的統計方法,進一步體會運用統計方法解決實際問題,認識統計方法在決策中的作用。
本部分內容《課程標准》規定的要求都是了解,應採用案例教學的方式,教學中要注意控制難度。本部分的內容公式多,但重點應放在通過統計案例,讓學生了解回歸分析和獨立性檢驗的基本思想及其初步應用,對於其理論基礎不做要求。
教學中,應鼓勵學生經歷數據處理的過程,培養他們對數據的直觀感覺,認識統計方法的特點(如統計推斷可能犯錯誤,估計結果的隨機性),體會統計方法應用的廣泛性。應盡量給學生提供一定的實踐活動機會,可結合數學建模的活動,選擇一個案例,要求學生親自實踐。
教學中,應鼓勵學生使用計算器、計算機等現代技術手段來處理數據,有條件的學校還可運用一些常見的統計軟體解決實際問題。
3.概率
(1)在對具體問題的分析中,理解取有限值的離散型隨機變數及其分布列的概念,認識分布列對於刻畫隨機現象的重要性。
(2)通過實例(如彩票抽獎),理解超幾何分布及其導出過程,並能進行簡單的應用。
(3)在具體情境中,了解條件概率和兩個事件相互獨立的概念,理解n次獨立重復試驗的模型及二項分布,並能解決一些簡單的實際問題。
(4)通過實例,理解取有限值的離散型隨機變數均值、方差的概念,能計算簡單離散型隨機變數的均值、方差,並能解決一些實際問題。
(5)通過實際問題,藉助直觀(如實際問題的直方圖),認識正態分布曲線的特點及曲線所表示的意義。
研究一個隨機現象,就是要了解它所有可能出現的結果和每一個結果出現的概率,分布列正是描述了離散型隨機變數取值的概率規律。因此本部分內容的重點是隨機變數的分布列。為了能正確求出隨機變數對應的概率值,教學中應適當復習必修課所學的概率知識。
在學習了離散型隨機變數的基礎上,通過實例,重點研究二項分布和超幾何分布,這些都是應用廣泛的重要的概率模型。對於這些概率模型的教學,注重通過實例引入,讓學生對這些概率模型直觀認識,不追求形式化的描述。
正態分布在自然界中大量存在,因此正態分布是一個重要的數學模型。但高中階段正態分布的教學要注意把握好教學深度。正態分布涉及到連續型隨機變數的總體密度曲線,本部分教學內容只要求簡單介紹。
結合本部分教學內容特點和教學方式,應引導學生利用所學知識解決一些實際問題。讓學生自行選擇一些實際問題,建立恰當的概率模型,培養學生實踐能力,努力提高學生分析和解決問題的能力。體會數學的實際應用價值,努力提高學生數學學習興趣。
『肆』 高二數學選修的必學知識點總結
知識掌握的巔峰,應該在一輪復習之後,也就是在你把所有知識重新撿起來之後。這樣看來,應對高二這一變化的較優選擇,是在高二還在學習新知識時,有意識地把高一內容從頭撿起,自己規劃進度,提前復習。我整理的 高二數學 選修的必學知識點 總結 ,希望大家能夠喜歡!
高二數學選修的必學知識點總結1
直線的傾斜角:
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
直線的斜率:
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過兩點的直線的斜率公式。
注意:
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
直線方程:
1.點斜式:y-y0=k(x-x0)
(x0,y0)是直線所通過的已知點的坐標,k是直線的已知斜率。x是自變數,直線上任意一點的橫坐標;y是因變數,直線上任意一點的縱坐標。
2.斜截式:y=kx+b
直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似於一次函數的表達式。
3.兩點式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那麼兩點就重合了,相當於只有一個已知點了,這樣不能確定一條直線。
如果x1=x2,y1y2,那麼此直線就是垂直於X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那麼此直線就是垂直於Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
對x的截距就是y=0時,x的值,對y的截距就是x=0時,y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=『b』(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。
高二數學選修的必學知識點總結2
拋物線的性質:
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為
P(-b/2a,(4ac-b^2)/4a)
當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交於(0,c)
6.拋物線與x軸交點個數
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
焦半徑:
焦半徑:拋物線y2=2px(p>0)上一點P(x0,y0)到焦點Fè???÷?
p2,0的距離|PF|=x0+p2.
求拋物線方程的 方法 :
(1)定義法:根據條件確定動點滿足的幾何特徵,從而確定p的值,得到拋物線的標准方程.
(2)待定系數法:根據條件設出標准方程,再確定參數p的值,這里要注意拋物線標准方程有四種形式.從簡單化角度出發,焦點在x軸的,設為y2=ax(a≠0),焦點在y軸的,設為x2=by(b≠0).
高二數學選修的必學知識點總結3
(1)定義:
對於函數y=f(x)(x∈D),把使f(x)=0成立的實數x叫做函數y=f(x)(x∈D)的零點。
(2)函數的零點與相應方程的根、函數的圖象與x軸交點間的關系:
方程f(x)=0有實數根?函數y=f(x)的圖象與x軸有交點?函數y=f(x)有零點。
(3)函數零點的判定(零點存在性定理):
如果函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,並且有f(a)·f(b)<0,那麼,函數y=f(x)在區間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。
二二次函數y=ax2+bx+c(a>0)的圖象與零點的關系
三二分法
對於在區間[a,b]上連續不斷且f(a)·f(b)<0的函數y=f(x),通過不斷地把函數f(x)的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。
1、函數的零點不是點:
函數y=f(x)的零點就是方程f(x)=0的實數根,也就是函數y=f(x)的圖象與x軸交點的橫坐標,所以函數的零點是一個數,而不是一個點.在寫函數零點時,所寫的一定是一個數字,而不是一個坐標。
2、對函數零點存在的判斷中,必須強調:
(1)、f(x)在[a,b]上連續;
(2)、f(a)·f(b)<0;
(3)、在(a,b)內存在零點。
這是零點存在的一個充分條件,但不必要。
3、對於定義域內連續不斷的函數,其相鄰兩個零點之間的所有函數值保持同號。
利用函數零點的存在性定理判斷零點所在的區間時,首先看函數y=f(x)在區間[a,b]上的圖象是否連續不斷,再看是否有f(a)·f(b)<0.若有,則函數y=f(x)在區間(a,b)內必有零點。
四判斷函數零點個數的常用方法
1、解方程法:
令f(x)=0,如果能求出解,則有幾個解就有幾個零點。
2、零點存在性定理法:
利用定理不僅要判斷函數在區間[a,b]上是連續不斷的曲線,且f(a)·f(b)<0,還必須結合函數的圖象與性質(如單調性、奇偶性、周期性、對稱性)才能確定函數有多少個零點。
3、數形結合法:
轉化為兩個函數的圖象的交點個數問題.先畫出兩個函數的圖象,看其交點的個數,其中交點的個數,就是函數零點的個數。
已知函數有零點(方程有根)求參數取值常用的方法
1、直接法:
直接根據題設條件構建關於參數的不等式,再通過解不等式確定參數范圍。
2、分離參數法:
先將參數分離,轉化成求函數值域問題加以解決。
3、數形結合法:
先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然後數形結合求解。
高二數學選修的必學知識點總結相關 文章 :
★ 高二數學知識點總結選修2
★ 高二數學必背知識點總結
★ 高二數學選修2至3知識點總結
★ 高二數學知識點歸納總結
★ 高二數學知識點總結
★ 高二數學選修2—1第一章常用邏輯用語知識點復習
★ 高二數學知識點總結歸納
★ 高二數學考點知識點總結復習大綱
★ 高二數學知識點總結人教版
★ 高二數學知識點總結詳細
『伍』 高中數學所有知識點歸納
高中數學基礎知識梳理(數學小飛俠)
鏈接:
若資源有問題,歡迎追問~
『陸』 高中數學知識點總結
《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載
鏈接:
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
『柒』 高中數學知識點整理
下面,我分章節講一下數學的主幹內容:那些雖然課本上沒有,但是必須講也必須學會的東西。
目錄(未完待更新):
零,總論與試卷分析(就是上文內容)
一,函數
1.1 集合
1.2 函數的定義域
1.3 函數的值域
1.4 單調性
1.5 奇偶性,對稱性,周期性
1.6 指數函數,對數函數
1.7 復合函數
1.8 含參函數
二,三角函數(僅函數部分,解三角形部分等講完平面向量和平面幾何再說)
2.1 正弦,餘弦,正切
2.2 三角函數線
2.3 三角函數的基本形式與伸縮
2.4 三角變換公式和萬能公式
2.5 三角函數最值問題
三,平面幾何,平面向量,與直線與圓的方程
3.1 平行線和相交線
3.2 三角形
3.3 圓
3.4 基向量,正交基,和坐標系
3.5 平面向量與基本幾何圖形
3.6 向量運算律與推論
3.7 直線方程
3.8 圓的方程
3.9 用向量解決平面幾何問題
四,解三角形
4.1 正弦定理
4.2 餘弦定理
4.3 正弦定理和餘弦定理的應用
4.4 解三角形中的多解問題
4.5 解三角形中的最值問題
五,立體幾何
5.1 基本幾何體:柱,錐,台,球
5.2 三視圖與直觀圖
一,函數
1.1 集合。
集合的元素必須是確定的,並且是唯一的。比如,一個集合里不能有兩個「1」。
1.2 函數的定義域。
除了最常見的幾個:分母不為零,對數函數的真數大於零,偶數次方的被開方數不為負(注意我前面幾個表述,其中暗含了區間的開閉),正切餘切函數不能恰好取定義中分母為零的角度(正切餘切都是用比值定義的) 還一定要注意一個容易被忽略的易錯點: 無定義。
1.3 函數的值域
分離常數法 判別式法 換元法 基本不等式法 等等幾種方法,看起來方法非常繁多,似乎挺難總結,但是,我們如果按題目的形式進行總結,每種只需要掌握一種,或者兩種就可以了
『捌』 我要高中選修數學所有知識點總結
你不如要你那年高考答案。。。。
『玖』 高中數學必考知識點歸納
高考數學必考知識點有哪些,高中數學重點知識有哪些,需要我們掌握?下面是我為大家整理的關於高中數學必考知識點歸納,希望對您有所幫助。
高中數學知識點 總結
1.必修課程由5個模塊組成:
必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數)
必修2:立體幾何初步、平面解析幾何初步。
必修3:演算法初步、統計、概率。
必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。
必修5:解三角形、數列、不等式。
以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。
選修課程分為4個系列:
系列1:2個模塊
選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。
選修1-2:統計案例、推理與證明、數系的擴充與復數、框圖
系列2: 3個模塊
選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何
選修2-2:導數及其應用、推理與證明、數系的擴充與復數
選修2-3:計數原理、隨機變數及其分布列、統計案例
選修4-1:幾何證明選講
選修4-4:坐標系與參數方程
選修4-5:不等式選講
2.高考數學必考重難點及其考點:
重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數
難點:函數,圓錐曲線
高考相關考點:
1. 集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡易邏輯、充要條件
2. 函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數函數、對數函數、函數的應用
3. 數列:數列的有關概念、等差數列、等比數列、數列求通項、求和
4. 三角函數:有關概念、同角關系與誘導公式、和差倍半公式、求值、化簡、證明、三角函數的圖像及其性質、應用
5. 平面向量:初等運算、坐標運算、數量積及其應用
6. 不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經常出現在大題的選做題里)、不等式的應用
7. 直線與圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系
8. 圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用
9. 直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量
10. 排列、組合和概率:排列、組合應用題、二項式定理及其應用
11. 概率與統計:概率、分布列、期望、方差、抽樣、正態分布
12. 導數:導數的概念、求導、導數的應用
13. 復數:復數的概念與運算
高中數學易錯知識點整理
一.集合與函數
1.進行集合的交、並、補運算時,不要忘了全集和空集的特殊情況,不要忘記了藉助數軸和文氏圖進行求解.
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關問題嗎?
4.簡單命題與復合命題有什麼區別?四種命題之間的相互關系是什麼?如何判斷充分與必要條件?
5.你知道「否命題」與「命題的否定形式」的區別.
6.求解與函數有關的問題易忽略定義域優先的原則.
7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關於__對稱.
8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.
9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調.例如:.
10.你熟練地掌握了函數單調性的證明 方法 嗎?定義法(取值,作差,判正負)和導數法
11.求函數單調性時,易錯誤地在多個單調區間之間添加符號「∪」和「或」;單調區間不能用集合或不等式表示.
12.求函數的值域必須先求函數的定義域。
13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恆成立問題).這幾種基本應用你掌握了嗎?
14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?
(真數大於零,底數大於零且不等於1)字母底數還需討論
15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?
16.用換元法解題時易忽略換元前後的等價性,易忽略參數的范圍。
17.「實系數一元二次方程有實數解」轉化時,你是否注意到:當時,「方程有解」不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?
二.不等式
18.利用均值不等式求最值時,你是否注意到:「一正;二定;三等」.
19.絕對值不等式的解法及其幾何意義是什麼?
20.解分式不等式應注意什麼問題?用「根軸法」解整式(分式)不等式的注意事項是什麼?
21.解含參數不等式的通法是「定義域為前提,函數的單調性為基礎,分類討論是關鍵」,注意解完之後要寫上:「綜上,原不等式的解集是……」.
22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示.
23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意「同號可倒」即a>b>0,a<0.
三.數列
24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
25.在「已知,求」的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。
26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什麼樣的無窮等比數列的所有項的和必定存在?
27.數列單調性問題能否等同於對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)
28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。
四.三角函數
29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?
30.三角函數的定義及單位圓內的三角函數線(正弦線、餘弦線、正切線)的定義你知道嗎?
31.在解三角問題時,你注意到正切函數、餘切函數的定義域了嗎?你注意到正弦函數、餘弦函數的有界性了嗎?
32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反餘弦、反正切函數的取值范圍分別是
34.你還記得某些特殊角的三角函數值嗎?
35.掌握正弦函數、餘弦函數及正切函數的圖象和性質.你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?
36.函數的圖象的平移,方程的平移以及點的平移公式易混:
(1)函數的圖象的平移為「左+右-,上+下-」;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.
(2)方程表示的圖形的平移為「左+右-,上-下+」;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.
(3)點的平移公式:點按向量平移到點,則.
37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時易忘比值還等於2R.
五.平面向量
40.數0有區別,的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。
41.數量積與兩個實數乘積的區別:
在實數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出.
已知實數,且,則a=c,但在向量的數量積中沒有.
在實數中有,但是在向量的數量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量.
42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。
六.解析幾何
43.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?
44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。
45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。
46.定比分點的坐標公式是什麼?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?
47.對不重合的兩條直線
(建議在解題時,討論後利用斜率和截距)
48.直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。
49.解決線性規劃問題的基本步驟是什麼?請你注意解題格式和完整的文字表達.(①設出變數,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到並求出最優解⑦應用題一定要有答。)
50.三種圓錐曲線的定義、圖形、標准方程、幾何性質,橢圓與雙曲線中的兩個特徵三角形你掌握了嗎?
51.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?
52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前後項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?
53.通徑是拋物線的所有焦點弦中最短的弦.(想一想在雙曲線中的結論?)
54.在用圓錐曲線與直線聯立求解時,消元後得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制.(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).
55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?
七.立體幾何
56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。
57.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什麼?
58.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什麼嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見
59.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為」一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行」而導致證明過程跨步太大.
60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那麼就不要忘了還有一種求角的方法即用證明它們垂直的方法.
61.異面直線所成角利用「平移法」求解時,一定要注意平移後所得角等於所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。
62.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?
63.兩條異面直線所成的角的范圍:0°<α≤90° >
直線與平面所成的角的范圍:0o≤α≤90°
二面角的平面角的取值范圍:0°≤α≤180°
64.你知道異面直線上兩點間的距離公式如何運用嗎?
65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前後有關幾何元素的「不變數」與「不變性」。
66.立幾問題的求解分為「作」,「證」,「算」三個環節,你是否只注重了「作」,「算」,而忽視了「證」這一重要環節?
67.稜柱及其性質、平行六面體與長方體及其性質.這些知識你掌握了嗎?(注意運用向量的方法解題)
68.球及其性質;經緯度定義易混.經度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式.這些知識你掌握了嗎?
八.排列、組合和概率
69.解排列組合問題的依據是:分類相加,分步相乘,有序排列,無序組合.
解排列組合問題的規律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排後排法;至多至少問題間接法.
70.二項式系數與展開式某一項的系數易混,第r+1項的二項式系數為。二項式系數最大項與展開式中系數最大項易混.二項式系數最大項為中間一項或兩項;展開式中系數最大項的求法要用解不等式組來確定r.
71.你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發生的概率公式;③相互獨立事件同時發生的概率公式.)
72.二項式展開式的通項公式、n次獨立重復試驗中事件A發生k次的概率易記混。
通項公式:它是第r+1項而不是第r項;
事件A發生k次的概率:.其中k=0,1,2,3,…,n,且0
<1,p+q=1.< p="">
73.求分布列的解答題你能把步驟寫全嗎?
74.如何對總體分布進行估計?(用樣本估計總體,是研究統計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義.)
75.你還記得一般正態總體如何化為標准正態總體嗎?(對任一正態總體來說,取值小於x的概率,其中表示標准正態總體取值小於的概率)
相關 文章 :
1. 高中數學重要知識點巧記口訣
2. 高中數學學習方法:知識點總結最全版
3. 高一數學必背公式及知識匯總
4. 高一數學重點知識點公式總結
5. 高中數學重點知識結構總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();『拾』 高中數學選修知識點
高中數學 選修2-3知識點
第一章 計數原理
1、分類加法計數原理:做一件事情,完成它有N類辦法,在第一類辦法中有M1種不同的方法,在第二類辦法中有M2種不同的方法,……,在第N類辦法中有MN種不同的方法,那麼完成這件事情共有M1+M2+……+MN種不同的方法。
2、分步乘法計數原理:做一件事,完成它需要分成N個步驟,做第一 步有m1種不同的方法,做第二步有M2不同的方法,……,做第N步有MN不同的方法.那麼完成這件事共有 N=M1M2...MN 種不同的方法。
3、排列:從n個不同的元素中任取m(m≤n)個元素,按照一定順序......排成一列,叫做從n個不同元素中取出m個元素的一個排列
4、排列數:從n個不同元素中取出m(m≤n)個元素排成一列,稱為從n個不同元素中取出m個元素的一
個排列. 從n個不同元素中取出m個元素的一個排列數,用符號mnA表示。
),,()!
(!
)1()1(NmnnmmnnmnnnAm
5、公式:
,
11mnm
n
nA
A
6、組合:從n個不同的元素中任取m(m≤n)個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合。
7、公式:)!(!!!)1()1(mnmnCmmnnnAACmn
mm
mnmn
)!(!!!)1()1(mnmnCmmnnnAACmnmmmnmn ;
m
nnmnCC
mnmnmnCCC1
1
8、二項式定理:
()
011222„„ 9、二項式通項公式展開式的通項公式:,„„TCabrnrn
rnrr
101() 10、二項式系數Cn
r
為二項式系數(區別於該項的系數) 11、楊輝三角:
()對稱性:,,,„„,1012CCrnnrnnr
()系數和:„2CCCnnn
nn
012
閱讀會員限時特惠 7大會員特權立即嘗鮮
(3)最值:n為偶數時,n+1為奇數,中間一項的二項式系數最大且為第
nCnnn
n
2
112
項,二項式系數為;為奇數時,為偶數,中間兩項的二項式() 系數最大即第項及第項,其二項式系數為nnCCnnn
n1212
1121
2
第二章 隨機變數及其分布
1、隨機變數:如果隨機試驗可能出現的結果可以用一個變數X來表示,並且X是隨著試驗的結果的不同而變化,那麼這樣的變數叫做隨機變數. 隨機變數常用大寫字母X、Y等或希臘字母 ξ、η等表示。 2、離散型隨機變數:在上面的射擊、產品檢驗等例子中,對於隨機變數X可能取的值,我們可以按一定次序一一列出,這樣的隨機變數叫做離散型隨機變數.
3、離散型隨機變數的分布列:一般的,設離散型隨機變數X可能取的值為x1,x2,..... ,xi ,......,xn
X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變數X 的概率分布,簡稱分布列
4、分布列性質① pi≥0, i =1,2, „ ;② p1 + p2 +„+pn= 1. 5、二項分布:如果隨機變數X的分布列為:
其中0<p<1,q=1-p,則稱離散型隨機變數X服從參數p的二點分布
6、超幾何分布:一般地, 設總數為N件的兩類物品,其中一類有M件,從所有物品中任取n(n≤N)件,這n件中所含這類物品件數X是一個離散型隨機變數,
則它取值為k時的概率為()(0,1,2,,)knkMNM
n
N
CCPXkkmC, 其中min
,mMn,且*,,,,nNMNnMNN≤≤
7、條件概率:對任意事件A和事件B,在已知事件A發生的條件下事件B發生的概率,叫做條件概率.記作P(B|A),讀作A發生的條件下B的概率 8、公式:
.
0)(,)()
()|(APAPABPABP 9、相互獨立事件:事件A(或B)是否發生對事件B(或A)發生的概率沒有影響,這樣的兩個事件叫做相互
獨立事件。)()()(BPAPBAP
10、n次獨立重復事件:在同等條件下進行的,各次之間相互獨立的一種試驗
11、概率:
12、二項分布: 設在n次獨立重復試驗中某個事件A發生的次數,A發生次數ξ是一個隨機變數.如果在一次試驗中某事件發生的概率是p,事件A不發生的概率為q=1-p,那麼在n次獨立重復試驗中
)(kPk
nkknqpC(其中 k=0,1, „„,n,q=1-p )
於是可得隨機變數ξ的概率分布如下:
這樣的隨機變數ξ服從二項分布,記作ξ~B(n,p) ,其中n,p為參數 13、數學期望:一般地,若離散型隨機變數ξ的概率分布為
則稱 Eξ=x1p1+x2p2+„+xnpn+„ 為ξ的數學期望或平均數、均值,數學期望又簡稱為期望.是離散型隨機變數。
14、兩點分布數學期望:E(X)=np
15、超幾何分布數學期望:E(X)=MnN
.
16、方差:D(ξ)=(x1-Eξ)2·P1+(x2-Eξ)2·P2 +......+(xn-Eξ)2·Pn 叫隨機變數ξ的均方差,簡稱方差。 17、集中分布的期望與方差一覽:
期望 方差
兩點分布 Eξ=p
Dξ=pq,q=1-p
超幾何分布
的超幾何分布服從參數為n,M,N
N
MnE
D(X)=np(1-p)* (N-n)/(N-1)
(不要求) 二項分布,ξ ~ B(n,p)
Eξ=np
Dξ=qEξ=npq,(q=1-p)
幾何分布,p(ξ=k)=g(k,p)
1
p
2p
qD
knkkn
nppCkP)1()(
17.正態分布:
若概率密度曲線就是或近似地是函數
)
,(,21
)(2
22)(
xexfx
的圖像,其中解析式中的實數0)
、(是參數,分別表示總體的平均數與標准差. 則其分布叫正態分布(,)N記作:,f( x )的圖象稱為正態曲線。 18.基本性質:
①曲線在x軸的上方,與x軸不相交. ②曲線關於直線x=對稱,且在x=
時位於最高點.
③當時x,曲線上升;當時x,曲線下降.並且當曲線向左、右兩邊無限延伸時,以x軸為漸近線,向它無限靠近.
④當一定時,曲線的形狀由確定.越大,曲線越「矮胖」,表示總體的分布越分散;越小,曲線越「瘦高」,表示總體的分布越集中.
⑤當σ相同時,正態分布曲線的位置由期望值μ來決定. ⑥正態曲線下的總面積等於1.
19. 3原則:
),(
)2,2(
)3,3(
從上表看到,正態總體在 )2,2( 以外取值的概率 只有4.6%,在 )3,3(以外取值的概率只有0.3% 由於這些概率很小,通常稱這些情況發生為小概率事件.也就是說,通常認為這些情況在一次試驗中幾乎是不可能發生的.
第三章 統計案例
1、獨立性檢驗
假設有兩個分類變數X和Y,它們的值域分另為{x1, x2}和{y1, y2},其樣本頻數列聯表為: y1 y2 總計 x1 a b a+b x2 c d c+d 總計
a+c
b+d
a+b+c+d
若要推斷的論述為H1:「X與Y有關系」,可以利用獨立性檢驗來考察兩個變數是否有關系,並且能較精確地給出這種判斷的可靠程度。具體的做法是,由表中的數據算出隨機變數K^2的值(即K的平方) K2 = n (ad - bc) 2 / [(a+b)(c+d)(a+c)(b+d)],其中n=a+b+c+d為樣本容量,K2的值越大,說明「X與Y有關系」成立的可能性越大。
K2≤3.841時,X與Y無關; K2>3.841時,X與Y有95%可能性有關;K2>6.635時X與Y有99%可能性有關
2、回歸分析
回歸直線方程bxay
ˆ 其中x
SSSPxxyyxxxnxyxnxyb
2
22)
())(()
(1
1
,
xbya