Ⅰ 七年級數學課本重要知識點總結
偉大的成績和辛勤勞動是成正比例的,有一分勞動就有一分收獲,積累,從少到多,奇跡就可以創造出來。學習也是一樣的,需要積累,從少變多。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。
初一上冊數學第三章《圖形認識初步》知識點
圖形認識初步
3.1 多姿多彩的圖形
現實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形。
3.1.1立體圖形與平面圖形
長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。
長方形、正方形、三角形、圓等都是平面圖形。
許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
3.1.2點、線、面、體
幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、稜柱、棱錐等都是幾何體。
包圍著體的是面。面有平的面和曲的面兩種。
面和 面相 交的地方形成線。
線和線相交的地方是點。
幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素。
3.2 直線、射線、線段
經過兩點有一條直線,並且只有一條直線。
兩點確定一條直線。
點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
直線桑一點和它一旁的部分叫做射線。
兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。
3.3 角的度量
角也是一種基本的幾何圖形。
度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1;把1度的角60等分,每份叫做1分的角,記作1;把1分的角60等分,每份叫做1秒的角,記作1。
3.4角的比較與運算
3.4.1角的比較
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
3.4.2餘角和補角
如果兩個角的和等於90(直角),就說這兩個角互為餘角。
如果兩個角的和等於180(平角),就說這兩個角互為補角。
等角的補角相等。
等角的餘角相等。
初一下冊數學知識點:不等式與不等式組
1.不等式:用符號"<",">","≤","≥"表示大小關系的式子叫做不等式。
2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大於號、小於號">","<"連接的不等式稱為嚴格不等式,用不小於號(大於或等於號)、不大於號(小於或等於號)"≥","≤"連接的不等式稱為非嚴格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數的值,叫做不等式的解。
4.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
5.不等式解集的表示 方法 :
(1)用不等式表示:一般的,一個含未知數的不等式有無數個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3
(2)用數軸表示:不等式的解集可以在數軸上直觀地表示出來,形象地說明不等式有無限多個解,用數軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)< G(x)與不等式 G(x)>F(x)同解。
(2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那麼不等式 F(x)< G(x)與不等式H(x)+F(x)
(3)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,並且H(x)>0,那麼不等式F(x)< G(x)與不等式H(x)F(x)0,那麼不等式F(x)< G(x)與不等式H(x)F(x)>H(x)G(x)同解。
7.不等式的性質:
(1)如果x>y,那麼yy;(對稱性)
(2)如果x>y,y>z;那麼x>z;(傳遞性)
(3)如果x>y,而z為任意實數或整式,那麼x+z>y+z;(加法則)
(4)如果x>y,z>0,那麼xz>yz;如果x>y,z<0,那麼xz
(5)如果x>y,z>0,那麼x÷z>y÷z;如果x>y,z<0,那麼x÷z
(6)如果x>y,m>n,那麼x+m>y+n(充分不必要條件)
(7)如果x>y>0,m>n>0,那麼xm>yn
(8)如果x>y>0,那麼x的n次冪>y的n次冪(n為正數)
8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的次數是1,像這樣的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般順序:
(1)去分母 (運用不等式性質2、3)
(2)去括弧
(3)移項 (運用不等式性質1)
(4)合並同類項
(5)將未知數的系數化為1 (運用不等式性質2、3)
(6)有些時候需要在數軸上表示不等式的解集
初一下冊數學輔導復習資料
1.幾何圖形:點、線、面、體這些可幫助人們有效的刻畫錯綜復雜的世界,它們都稱為幾何圖形。從實物中抽象出的各種圖形統稱為幾何圖形。有些幾何圖形的各部分不在同一平面內,叫做立體圖形。有些幾何圖形的各部分都在同一平面內,叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯系的。
2.幾何圖形的分類:幾何圖形一般分為立體圖形和平面圖形。
3.直線:幾何學基本概念,是點在空間內沿相同或相反方向運動的軌跡。從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交於一點。常用直線與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對於X軸)的傾斜程度。
4.射線:在歐幾里德幾何學中,直線上的一點和它一旁的部分所組成的圖形稱為射線或半直線。
5.線段:指一個或一個以上不同線素組成一段連續的或不連續的圖線,如實線的線段或由「長劃、短間隔、點、短間隔、點、短間隔」組成的雙點長劃線的線段。
線段有如下性質:兩點之間線段最短。
6. 兩點間的距離:連接兩點間線段的長度叫做這兩點間的距離。
7. 端點:直線上兩個點和它們之間的部分叫做線段,這兩個點叫做線段的端點。
線段用表示它兩個端點的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段AB或線段BA,線段a。其中AB表示直線上的任意兩點。
8.直線、射線、線段區別:直線沒有距離。射線也沒有距離。因為直線沒有端點,射線只有一個端點,可以無限延長。
9.角:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊。
10.角的靜態定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式;數字或字母的乘積叫單項式(單獨的一個數字或字母也是單項式)。
2.系數:單項式中的數字因數叫做這個單項式的系數。所有字母的指數之和叫做這個單項式的次數。任何一個非零數的零次方等於1。
3.多項式:幾個單項式的和叫多項式。
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數。
5.常數項:不含字母的項叫做常數項。
七年級數學課本重要知識點 總結 相關 文章 :
★ 初一數學課本知識點總結
★ 初中七年級數學知識點歸納整理
★ 七年級數學課本知識點
★ 七年級數學知識點整理大全
★ 七年級數學知識點梳理總結
★ 初一上冊數學重點知識點歸納總結
★ 七年級數學知識點總結
★ 初一人教版數學上冊知識點總結歸納
★ 七年級數學知識點整理部編版
★ 初一數學知識點梳理歸納
Ⅱ 九年級數學知識點歸納總結
只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 九年級數學 的知識點,希望對大家有所幫助。
初三第一學期數學知識點
【角的度量與分類】
角的度量:度量角的大小,可用「度」作為度量單位。把一個圓周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
角的分類:
(1)銳角:小於直角的角叫做銳角
(2)直角:平角的一半叫做直角
(3)鈍角:大於直角而小於平角的角
(4)平角:把一條射線,繞著它的端點順著一個方向旋轉,當終止位置和起始位置成一直線時,所成的角叫做平角。
(5)周角:把一條射線,繞著它的端點順著一個方向旋轉,當終邊和始邊重合時,所成的角叫做周角。
(6)周角、平角、直角的關系是:l周角=2平角=4直角=360°
【銳角三角函數定義】
銳角角A的正弦(sin),餘弦(cos)和正切(tan),餘切(cot)以及正割(sec),餘割(csc)都叫做角A的銳角三角函數。
正弦(sin)等於對邊比斜邊;sinA=a/c
餘弦(cos)等於鄰邊比斜邊;cosA=b/c
正切(tan)等於對邊比鄰邊;tanA=a/b
餘切(cot)等於鄰邊比對邊;cotA=b/a
正割(sec)等於斜邊比鄰邊;secA=c/b
餘割(csc)等於斜邊比對邊。cscA=c/a
互餘角的三角函數間的關系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα。
平方關系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
初三數學知識點
1.有兩條邊相等的三角形是等腰三角形。
2.判定定理:如果一個三角形有兩個角相等,那麼這個三角形是等腰三角形(簡稱:等角對等邊)。
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,學習方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
標准差與方差
極差是什麼:一組數據中數據與最小數據的差叫做極差,即極差=值-最小值。
計算器——求標准差與方差的一般步驟:
1.打開計算器,按「ON」鍵,按「MODE」「2」進入統計(SD)狀態。
2.在開始數據輸入之前,請務必按「SHIFT」「CLR」「1」「=」鍵清除統計存儲器。
3.輸入數據:按數字鍵輸入數值,然後按「M+」鍵,就能完成一個數據的輸入。如果想對此輸入同樣的數據時,還可在步驟3後按「SHIET」「;」,後輸入該數據出現的頻數,再按「M+」鍵。
4.當所有的數據全部輸入結束後,按「SHIFT」「2」,選擇的是「標准差」,就可以得到所求數據的標准差;
5.標准差的平方就是方差。
數學初三上冊知識點歸納
分式的基本性質與應用:
(1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;
(2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;
(3)繁分式化簡時,採用分子分母同乘小分母的最小公倍數的方法,比較簡單.
分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經常需要先因式分解.
最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最後結果要求化為最簡分式.
分式的乘除法法則:.
分式的乘方:.
負整指數計演算法則:
(1)公式:a0=1(a≠0),a-n=(a≠0);
(2)正整指數的運演算法則都可用於負整指數計算;
(3)公式:,;
(4)公式:(-1)-2=1,(-1)-3=-1.
九年級數學知識點歸納 總結 相關 文章 :
★ 初三數學知識點考點歸納總結
★ 九年級數學上冊重要知識點總結
★ 初三數學知識點歸納總結
★ 九年級上冊數學知識點歸納整理
★ 人教版九年級數學知識點歸納
★ 初三數學知識點歸納人教版
★ 初中九年級數學知識點總結歸納
★ 最新初三數學知識點總結大全
★ 初三中考數學知識點歸納總結
★ 九年級上冊數學知識點歸納
Ⅲ 七年級數學重要知識點總結
失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。
初一下冊數學知識點 總結 北師大版
1.1正數與負數
在以前學過的0以外的數前面加上負號「-」的數叫負數(negativenumber)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positivenumber)(根據需要,有時在正數前面也加上「+」)。
1.2有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rationalnumber)。
通常用一條直線上的點表示數,這條直線叫數軸(numberaxis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(oppositenumber)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。
1.4有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(basenumber),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significantdigit)。
人教版初一數學下冊知識點總結
篇一:直線、射線、線段
(1)直線、射線、線段的表示方法
①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.
②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.
③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。
(2)點與直線的位置關系:
①點經過直線,說明點在直線上;
②點不經過直線,說明點在直線外。
篇二:兩點間的距離
(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。
(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最後的兩個字「長度」,也就是說,它是一個量,有大小,區別於線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離。
初一數學 復習方法
考試與作業邏輯不同:
我們的考試不同於作業,有些孩子作業寫的還可以,准確率挺高的,但是考試成績不理想。比如學校上完課,回家就寫當天的作業,但是考試不一樣,它是階段性的、綜合性的;再比如寫作業,可以看資料,不會的可以請教同學,但是考試就得靠自己;還有寫作業時格式不一定規范,不一定符合標准,但是考試老師會要求很嚴格;另外有些孩子考試比較焦慮,考試之前,爸爸媽媽給孩子加油鼓勁,反倒孩子考不好,有些孩子甚至在考試前後一定要上廁所,排解壓力,甚至影響到考試成績。
那具體涉及到數學的復習,我以北師大版為例,可以分4個步驟:
復習方法總結
1回歸書本,梳理章節概念公式、性質定理等
就像蓋房子,房子的地基是否扎實穩固。比如我們在復習課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復雜的公式推導一遍,費時費力,還總錯,而且重要的公式更加生疏。
比如知識點填空:
知識點填空
我們的孩子在學校大題普遍做的多,考試也能拿到一些分數,但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。
比如平行線是怎麼定義,性質定理有幾條,判定定理有幾條?他們之間有什麼聯系和區別?在這一章中,哪些地方一定要加「同一平面內」這5個字?家長們可以讓孩子找找看,捋一捋。
再比如說,三角形一章,涉及到三邊關系,角的關系,以及三角形的重要線段和它們的性質,等腰等邊三角形的性質,這些一定是期末選擇題的備選項。
還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。
2題型突破,對各章節常見的 熱點 問題歸納練習。
我們的數學、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。
大多數孩子要考的題型和難度,學校每天的作業以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應用?通過這樣一遍的分析,孩子們都會發現,其實考來考去,就是那幾種題型反復的出,反復的練。這是非常高效的學習方法。
3、熟悉套路、模型
平行線常見的模型:鉛筆模型、豬蹄模型,比如我經常和大家說的,遇見拐點,就做平行線。
三角形倒角常見模型:8字型、飛鏢型、折角型。
三角形全等模型:角平分線的性質模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。
學好這些模型相等於我們是拿著工具箱考試,效率很高,比起其他同學,省去了推導的過程,速度又快,又准確。當然前提要掌握好基礎內容,不要本末倒置。
如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學校本來要求考很難,比如壓軸題,不在於做的多,而是在精練,你做完之後不斷的復盤,用自己的語言說出思路來,找找看裡面的邏輯關系。
4、堅持改錯題
把整個學期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標記星號,問老師問同學,直到會了為止,下周繼續改,看自己是否真的懂了,對於錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復的看思路,才能在考試的時候避免在同類型的題上反復錯。
七年級數學重要知識點總結相關 文章 :
★ 初中七年級數學知識點歸納整理
★ 初中七年級數學知識點總結
★ 七年級數學人教版知識點總結
★ 七年級數學基礎知識點總結
★ 七年級數學知識點整理大全
★ 七年級數學知識點大全
★ 初一數學知識點歸納梳理
★ 七年級數學知識點梳理總結
★ 初一數學重要知識點總結
★ 初一數學學習方法指導與學習方法總結
Ⅳ 初中數學基本定理總結歸納
很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?下面是我為大家整理的關於初中數學基本定理 總結 歸納,希望對您有所幫助。歡迎大家閱讀參考學習!
初中數學基本定理總結歸納
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
相關 文章 :
1. 初中數學基礎知識點總結
2. 初中數學知識點整理:
3. 初中數學基礎知識點總結之有理數
4. 初中數學知識點整理
5. 初中數學知識點總結:常用的數學公式
Ⅳ 初一到初三數學知識點歸納總結
很多同學都是談數學色變,覺得數學很難學好。其實只要找到正確的數學學習方法你也可以輕松學習數學。以下是我分享給大家的初一到初三數學知識點歸納,希望可以幫到你!
初一到初三數學知識點歸納
有理數的加法運算:同號相加一邊倒;異號相加"大"減"小",符號跟著大的跑;絕對值相等"零"正好。[注]"大"減"小"是指絕對值的大小。
合並同類項:合並同類項,法則不能忘,只求系數和,字母、指數不變樣。
去、添括弧法則:去括弧、添括弧,關鍵看符號,括弧前面是正號,去、添括弧不變號,括弧前面是負號,去、添括弧都變號。
一元一次方程:已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。
恆等變換:兩個數字來相減,互換位置最常見,正負只看其指數,奇數變號偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方:完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;首±尾括弧帶平方,尾項符號隨中央。
因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。
"代入"口訣:挖去字母換上數(式),數字、字母都保留;換上分數或負數,給它帶上小括弧,原括弧內出(現)括弧,逐級向下變括弧(小-中-大)
單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行。
一元一次不等式解題的一般步驟:去分母、去括弧,移項時候要變號,同類項、合並好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了。
一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。
一元二次不等式、一元一次絕對值不等式的解集:大(魚)於(吃)取兩邊,小(魚)於(吃)取中間。
分式混合運演算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然後再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。
分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解後須驗根,原(根)留、增(根)舍別含糊。
最簡根式的條件:最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。
特殊點坐標特徵:坐標平面點(x,y),橫在前來縱在後;(+,+),(-,+),(-,-)和(+,-),四個象限分前後;X軸上y為0,x為0在Y軸。
象限角的平分線:象限角的平分線,坐標特徵有特點,一、三橫縱都相等,二、四橫縱確相反。
平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行於Y軸,點的橫坐標仍照舊。
對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。
自變數的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。
函數圖像的移動規律:若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面的口訣"左右平移在括弧,上下平移在末稍,左正右負須牢記,上正下負錯不了"。
一次函數圖像與性質口訣:一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;k的絕對值越大,線離橫軸就越遠。
二次函數圖像與性質口訣:二次函數拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象現;開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。
反比例函數圖像與性質口訣:反比例函數有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函數減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。
巧記三角函數定義:初中所學的三角函數有正弦、餘弦、正切、餘切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:餘弦或餘弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數的增減性:正增余減特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、餘弦值的分母都是2、正切、餘切的分母都是3,分子記口訣"123,321,三九二十七"既可。
平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分"跑不了",對角相等也有用,"兩組對角"才能成。
梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在"△"現;延長兩腰交一點,"△"中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎麼添?找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。
圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關角,勿忘相互有關聯,圓周、圓心、弦切角,細找關系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內接四邊形,對角互補記心間,外角等於內對角,四邊形定內接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉轉,四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關鍵,兩圓相切作公切,兩圓相交連公弦。
圓中比例線段:遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替,遇等比,改等積,引用射影和圓冪,平行線,轉比例,兩端各自找聯系。
正多邊形訣竅歌:份相等分割圓,n值必須大於三,依次連接各分點,內接正n邊形在眼前。
經過分點做切線,切線相交n個點。N個交點做頂點,外切正n邊形便出現。正n邊形很美觀,它有內接,外切圓,內接、外切都唯一,兩圓還是同心圓,它的圖形軸對稱,n條對稱軸都過圓心點,如果n值為偶數,中心對稱很方便。正n邊形做計算,邊心距、半徑是關鍵,內切、外接圓半徑,邊心距、半徑分別換,分成直角三角形2n個整,依此計算便簡單。
函數學習口決:正比例函數是直線,圖象一定過圓點,k的正負是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵。
反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換。
二次函數拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,△的符號最簡便,x軸上數交點,b的食物中毒結全算,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。
初中數學復習方法
課前要“預、做、復”
每堂新課之前,做到先預習,特別要把難點或不懂之處用彩筆劃出,以便上課時更加註意。每節內容後面的練習自己可以先做一做,做到看懂70%的新內容,會做80%的練習題。
每節新內容學完後,要按照課本內容,從易到難,從簡到繁,一步一步地把學過的知識進行比較復習,對概念、定理、公式做出歸納、總結,加深對知識的理解,最好能把課本上的例題自己做一遍。對課本上的概念、定理、公式推理一遍,以形成對知識的整體認識。
課上要“聽、記、練”
怎樣才能提高聽課的效率呢?
首先,做好課前的准備。充分做好課前的准備工作是聽好課基礎。一般情況下,應做好三個方面的准備:
第一,知識准備。每一門學科,都有其嚴密的知識體系,尤其是數學,其嚴密性更強,它好像一條鎖鏈,一環套一環,環環緊扣,前面的知識沒有掌握好,後面的知識就難以理解。所以上課前要復習舊課並預習新課,了解新舊知識的聯系,明確新課的學習要求。如果舊的知識接不上,就要想辦法補上。
第二,物質准備。課前要准備好課本、文具在內的課堂上必需學慣用品,如:課堂筆記本,草稿本,三角板,圓規,量角器等。
第三,精神准備。提前入座,穩定情緒,並可利用這短暫的時間作知識回顧,上一節學了什麼?這堂課將學什麼?這樣有助於一上課就進入“角色”。
其次,聽講全神貫注。部分同學為什麼學習成績上不去?為什麼課後做作業感到費力?其中一個重要的原因就是上課不專心聽講。有的同學上課靜不下來,注意力容易分散,這就需要專門的訓練。
再次,要主動獲取知識。主動聽課是指積極配合老師的每一個教學環節,主動思考。例如,老師在黑板上寫出一道例題,有些同學等待教師講解,而有些同學則不然,他立即開動腦筋,搶在老師講解前分析問題的條件和結論,並考慮解題思路,久而久之,就能提高自己的解題能力和思維能力。
最後,還要做好課堂筆記。課堂上以聽為主,以記為輔。記筆記求精求快,而不求多。課堂上主要記教材以外的補充內容、學習中的難點、老師的歸納小結及解題的方法技巧。課後再對筆記進行適當整理;就能將課堂所獲得的知識納入自己的知識倉庫。
課後要“思、問、集”
課後作業一定要養成獨立思考的習慣,多從不同的方法、角度入手,多從典型題目中探索多種解題方法,從中得到聯想和啟發。同時,還應多樹立數學解題思想。如:方程的思想、函數的思想、數形結合的思想、整體的思想、分類的思想等常用方法;對於難題,要多問幾個為什麼,如改變條件、添加條件、結論與條件互換,原結論還成立嗎?另外,對於自己作業、試卷中出現的錯誤,最好能准備一本錯題集,以便今後復習中使用,做到絕不出現第二次類似錯誤。
初中數學學習建議
1課前課上及課後
先來說說大家都熟知的一些學習方法,也是一些基本的方法,這些方法確實是一些好的方法,主要就是看大家能不能真正的做好這些事情。下面讓我們來具體地看看。
課前:課前需要預習,預習需要我們去把接下來要上的內容整體上看一遍,然後找出其中的重點與難點,以及自己無法很好理解的內容,分別做上不同的標記,以便在上課的時候針對自己的問題去認真聽課與重點理解。
課上:在上課的時候不太可能整節課都集中精神,這時候就更顯現出我們課前預習的重要性了。我們需要在上課的時候集中精神聽講預習中所遇到的重點與難點,盡量地在課堂上去理解吸收。同時也可以看看老師講的重點與自己課前預習所確定的重點是否一致。另外,對於老師重點講解的東西需要做下相應的筆記,以便之後復慣用。
課後:課後的復習一定要及時跟上,不僅當天要對學習的內容進行復習,在之後的幾天里也應該要花一定的時間去復習,同時可以跟上一些練習進行檢測與鞏固。如果復習的時候發現還有不明白的地方,一定要及時的去詢問老師或是其他同學,將其弄懂。
課前課上及課後三個步驟環環相扣,一定要把每一步都做到位。
2提高作業效率
現在很多學生以及家長都反應說作業太多,來不及或是沒有時間去完成作業,導致學習成績不佳。但是我們應該要想一想,我們大家的時間都是一樣多的,而大家的作業也是一樣多的,為什麼有的人能夠完成,而有的人不能夠完成呢。這里就要說到學習的效率了,有的學生能夠先復習,然後再做作業,做作業的時候集中注意力,能夠很快速地完成。而有的學生就與之相反了,首先可能課上就沒有聽好,然後做作業之前也沒有進行復習,而是直接開始做的,同時也可能是做作業的時候不夠集中注意力,即使作業不是很多,也需要花很長的時間去完成。
其實這都是因為一種不好的學習習慣,導致了做作業的效率不高。那麼我們應該如何去提高做作業的效率呢?下面我給出了幾個建議,供大家參考一下。
一、要有端正的寫作業的態度。
從思想上要認真對待,如果養成懶散的習慣了,以後問題就會更多,今日不努力,明日就會失去更多,再要改善起來,就更難了。因為一個好習慣的養成是要下決心去堅持的,雖然由於以前的習慣不好或者遺留問題太多導致在堅持的過程中會容易產生抵觸的情緒,甚至有時還容易放棄,但是要知道,一旦好習慣養成之後,原來所經常遇到的問題就會越來越少,成績也自然提高了起來。
二、注意力一定要集中。
不要在寫作業的時候干其他的事或想其他事,一心不能二用。盡快地反作業做完了才能夠去做別的事情。
三、要學會總結。
如果在看到題目後能很快反映出這題目所需要的知識點,那麼做題速度就會提高,在做題之後也要總結一下思路。多總結一下會發現很多題目都有規律可循,這樣可以起到事半功倍的效果,以後再碰到類似問題時,就可以很輕鬆了。
四、營造一個良好的寫作業環境。
孩子寫作業時盡量保持安靜,書桌上除了放書、學慣用品等之外,不要放其他的東西,以免分散他們的注意力。家長也不要過度的嘮叨和訓斥,要多鼓勵孩子。
3加強計算能力
計算一直是數學的一個核心內容,幾乎每一個數學問題都需要通過計算。那麼,計算的准確率就顯得尤為重要了。想要提高數學成績,計算的准確率是一定要提高的。那麼如何提高計算的准確率呢?這里我也同樣給出了幾條建議。
一、強化學生的有意注意和良好的計算習慣
(1)仔細審題的習慣。拿到題目後認真審題,看清題目的要求,想明白過程中應該注意哪些問題。
(2)細心檢查的習慣。先從思路上檢查一遍看是否有遺漏,再將答案代回原來的問題驗算。若為計算題則仔細檢查每一個步驟。
(3)認真書寫的習慣。書寫要干凈整潔,這樣能使自己在做題時看清題目,避免錯誤的發生。
二、強化口算能力
任何計算都是以口算為基礎的,口算能力的高低,直接影響到學生其它運算能力的提高。要提高口算能力,首先要抓好口算的基本訓練,所以應當經常性的進行一些口算的練習。
三、速算巧算
平時在做計算的時候要注意運算技巧地運用,加快運算速度,特別是在分數計算的部分,有時候數字比較大比較多,通分將會很困難,這時可能把分母寫成乘積的形式將是一種更好的選擇。
四、強化估算能力
很多的問題,特別是應用題,當看到問題後就能夠大概地去估計一下結果大概會是一個什麼范圍的數,有了這種估計能力之後,有時候發生計算錯誤就能夠一下子看出來。所以在做題之前我們也可以估計一下答案的范圍,如果算得的答案不在這個范圍,那就需要我們去檢查了。
五、合理利用一些數的性質
比如說奇數乘以偶數一定是一個偶數,各位數字和是3的倍數的數一定能被3整除等等性質,都可以幫助我們對運算是否准確做一些輔助的判斷。
猜你喜歡:
1. 初一數學上冊知識點匯總整理
2. 初一數學上冊知識點復習梳理歸納
3. 初一數學知識點整理
4. 初一數學上冊知識點匯總歸納
5. 初中數學知識點總結大全
Ⅵ 九年級數學知識點總結
各個科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,基本離不開背、記,練,數學作為最燒腦的科目之一,也是一樣的。下面是我給大家整理的一些 九年級數學 的知識點,希望對大家有所幫助。
初三數學上冊知識點歸納
1.數的分類及概念數系表:
說明:分類的原則:1)相稱(不重、不漏)2)有標准
2.非負數:正實數與零的統稱。(表為:x0)
性質:若干個非負數的和為0,則每個非負數均為0。
3.倒數:
①定義及表示法
②性質:A.a1/a(a1);B.1/a中,aC.0
4.相反數:
①定義及表示法
②性質:A.a0時,aB.a與-a在數軸上的位置;C.和為0,商為-1。
5.數軸:
①定義(三要素)
②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。
6.奇數、偶數、質數、合數(正整數自然數)
定義及表示:
奇數:2n-1
偶數:2n(n為自然數)
7.絕對值:
①定義(兩種):
代數定義:
幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。
②│a│0,符號││是非負數的標志;
③數a的絕對值只有一個;
④處理任何類型的題目,只要其中有││出現,其關鍵一步是去掉││符號。
九年級下冊數學知識點歸納
一、平行線分線段成比例定理及其推論:
1.定理:三條平行線截兩條直線,所得的對應線段成比例。
2.推論:平行於三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應線段成比例。
3.推論的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條線段平行於三角形的第三邊。
二、相似預備定理:
平行於三角形的一邊,並且和其他兩邊相交的直線,截得的三角形的三邊與原三角形三邊對應成比例。
三、相似三角形:
1.定義:對應角相等,對應邊成比例的三角形叫做相似三角形。
2.性質:(1)相似三角形的對應角相等;
(2)相似三角形的對應線段(邊、高、中線、角平分線)成比例;
(3)相似三角形的周長比等於相似比,面積比等於相似比的平方。
說明:①等高三角形的面積比等於底之比,等底三角形的面積比等於高之比;②要注意兩個圖形元素的對應。
3.判定定理:
(1)兩角對應相等,兩三角形相似;
(2)兩邊對應成比例,且夾角相等,兩三角形相似;
(3)三邊對應成比例,兩三角形相似;
(4)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角對應成比例,那麼這兩個直角三角形相似。
九年級下冊數學知識點
圓
★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。
☆內容提要☆
一、圓的基本性質
1.圓的定義(兩種)
2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.「三點定圓」定理
4.垂徑定理及其推論
5.「等對等」定理及其推論
6.與圓有關的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關系
1.切線的性質(重點)
2.切線的判定定理(重點)
3.切線長定理
九年級數學知識點 總結 相關 文章 :
★ 九年級數學上冊重要知識點總結
★ 初三數學知識點考點歸納總結
★ 人教版九年級數學知識點歸納
★ 初三數學知識點歸納總結
★ 九年級上冊數學知識點歸納整理
★ 最新初三數學知識點總結大全
★ 初三數學知識點歸納人教版
★ 初中九年級數學知識點總結歸納
★ 初三數學知識點整理
★ 初三數學復習知識點總結
Ⅶ 中考數學知識點總結最全提綱
初中是非常重要的學習階段,因為初中正是往高中時期過渡的階段,很多人都抱怨從中數學難,初中生數學知識點有哪些呢?接下來我為大家收集了中考數學知識點 總結 最全提綱_中考數學知識點歸納總結大全,供大家參考學習,感謝你的閱讀!
▼ 目 錄 ▼
★ 中考數學知識點總結最全提綱 ★
★ 初中數學的 學習 方法 ★
★ 初中提高數學成績的四大技巧 ★
▼ 中考數學知識點總結最全提綱
初中幾何公式:線
1.同角或等角的餘角相等
2.過一點有且只有一條直線和已知直線垂直
3.過兩點有且只有一條直線
4.兩點之間線段最短
5.同角或等角的補角相等
6.直線外一點與直線上各點連接的所有線段中,垂線段最短
7.平行公理經過直線外一點,有且只有一條直線與這條直線平行
8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行
初中幾何公式:角
9.同位角相等,兩直線平行
10.內錯角相等,兩直線平行
11.同旁內角互補,兩直線平行
12.兩直線平行,同位角相等
13.兩直線平行,內錯角相等
14.兩直線平行,同旁內角互補
初中幾何公式:三角形
15.定理三角形兩邊的和大於第三邊
16.推論三角形兩邊的差小於第三邊
17.三角形內角和定理三角形三個內角的和等於180°
18.推論1直角三角形的兩個銳角互余
19.推論2三角形的一個外角等於和它不相鄰的兩個內角的和
20.推論3三角形的一個外角大於任何一個和它不相鄰的內角
21.全等三角形的對應邊、對應角相等
22.邊角邊公理有兩邊和它們的夾角對應相等的兩個三角形全等
23.角邊角公理有兩角和它們的夾邊對應相等的兩個三角形全等
24.推論有兩角和其中一角的對邊對應相等的兩個三角形全等
25.邊邊邊公理有三邊對應相等的兩個三角形全等
26.斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個直角三角形全等
27.定理1在角的平分線上的點到這個角的兩邊的距離相等
28.定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29.角的平分線是到角的兩邊距離相等的所有點的集合
初中幾何公式:等腰三角形
30.等腰三角形的性質定理等腰三角形的兩個底角相等
31.推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊
32.等腰三角形的頂角平分線、底邊上的中線和高互相重合
33.推論3等邊三角形的各角都相等,並且每一個角都等於60°
34.等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35.推論1三個角都相等的三角形是等邊三角形
36.推論2有一個角等於60°的等腰三角形是等邊三角形
37.在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38.直角三角形斜邊上的中線等於斜邊上的一半
39.定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40.逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41.線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42.定理1關於某條直線對稱的兩個圖形是全等形
43.定理2如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44.定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45.逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46.勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a+b=c
47.勾股定理的逆定理如果三角形的三邊長a、b、c有關系a+b=c,那麼這個三角形是直角三角形
初中幾何公式:四邊形
48.定理四邊形的內角和等於360°
49.四邊形的外角和等於360°
50.多邊形內角和定理n邊形的內角的和等於(n-2)×180°
51.推論任意多邊的外角和等於360°
52.平行四邊形性質定理1平行四邊形的對角相等
53.平行四邊形性質定理2平行四邊形的對邊相等
54.推論夾在兩條平行線間的平行線段相等
55.平行四邊形性質定理3平行四邊形的對角線互相平分
56.平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57.平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58.平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59.平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
初中幾何公式:矩形
60.矩形性質定理1矩形的四個角都是直角
61.矩形性質定理2矩形的對角線相等
62.矩形判定定理1有三個角是直角的四邊形是矩形
63.矩形判定定理2對角線相等的平行四邊形是矩形
初中幾何公式:菱形
64.菱形性質定理1菱形的四條邊都相等
65.菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角
66.菱形面積=對角線乘積的一半,即S=(a×b)÷2
67.菱形判定定理1四邊都相等的四邊形是菱形
68.菱形判定定理2對角線互相垂直的平行四邊形是菱形
初中幾何公式:正方形
69.正方形性質定理1正方形的四個角都是直角,四條邊都相等
70.正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71.定理1關於中心對稱的兩個圖形是全等的
72.定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73.逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
初中幾何公式:等腰梯形
74.等腰梯形性質定理等腰梯形在同一底上的兩個角相等
75.等腰梯形的兩條對角線相等
76.等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
77.對角線相等的梯形是等腰梯形
初中幾何公式:等分
78.平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79.推論1經過梯形一腰的中點與底平行的直線,必平分另一腰
80.推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81.三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半
82.梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2S=L×h
83(1)比例的基本性質如果a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d
84.(2)合比性質如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85.(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b
86.平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例
87.推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88.定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89.平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90.定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91.相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)
92.直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93.判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94.判定定理3三邊對應成比例,兩三角形相似(SSS)
95.定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96.性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97.性質定理2相似三角形周長的比等於相似比
98.性質定理3相似三角形面積的比等於相似比的平方
99.任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100.任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
初中幾何公式:圓
101.圓是定點的距離等於定長的點的集合
102.圓的內部可以看作是圓心的距離小於半徑的點的集合
103.圓的外部可以看作是圓心的距離大於半徑的點的集合
104.同圓或等圓的半徑相等
105.到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106.和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107.到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108.到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109.定理不在同一直線上的三個點確定一條直線
110.垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111.推論1①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112.推論2圓的兩條平行弦所夾的弧相等
113.圓是以圓心為對稱中心的中心對稱圖形
114.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116.定理一條弧所對的圓周角等於它所對的圓心角的一半
117.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119.推論3如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120.定理圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121.①直線L和⊙O相交d﹤r
②直線L和⊙O相切d=r
③直線L和⊙O相離d﹥r
122.切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123.切線的性質定理圓的切線垂直於經過切點的半徑
124.推論1經過圓心且垂直於切線的直線必經過切點
125.推論2經過切點且垂直於切線的直線必經過圓心
126.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127.圓的外切四邊形的兩組對邊的和相等
128.弦切角定理弦切角等於它所夾的弧對的圓周角
129.推論如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130.相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131.推論如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132.切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133.推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134.如果兩個圓相切,那麼切點一定在連心線上
135.①兩圓外離d﹥R+r②兩圓外切d=R+r
③兩圓相交R-r﹤d﹤R+r(R﹥r)
④兩圓內切d=R-r(R﹥r)⑤兩圓內含d﹤R-r(R﹥r)
136.定理相交兩圓的連心線垂直平分兩圓的公共弦
137.定理把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139.正n邊形的每個內角都等於(n-2)×180°/n
140.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141.正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
142.正三角形面積√3a/4a表示邊長
143.如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144.弧長計算公式:L=nπR/180
145.扇形面積公式:S扇形=nπR/360=LR/2
146.內公切線長=d-(R-r)外公切線長=d-(R+r)
く く く
▼ 初中數學的學習方法
1、適當多做題,養成良好的解題習慣。要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的初中數學分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。
2、在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在初中數學考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
3、預習的習慣。預習就是為了對所學知識的初步感知,通過預習,查出障礙;它不僅能培養自學能力,而且能提高學習初中數學新課的興趣,掌握學習的主動權。
4、認真聽"講"的習慣。新知識的接受,數學能力的培養主要在課堂上進行,所以要特別重視課內的學習效率,尋求正確的初中 數學學習方法 。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。數學課的聽講要堅持做到「五到」即耳到、眼到、口到、心到、手到。
く く く
▼ 初中提高數學成績的四大技巧
一、該記的記,該背的背,不要以為理解了就行
有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。試想一下,小學的加、減、乘、除運算要不是背熟了「乘法九九表」,你能順利地進行運算嗎?盡管你理解了乘法是相同加數的和的運算,但你在做9 _ 9時用九個9去相加得出81就太不合算了。而用「九九八十一」得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數學中還有大量的規定需要記憶,比如規定(a≠0)等等。因此,我覺得數學更像游戲,它有許多游戲規則(即數學中的定義、法則、公式、定理等),誰記住了這些游戲規則,誰就能順利地做游戲;誰違反了這些游戲規則,誰就被判錯,罰下。因此,數學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鍾,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。
二、幾個重要的數學思想
1、「方程」的思想
數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度 _ 時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好 其它 形式的方程。
所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。
2、「數形結合」的思想
大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。在初三,建立平面直角坐標系後,研究函數的問題就離不開圖象了。往往藉助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今後的數學學習中,要重視「數形結合」的 思維訓練 ,任何一道題,只要與「形」沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養成一種「數形結合」的好習慣。
3、「對應」的思想
「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」;隨著學習的深入,我們還將「對應」擴展到對應一種形式,對應一種關系,等等。比如我們在計算或化簡中,將對應公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果即。這就是運用「對應」的思想和方法來解題。初二、初三我們還將看到數軸上的點與實數之間的一一對應,直角坐標平面上的點與一對有序實數之間的一一對應,函數與其圖象之間的對應。「對應」的思想在今後的學習中將會發揮越來越大的作用
三、自學能力的培養是深化學習的必由之路
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。我去佛山一中開家長會時,一中校長的一番話使我感觸良多。他說:我是教物理的,學生物理學得好,不是我教出來的,而是他們自己悟出來的。當然,校長是謙虛的,但他說明了一個道理,學生不能被動地學習,而應主動地學習。一個班裡幾十個學生,同一個老師教,差異那麼大,這就是學習主動性問題了。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。在老師講新課前,能不能運用自己所學過的已掌握的舊知識去預習新課,結合新課中的新規定去分析、理解新的學習內容。由於數學知識的無矛盾性,你所學過的數學知識永遠都是有用的,都是正確的,數學的進一步學習只是加深拓廣而已。因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學為什麼聽老師講新課時總有一種似懂非懂的感覺,或者是「一聽就懂、一做就錯」,就是因為沒有預習,沒有帶著問題學,沒有將「要我學」真正變為「我要學」,力求把知識變為自己的。學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。
四、自信才能自強
在考試中,總是看見有些同學的試卷出現許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數學題都不是一眼就能看出它的解法和結果的。要去分析、探索、比比畫畫、寫寫算算,經過迂迴曲折的推理或演算,才顯露出條件和結論之間的某種聯系,整個思路才會明朗清晰起來。你都沒有動手去做,又怎麼知道自己不會做呢?即使是老師,拿到一道難題,也不能立即答復你。也同樣要先分析、研究,找到正確的思路後才向你講授。不敢去做稍為復雜一點的題(不一定是難題,有些題只不過是敘述多一點),是缺乏自信心的表現。在數學解題中,自信心是相當重要的。要相信自己,只要不超出自己的知識范疇,不管哪道題,總是能夠用自己所學過的知識把它解出來。要敢於去做題,要善於去做題。這就叫做「在戰略上藐視敵人,在戰術上重視敵人」。
具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數學的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學老師講過的題會做,其它的題就不會做,只會依樣畫瓢,題目有些小的變化就乾瞪眼,無從下手。當然,做題先從哪兒下手是一件棘手的事,不一定找得准。但是,做題一定要抓住其特殊性則絕對沒錯。選擇一個或幾個條件作為解題的突破口,看由這個條件能得出什麼,得出的越多越好,然後從中選擇與其它條件有關的、或與結論有關的、或與題目中的隱含條件有關的,進行推理或演算。一般難題都有多種解法,條條大路通北京。要相信利用這道題的條件,加上自己學過的那些知識,一定能推出正確的結論。
數學題目是無限的,但數學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數學思想和方法,就能順利地對付那無限的題目。題目並不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養起良好的數學思維習慣,有沒有掌握正確的數學解題方法。當然,題目做得多也有若干好處:一是「熟能生巧」,加快速度,節省時間,這一點在考試時間有限時顯得很重要;一是利用做題來鞏固、記憶所學的定義、定理、法則、公式,形成良性循環。
解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關,迎來屬於自己的春天。
く く く
初中數學知識點總結相關 文章 :
★ 初中數學知識點總結最全提綱
★ 初中數學知識點復習提綱
★ 中考數學知識點復習提綱
★ 初一數學上冊知識點匯總歸納
★ 初中數學學習方法和知識點總結
★ 初中數學幾何知識點提綱
★ 初中數學三年的知識點歸納
★ 北師大版初中數學知識點提綱
★ 初中七年級數學知識點總結歸納
★ 初中三角函數知識點提綱
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();Ⅷ 初中七年級數學知識點總結歸納
七年級數學是整個初中數學的基礎,一定要扎實掌握,我整理了一些重要的知識點。
平行線的性質
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
平行線的判定
判定1:同位角相等,兩直線平行。
判定2:內錯角相等,兩直線平行。
判定3:同旁內角相等,兩直線平行。
三角形
1、定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
有理數
1、正整數、0、負整數統稱為整數(0和正整數統稱為自然數)。
2、正分數和負分數統稱為分數。
3、正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。
數軸
1、數軸的概念:規定了原點,正方向,單位長度的直線叫做數軸。
注意:(1)數軸是一條向兩端無限延伸的直線;(2)原點、正方向、單位長度是數軸的三要素,三者缺一不可;(3)同一數軸上的單位長度要統一;(4)數軸的三要素都是根據實際需要規定的。
2、數軸上的點與有理數的關系
(1)所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
(2)所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。
以上是我整理的七年級數學的知識點,希望能幫到你。
Ⅸ 七年級數學的知識點歸納總結
學習的成功與失敗原因是多方面的,要首先從自己身上找原因,才能受到鼓舞,找出努力的方向。每一門科目都有自己的 學習 方法 ,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。
初一下冊數學知識點 總結
1、單項式:數字與字母的積,叫做單項式。
2、多項式:幾個單項式的和,叫做多項式。
3、整式:單項式和多項式統稱整式。
4、單項式的次數:單項式中所有字母的指數的和叫單項式的次數。
5、多項式的次數:多項式中次數的項的次數,就是這個多項式的次數。
6、餘角:兩個角的和為90度,這兩個角叫做互為餘角。
7、補角:兩個角的和為180度,這兩個角叫做互為補角。
8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。
9、同位角:在「三線八角」中,位置相同的角,就是同位角。
10、內錯角:在「三線八角」中,夾在兩直線內,位置錯開的角,就是內錯角。
11、同旁內角:在「三線八角」中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。
12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。
13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。
14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。
16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。
17、全等圖形:兩個能夠重合的圖形稱為全等圖形。
18、變數:變化的數量,就叫變數。
19、自變數:在變化的量中主動發生變化的,變叫自變數。
20、因變數:隨著自變數變化而被動發生變化的量,叫因變數。
21、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形。
22、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。
初一下冊數學知識點總結北師大版
一、同底數冪的乘法
(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
a)法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
b)指數是1時,不要誤以為沒有指數;
c)不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
二、冪的乘方與積的乘方
三、同底數冪的除法
(1)運用法則的前提是底數相同,只有底數相同,才能用此法則
(2)底數可以是具體的數,也可以是單項式或多項式
(3)指數相減指的是被除式的指數減去除式的指數,要求差不為負
四、整式的乘法
1、單項式的概念:由數與字母的乘積構成的代數式叫做單項式。單獨的一個數或一個字母也是單項式。單項式的數字因數叫做單項式的系數,所有字母指數和叫單項式的次數。
如:bca22-的系數為2-,次數為4,單獨的一個非零數的次數是0。
2、多項式:幾個單項式的和叫做多項式。多項式中每個單項式叫多項式的項,次數項的次數叫多項式的次數。
五、平方差公式
表達式:(a+b)(a-b)=a^2-b^2,兩個數的和與這兩個數差的積,等於這兩個數的平方差,這個公式就叫做乘法的平方差公式
公式運用
可用於某些分母含有根號的分式:
1/(3-4倍根號2)化簡:
六、完全平方公式
完全平方公式中常見錯誤有:
①漏下了一次項
②混淆公式
③運算結果中符號錯誤
④變式應用難於掌握。
七、整式的除法
1、單項式的除法法則
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式。
注意:首先確定結果的系數(即系數相除),然後同底數冪相除,如果只在被除式里含有的字母,則連同它的指數作為商的一個因式。
七年級數學學習知識點
一元一次方程
一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.
一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).
一元一次方程的最簡形式: ax=b(x是未知數,a、b是已知數,且a≠0).
一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).
列方程解應用題的常用公式:
(1)行程問題:距離=速度·時間;
(2)工程問題:工作量=工效·工時;
(3)比率問題:部分=全體·比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題:售價=定價·折·0.1 ,利潤=售價-成本;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐=1/3πR2h.
七年級數學的知識點歸納總結相關 文章 :
★ 初中七年級數學知識點歸納整理
★ 初一數學知識點歸納梳理
★ 七年級數學知識點整理大全
★ 七年級數學知識點大全
★ 初一數學知識點歸納與學習方法
★ 七年級數學知識點總結
★ 初一數學學習方法指導與學習方法總結
★ 人教版初一數學知識點整理
★ 初一數學上冊知識點歸納
★ 初一數學的知識點歸納
Ⅹ 初二數學基礎知識點歸納總結
失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二數學下冊知識點歸納
一次函數
一、正比例函數與一次函數的概念:
一般地,形如y=kx(k為常數,且k≠0)的函數叫做正比例函數.其中k叫做比例系數。
一般地,形如y=kx+b(k,b為常數,且k≠0)的函數叫做一次函數.
當b=0時,y=kx+b即為y=kx,所以正比例函數,是一次函數的特例.
二、正比例函數的圖象與性質:
(1)圖象:正比例函數y=kx(k是常數,k≠0))的圖象是經過原點的一條直線,我們稱它為直線y=kx。
(2)性質:當k>0時,直線y=kx經過第三,一象限,從左向右上升,即隨著x的增大y也增大;當k0,b>0圖像經過一、二、三象限;
(2)k>0,b<0圖像經過一、三、四象限;
(3)k>0,b=0圖像經過一、三象限;
(4)k<0,b>0圖像經過一、二、四象限;
(5)k<0,b<0圖像經過二、三、四象限;
(6)k<0,b=0圖像經過二、四象限。
一次函數表達式的確定
求一次函數y=kx+b(k、b是常數,k≠0)時,需要由兩個點來確定;求正比例函數y=kx(k≠0)時,只需一個點即可.
5.一次函數與二元一次方程組:
解方程組
從「數」的角度看,自變數(x)為何值時兩個函數的值相等.並
求出這個函數值
解方程組從「形」的角度看,確定兩直線交點的坐標.
數據的分析
數據的代表:平均數、眾數、中位數、極差、方差
八年級 下冊數學期中知識點 總結
1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分。
3.平行四邊形的判定:兩組對邊分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
5.直角三角形斜邊上的中線等於斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。
7.矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理:有一個角是直角的平行四邊形叫做矩形;對角線相等的平行四邊形是矩形;有三個角是直角的四邊形是矩形。
9.菱形的定義:鄰邊相等的平行四邊形。
10.菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
11.菱形的判定定理:一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)
12.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
13.正方形的性質:四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。
14.正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個角是直角的菱形是正方形。
15.梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
16.直角梯形的定義:有一個角是直角的梯形
17.等腰梯形的定義:兩腰相等的梯形。
18.等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
19.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
八年級數學 重要知識點
1.提公共因式法
※1.如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.
如:
※2.概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即:
※3.易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.
2.運用公式法
※1.如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.
※2.主要公式:
(1)平方差公式:
(2)完全平方公式:
¤3.易錯點點評:
因式分解要分解到底.如就沒有分解到底.
※4.運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號.
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍.
3.因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
初二數學 學習 經驗 心得
1好初中數學課前要預習
初中生想要學好數學,那麼就要利用課前的時間將課上老師要講的內容預習一下。初中數學課前的預習是要明白老師在課上大致所講的內容,這樣有利於和方便初中生整理知識結構。
初中生 課前預習 數學還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現溜號和走神的情況。同時課前預習還可以將知識點形成體系,可以幫助初中生建立完整的知識結構。
2學習初中數學課上是關鍵
初中生想要學好學生,在課上就是一個字:跟。上初中數學課時跟住老師,老師講到哪裡一定要跟上,仔細看老師的板書,隨時知道老師講的是哪裡,涉及到的知識點是什麼。有的初中生喜歡記筆記,在這里提醒大家,初中數學課上的時候盡量不要記筆記。
你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課後完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。
3課後可以適當做一些初中數學基礎題
在每學完一課後,初中生可以在課後做一些初中數學的基礎題型,在做這樣的題時,建議大家是,不要出現錯誤的情況,做完題後要學會思考和整理。當你的初中數學基礎題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據解析看題。
但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數學的學習有幫助的,但是如果將重點放在這上面,沒有什麼好處。同時要學會整理,將自己錯題歸納並總結,
數學是由簡單明了的事項一步一步地發展而來,所以,只要學習數學的人老老實實地、一步一步地去理解,並同時記住其要點,以備以後之需用,就一定能理解其全部內容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復地做同一件事,故不管誰都應該會做.
初二數學基礎知識點歸納總結相關 文章 :
★ 初中數學基礎知識點歸納總結
★ 初中數學基礎知識整理歸納
★ 八年級數學知識點整理歸納
★ 初中數學基礎知識點總結
★ 初二數學知識點整理歸納
★ 初二數學知識點復習整理
★ 初二數學知識點歸納
★ 初二數學知識點歸納上冊人教版
★ 初二數學下冊重要知識點總結
★ 初二數學上冊知識點總結歸納
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();