當前位置:首頁 » 基礎知識 » 八年級數學圓的知識點總結
擴展閱讀
靈籠什麼時候出現的動漫 2025-01-18 12:54:56
數學第一章知識點歸納 2025-01-18 12:54:05

八年級數學圓的知識點總結

發布時間: 2022-09-02 16:36:28

❶ 關於初中數學知識點總結歸納

數學已成為許多國家及地區的 教育 范疇中的一部分。它應用於不同領域中,包括科學、工程、醫學、經濟學和金融學等。這次我給大家整理了初中數學知識點 總結 歸納,供大家閱讀參考。

初中數學知識點總結歸納

一: 數軸

11 有向直線

在科學技術和日常生活中,為了區別一條直線的兩個不同方向,可以規定其中一方向為正向,另一方向為負相

規定了正方向的直線,叫做有向直線,讀作有向直線l

12 數軸

我們把數軸上任意一點所對應的實數稱為點的坐標

對於每一個坐標(實數),在數周上可以找到唯一的點與之對應這就是直線的坐標化

數軸上任意一條有向線段的數量等於它的終點坐標與起點坐標的差任意一條有向線段的長度等於它兩個斷電坐標差的絕對值

二:平面直角坐標系

下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。

平面直角坐標系

平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。

水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合

三個規定:

①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。

③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。

三:平面直角坐標系的構成

對於平面直角坐標系的構成內容,下面我們一起來學習哦。

平面直角坐標系的構成

在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。

四:點的坐標的性質

點的坐標的性質

建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。

五:因式分解的一般步驟

關於數學中因式分解的一般步驟內容學習,我們做下面的知識講解。

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:「一提」、「二套」、「三分組」、「四十字」。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。

六:因式分解

下面是對數學中因式分解內容的知識講解,希望同學們認真學習。

因式分解

因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④

因式分解與整式乘法的關系:m(a+b+c)

公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定 方法 :①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式注意;

①不準丟字母

②不準丟常數項注意查項數

③雙重括弧化成單括弧

④結果按數單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負號放括弧外

⑦括弧內同類項合並。

初中數學知識點

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

(2)有理數的分類: ① ②

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為:或 ;絕對值的問題經常分類討論;

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數> 0,小數-大數< 0.

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼的倒數是;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

18.混合運演算法則:先乘方,後乘除,最後加減.

本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題.

體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。

關於初中數學的知識點

一、平移變換:

1。概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

2。性質:(1)平移前後圖形全等;

(2)對應點連線平行或在同一直線上且相等。

3。平移的作圖步驟和方法:

(1)分清題目要求,確定平移的方向和平移的距離;

(2)分析所作的圖形,找出構成圖形的關健點;

(3)沿一定的方向,按一定的距離平移各個關健點;

(4)連接所作的各個關鍵點,並標上相應的字母;

(5)寫出結論。

二、旋轉變換:

1。概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。

說明:

(1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;

(2)旋轉過程中旋轉中心始終保持不動。

(3)旋轉過程中旋轉的方向是相同的。

(4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。

2。性質:

(1)對應點到旋轉中心的距離相等;

(2)對應點與旋轉中心所連線段的夾角等於旋轉角;

(3)旋轉前、後的圖形全等。

3。旋轉作圖的步驟和方法:

(1)確定旋轉中心及旋轉方向、旋轉角;

(2)找出圖形的關鍵點;

(3)將圖形的關鍵點和旋轉中心連接起來,然後按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;

(4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉後的圖形。

說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。

常見考法

(1)把平移旋轉結合起來證明三角形全等;

(2)利用平移變換與旋轉變換的性質,設計一些題目。

誤區提醒

(1)弄反了坐標平移的上加下減,左減右加的規律;

(2)平移與旋轉的性質沒有掌握。

學好數學的方法

1、上課前要調整好心態,一定不能想,哎,又是數學課,上課時聽講心情就很不好,這樣當然學不好!

2、上課時一定要認真聽講,作到耳到、眼到、手到!這個很重要,一定要學會做筆記,上課時如果老師講的快,一定靜下心來聽,不要記,下課時再整理到 筆記本 上!保持高效率!

3、俗話說興趣是最好的老師,當別人談論最討厭的課時,你要告訴自己,我喜歡數學!

4、保證遇到的每一題都要弄會,弄懂,這個很重要!不會就問,不要不好意思,要學會舉一反三!也就是要靈活運用!作的題不要求多,但要精!

5、要有錯題集,把平時遇到的好題記下來,錯題記下來,並要多看,多思考,不能在同一個地方絆倒!!

總之,學習數學,不要怕難,不要怕累,不要怕問!


初中數學知識點總結歸納相關 文章 :

★ 初中數學基礎知識整理歸納

★ 初中數學知識點總結

★ 初中數學重點知識點的歸納總結

★ 初中數學知識點歸納有哪些

★ 初中數學知識點總結歸納

★ 初中部數學學習方法總結

★ 初中數學圓的知識點歸納

★ 初一數學學習方法總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

❷ 初三數學圓所有知識點及圖

1、
圓的有關概念:(1)、確定一個圓的要素是圓心和半徑。(2)連結圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。圓上任意兩點間的部分叫做圓弧,簡稱弧。小於半圓周的圓弧叫做劣弧。大於半圓周的圓弧叫做優弧。在同圓或等圓中,能夠互相重合的弧叫做等弧。頂點在圓上,並且兩邊和圓相交的角叫圓周角。經過三角形三個頂點可以畫一個圓,並且只能畫一個,經過三角形三個頂點的圓叫做三角形的外接圓,三角形外接圓的圓心叫做這個三角形的外心,這個三角形叫做這個圓的內接三角形,外心是三角形各邊中垂線的交點;直角三角形外接圓半徑等於斜邊的一半。與三角形各邊都相切的圓叫做三角形的內切圓,三角形的內切圓的圓心叫做三角形的內心,這個三角形叫做圓外切三角形,三角形的內心就是三角形三條內角平分線的交點。直角三角形內切圓半徑
滿足:

2、
圓的有關性質(1)定理在同圓或等圓中,如果圓心角相等,那麼它所對的弧相等,所對的弦相等,所對的弦的弦心距相等。推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對的其餘各組量都分別相等。(2)垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧。推論1(ⅰ)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。(ⅱ)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。(ⅲ)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。推論2圓的兩條平行弦所夾的弧相等。(3)圓周角定理:一條弧所對的圓周角等於該弧所對的圓心角的一半。推論1在同圓或等圓中,同弧或等弧所對的圓周角相等,相等的圓周角所對的弧也相等。推論2半圓或直徑所對的圓周角都相等,都等於90
。90
的圓周角所對的弦是圓的直徑。推論3如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。(4)切線的判定與性質:判定定理:經過半徑的外端且垂直與這條半徑的直線是圓的切線。性質定理:圓的切線垂直於經過切點的半徑;經過圓心且垂直於切線的直線必經過切點;經過切點切垂直於切線的直線必經過圓心。(5)定理:不在同一條直線上的三個點確定一個圓。(6)圓的切線上某一點與切點之間的線段的長叫做這點到圓的切線長;切線長定理:從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分這兩條切線的夾角。(7)圓內接四邊形對角互補,一個外角等於內對角;圓外切四邊形對邊和相等;(8)弦切角定理:弦切角等於它所它所夾弧對的圓周角。(9)和圓有關的比例線段:相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等。如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項。切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。從圓外一點引圓的兩條割線,這一點到每條割線與圓交點的兩條線段長的積相等。(10)兩圓相切,連心線過切點;兩圓相交,連心線垂直平分公共弦。

❸ 初中數學中圓的所有概念

1 在同一平面內,到定點的距離等於定長的點的集合叫做圓(circle).這個定點叫做圓的圓心.圖形一周的長度,就是圓的周長.
2 連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r(radius).
3 通過圓心並且兩端都在圓上的線段叫做直徑,字母表示為d(diameter).直徑所在的直線是圓的對稱軸.
4 連接圓上任意兩點的線段叫做弦(chord).最長的弦是直徑.
5 圓上任意兩點間的部分叫做圓弧,簡稱弧(arc).大於半圓的弧稱為優弧,優弧是用三個字母表示.小於半圓的弧稱為劣弧,劣弧用兩個字母表示.半圓既不是優弧,也不是劣弧.優弧是大於180度的弧,劣弧是小於180度的弧.
圓的周長公式=C=πd=2πr≈6.28r[1]
圓的面積公式=S=π×r×r[2]
(以此類推,半圓的周長公式=C/2=πr≈3.14r 面積=S/2=π×r×r÷2)
6 由兩條半徑和一段弧圍成的圖形叫做扇形(sector).
7 由弦和它所對的一段弧圍成的圖形叫做弓形.
8 頂點在圓心上的角叫做圓心角(central angle).
9 頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角.
10 圓周長度與圓的直徑長度的比值叫做圓周率.它是一個超越數,通常用π表示,π=3.14159265……在實際應用中,一般取π≈3.14.
11 圓周角等於相同弧所對的圓心角的一半.

❹ 初中數學圓的知識點歸納總結有哪些

初中數學圓的知識點如下:

1、圓的對稱性,雖然其它一些圖形也是有,但圓有無數條對稱軸這個特性其它圖形所沒有的,垂徑定理,切線長定理,及正n邊形的計算都應用到了這個特性。

2、圓可以看作是到定點的距離等於定長的點的集合。

3、圓:到定點的距離等於定長的點的軌跡就是以定點為圓心,定長為半徑的圓。

4、圓周率是一個常數,是代表圓周和直徑的比例。它是一個無理數,即是一個無限不循環小數。

5、圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。

❺ 初中數學有關圓知識點歸納

即將步入初三的同學們,掌握好有關於圓的知識內容,對於後面接觸弧、扇形、橢圓等相關知識內容都有一定的幫助。下面是我整理的初中數學有關圓知識點歸納,供大家參考。

什麼是圓

定義:

(1)平面上到定點的距離等於定長的所有點組成的圖形叫做圓。

(2)平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。

圓心:

(1)如定義(1)中,該定點為圓心

(2)如定義(2)中,繞的那一端的端點為圓心。

(3)圓任意兩條對稱軸的交點為圓心。

(4)垂直於圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。

註:圓心一般用字母O表示。

點、直線、圓和圓的位置關系

1.點和圓的位置關系

①點在圓內<=>點到圓心的距離小於半徑;

②點在圓上<=>點到圓心的距離等於半徑;

③點在圓外<=>點到圓心的距離大於半徑。

2.過三點的圓不在同一直線上的三個點確定一個圓。

3.外接圓和外心經過三角形的三個頂點可以做一個圓,這個圓叫做三角形的外接圓。外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心。

4.直線和圓的位置關系

相交:直線和圓有兩個公共點叫這條直線和圓相交,這條直線叫做圓的割線。

相切:直線和圓有一個公共點叫這條直線和圓相切,這條直線叫做圓的切線,這個點叫做切點。

相離:直線和圓沒有公共點叫這條直線和圓相離。

5.直線和圓位置關系的性質和判定

如果⊙O的半徑為r,圓心O到直線l的距離為d,那麼

①直線l和⊙O相交<=>d<>;

②直線l和⊙O相切<=>d=r;

③直線l和⊙O相離<=>d>r。

有關圓的計算公式

1.圓的周長C=2πr=πd。

2.圓的面積S=s=πr2。

3.扇形弧長l=nπr/180。

4.扇形面積S=nπr2/360=rl/2。

5.圓錐側面積S=πrl。

❻ 初三數學圓知識點歸納有哪些

數學幾何中圓是比較重要的一部分,所以對圓進行復習是很有必要的。以下是我分享給大家的初三數學圓知識點歸納,希望可以幫到你!
初三數學圓知識點歸納
一、圓的相關概念

1、圓的定義

在一個個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫做圓,固定的端點O叫做圓心,線段OA叫做半徑。

2、圓的幾何表示

以點O為圓心的圓記作“⊙O”,讀作“圓O”

二、弦、弧等與圓有關的定義

(1)弦

連接圓上任意兩點的線段叫做弦。(如圖中的AB)

(2)直徑

經過圓心的弦叫做直徑。(如途中的CD)

直徑等於半徑的2倍。

(3)半圓

圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。

(4)弧、優弧、劣弧

圓上任意兩點間的部分叫做圓弧,簡稱弧。

弧用符號“⌒”表示,以A,B為端點的弧記作“ ”,讀作“圓弧AB”或“弧AB”。

大於半圓的弧叫做優弧(多用三個字母表示);小於半圓的弧叫做劣弧(多用兩個字母表示)

三、垂徑定理及其推論

垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧。

推論1:(1)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。

(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。

(3)平分弦所對的一條弧的直徑垂直平分弦,並且平分弦所對的另一條弧。

推論2:圓的兩條平行弦所夾的弧相等。

垂徑定理及其推論可概括為:

過圓心

垂直於弦

直徑 平分弦 知二推三

平分弦所對的優弧

平分弦所對的劣弧

四、圓的對稱性

1、圓的軸對稱性

圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。

2、圓的中心對稱性

圓是以圓心為對稱中心的中心對稱圖形。

五、弧、弦、弦心距、圓心角之間的關系定理

1、圓心角

頂點在圓心的角叫做圓心角。

2、弦心距

從圓心到弦的距離叫做弦心距。

3、弧、弦、弦心距、圓心角之間的關系定理

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。

推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等。

六、圓周角定理及其推論

1、圓周角

頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。

2、圓周角定理

一條弧所對的圓周角等於它所對的圓心角的一半。

推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。

七、點和圓的位置關系

設⊙O的半徑是r,點P到圓心O的距離為d,則有:

d

d=r 點P在⊙O上;

d>r 點P在⊙O外。

八、過三點的圓

1、過三點的圓

不在同一直線上的三個點確定一個圓。

2、三角形的外接圓

經過三角形的三個頂點的圓叫做三角形的外接圓。

3、三角形的外心

三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。

4、圓內接四邊形性質(四點共圓的判定條件)

圓內接四邊形對角互補。

九、反證法

先假設命題中的結論不成立,然後由此經過推理,引出矛盾,判定所做的假設不正確,從而得到原命題成立,這種證明方法叫做反證法。

十、直線與圓的位置關系

直線和圓有三種位置關系,具體如下:

(1)相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;

(2)相切:直線和圓有唯一公共點時,叫做直線和圓相切,這時直線叫做圓的切線,

(3)相離:直線和圓沒有公共點時,叫做直線和圓相離。

如果⊙O的半徑為r,圓心O到直線l的距離為d,那麼:

直線l與⊙O相交 d

直線l與⊙O相切 d=r;

直線l與⊙O相離 d>r;

十一、切線的判定和性質

1、切線的判定定理

經過半徑的外端並且垂直於這條半徑的直線是圓的切線。

2、切線的性質定理

圓的切線垂直於經過切點的半徑。

十二、切線長定理

1、切線長

在經過圓外一點的圓的切線上,這點和切點之間的線段的長叫做這點到圓的切線長。

2、切線長定理

從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。

十三、三角形的內切圓

1、三角形的內切圓

與三角形的各邊都相切的圓叫做三角形的內切圓。

2、三角形的內心

三角形的內切圓的圓心是三角形的三條內角平分線的交點,它叫做三角形的內心。

十四、圓和圓的位置關系

1、圓和圓的位置關系

如果兩個圓沒有公共點,那麼就說這兩個圓相離,相離分為外離和內含兩種。

如果兩個圓只有一個公共點,那麼就說這兩個圓相切,相切分為外切和內切兩種。

如果兩個圓有兩個公共點,那麼就說這兩個圓相交。

2、圓心距

兩圓圓心的距離叫做兩圓的圓心距。

3、圓和圓位置關系的性質與判定

設兩圓的半徑分別為R和r,圓心距為d,那麼

兩圓外離 d>R+r

兩圓外切 d=R+r

兩圓相交 R-r

兩圓內切 d=R-r(R>r)

兩圓內含 dr)

4、兩圓相切、相交的重要性質

如果兩圓相切,那麼切點一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個圓的連心線垂直平分兩圓的公共弦。

十五、正多邊形和圓

1、正多邊形的定義

各邊相等,各角也相等的多邊形叫做正多邊形。

2、正多邊形和圓的關系

只要把一個圓分成相等的一些弧,就可以做出這個圓的內接正多邊形,這個圓就是這個正多邊形的外接圓。

十六、與正多邊形有關的概念

1、正多邊形的中心

正多邊形的外接圓的圓心叫做這個正多邊形的中心。

2、正多邊形的半徑

正多邊形的外接圓的半徑叫做這個正多邊形的半徑。

3、正多邊形的邊心距

正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距。

4、中心角

正多邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角。

十七、正多邊形的對稱性

1、正多邊形的軸對稱性

正多邊形都是軸對稱圖形。一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。

2、正多邊形的中心對稱性

邊數為偶數的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心。

3、正多邊形的畫法

先用量角器或尺規等分圓,再做正多邊形。

十八、弧長和扇形面積

1、弧長公式

n°的圓心角所對的弧長l的計算公式為 2、扇形面積公式

其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長。

3、圓錐的側面積

其中l是圓錐的母線長,r是圓錐的地面半徑。

初中幾何掌握知識點然後靈活應用比較重要,希望大家牢記知識點然後靈活應用。
初三數學重點知識點歸納
1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12 兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17 三角形內角和定理 三角形三個內角的和等於180°

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21 全等三角形的對應邊、對應角相等

22 邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等於60°的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

38 直角三角形斜邊上的中線等於斜邊上的一半

39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理1 關於某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44 定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

45 逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

46 勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2

47 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形

48 定理 四邊形的內角和等於360°

49 四邊形的外角和等於360°

50 多邊形內角和定理 n邊形的內角的和等於(n-2)×180°

51 推論 任意多邊的外角和等於360°

52 平行四邊形性質定理1 平行四邊形的對角相等

53 平行四邊形性質定理2 平行四邊形的對邊相等

54 推論 夾在兩條平行線間的平行線段相等

55 平行四邊形性質定理3 平行四邊形的對角線互相平分

56 平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57 平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

58 平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59 平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

60 矩形性質定理1 矩形的四個角都是直角

61 矩形性質定理2 矩形的對角線相等

62 矩形判定定理1 有三個角是直角的四邊形是矩形

63 矩形判定定理2 對角線相等的平行四邊形是矩形

64 菱形性質定理1 菱形的四條邊都相等

65 菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角

66 菱形面積=對角線乘積的一半,即S=(a×b)÷2

67 菱形判定定理1 四邊都相等的四邊形是菱形

68 菱形判定定理2 對角線互相垂直的平行四邊形是菱形

69 正方形性質定理1 正方形的四個角都是直角,四條邊都相等

70 正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

71 定理1 關於中心對稱的兩個圖形是全等的

72 定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

73 逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱

74 等腰梯形性質定理 等腰梯形在同一底上的兩個角相等

75 等腰梯形的兩條對角線相等

76 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77 對角線相等的梯形是等腰梯形

78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等

79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰

80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半

82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc 如果ad=bc,那麼a:b=c:d

84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d

85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b

86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例

87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊

89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)

92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)

94 判定定理3 三邊對應成比例,兩三角形相似(SSS)

95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似

96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比

97 性質定理2 相似三角形周長的比等於相似比

98 性質定理3 相似三角形面積的比等於相似比的平方

99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值

100 任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
初三數學期末易錯點總結
函數部分:

易錯點1:各個待定系數表示的的意義。

易錯點2:熟練掌握各種函數解析式的求法,一般情況下有幾個的待定系數就要幾個點的坐標代入。

易錯點3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質確定增減性。

易錯點4:利用函數圖象進行分類(平行四邊形、相似、直角三角形、等腰三角形)以及分類的求解方法。

易錯點5:與坐標軸交點坐標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。

易錯點6:數形結合思想方法的運用,還應注意結合圖像性質解題。函數圖象與圖形結合學會從復雜圖形分解為簡單圖形的方法,圖形為圖像提供數據或者圖像為圖形提供數據。

圓:

易錯點1:對弧、弦、圓周角等概念理解不深刻,特別是弦所對的圓周角有兩種情況要特別注意,兩條弦之間的距離也要考慮兩種情況。

易錯點2:對垂徑定理的理解不夠,不會正確添加輔助線運用直角三角形進行解題。

易錯點3:對切線的定義及性質理解不深,不能准確的利用切線的性質進行解題以及對切線的判定方法兩種方法使用不熟練。

易錯點4:與圓有關的位置關系把握好 d 與 R之間的關系求解。

易錯點5:圓周角定理是重點,同弧(等弧)所對的圓周角相等,直徑所對的圓周角是直角,90 度的圓周角所對的弦是直徑,一條弧所對的圓周角等於它所對的圓心角的一半。

易錯點6:圓的面積公式,圓周長公式,弧長,扇形面積,圓錐的側面積以及全面積以及弧長與底面周長,母線長與扇形的半徑之間的轉化關系。

旋轉與相似:

易錯點1:對於常見旋轉模型不熟悉,不能通過題目判斷出旋轉特徵。

易錯點2:相似對應關系不明確時注意分類討論。

易錯點3:線段乘積轉比例時,注意比例的順序。

易錯點4:常見幾何條件運用要熟練、比如中點、角平分線、垂直平分線、等腰直角三角形、等邊三角形、線段的和差,角度的二倍關系、平行等條件,要熟記相應的輔助線。

易錯點5:過於依賴圖形,從圖中看著像的結論揪住不放,但實際是錯誤的。

易錯點6:旋轉方向要看清楚,分清順時針和逆時針。

銳角三角函數:

易錯點1:應用三角函數定義時,要保證直角三角形這個前提.

易錯點2:在求解直角三角形的有關問題時,要畫出圖形,以利於分析解決問題.

易錯點3:選擇關系式時,要盡量利用原始數據,以防止“累積誤差”.

易錯點4:遇到不是直角三角形的圖形時,要添加適當的輔助線,將其轉化為直角三角形求解.

猜你喜歡:

1. 中考數學知識點總結

2. 初三數學知識點整理

3. 初三數學重點知識點

4. 初中數學知識點歸納

5. 初三數學備戰中考知識點大全

❼ 初二數學幾何知識點歸納有哪些

數學的幾何題是同學們的一大死穴,想要學好初二數學幾何需要找到正確的學習方法。為了幫助大家更好的學習初二數學幾何,下面是我分享給大家的初二數學幾何知識點,希望大家喜歡!

初二數學幾何知識點一
四邊形(含多邊形)知識點、概念總結

一、平行四邊形的定義、性質及判定

1. 兩組對邊平行的四邊形是平行四邊形。

2. 性質:

(1)平行四邊形的對邊相等且平行

(2)平行四邊形的對角相等,鄰角互補

(3)平行四邊形的對角線互相平分

3. 判定:

(1)兩組對邊分別平行的四邊形是平行四邊形

(2)兩組對邊分別相等的四邊形是平行四邊形

(3)一組對邊平行且相等的四邊形是平行四邊形

(4)兩組對角分別相等的四邊形是平行四邊形

(5)對角線互相平分的四邊形是平行四邊形

4. 對稱性:平行四邊形是中心對稱圖形

二、矩形的定義、性質及判定

1. 定義:有一個角是直角的平行四邊形叫做矩形

2. 性質:矩形的四個角都是直角,矩形的對角線相等

3. 判定:

(1)有一個角是直角的平行四邊形叫做矩形

(2)有三個角是直角的四邊形是矩形

(3)兩條對角線相等的平行四邊形是矩形

4. 對稱性:矩形是軸對稱圖形也是中心對稱圖形。

三、菱形的定義、性質及判定

1. 定義:有一組鄰邊相等的平行四邊形叫做菱形

(1)菱形的四條邊都相等

(2)菱形的對角線互相垂直,並且每一條對角線平分一組對角

(3)菱形被兩條對角線分成四個全等的直角三角形

(4)菱形的面積等於兩條對角線長的積的一半

2. s菱=爭6(n、6分別為對角線長)

3. 判定:

(1)有一組鄰邊相等的平行四邊形叫做菱形

(2)四條邊都相等的四邊形是菱形

(3)對角線互相垂直的平行四邊形是菱形

4. 對稱性:菱形是軸對稱圖形也是中心對稱圖形

四、正方形定義、性質及判定

1. 定義:有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形

2. 性質:

(1)正方形四個角都是直角,四條邊都相等

(2)正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

(3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形

(4)正方形的對角線與邊的夾角是45°

(5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形

3. 判定:

(1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等

(2)先判定一個四邊形是菱形,再判定出有一個角是直角

4. 對稱性:正方形是軸對稱圖形也是中心對稱圖形

五、梯形的定義、等腰梯形的性質及判定

1. 定義:一組對邊平行,另一組對邊不平行的四邊形是梯形.兩腰相等的梯形是等腰梯

形.一腰垂直於底的梯形是直角梯形

2. 等腰梯形的性質:等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

3. 等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

4. 對稱性:等腰梯形是軸對稱圖形

六、三角形的中位線平行於三角形的第三邊並等於第三邊的一半;梯形的中位線平行於梯形的兩底並等於兩底和的一半。

七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。

八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。

九、多邊形

1. 多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

2. 多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

3. 多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

4. 多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

5. 多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

6. 正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

7. 平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

8. 公式與性質

多邊形內角和公式:n邊形的內角和等於(n-2)·180°

9. 多邊形外角和定理:

(1)n邊形外角和等於n·180°-(n-2)·180°=360°

(2)邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等於n·180°

10. 多邊形對角線的條數:

(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形

(2)n邊形共有n(n-3)/2條對角線
初二數學幾何知識點二
圓知識點、概念總結

1. 不在同一直線上的三點確定一個圓。

2. 垂徑定理:垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

推論1 ① (不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

② 弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③ 平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

推論2 圓的兩條平行弦所夾的弧相等

3. 圓是以圓心為對稱中心的中心對稱圖形

4. 圓是定點的距離等於定長的點的集合

5. 圓的內部可以看作是圓心的距離小於半徑的點的集合

6. 圓的外部可以看作是圓心的距離大於半徑的點的集合

7. 同圓或等圓的半徑相等

8. 到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9. 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

10. 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等。

11. 定理:圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角

12. ① 直線L和⊙O相交 d

② 直線L和⊙O相切 d=r

③ 直線L和⊙O相離 d>r

13. 切線的判定定理:經過半徑的外端並且垂直於這條半徑的直線是圓的切線

14. 切線的性質定理:圓的切線垂直於經過切點的半徑

15. 推論1 經過圓心且垂直於切線的直線必經過切點

16. 推論2 經過切點且垂直於切線的直線必經過圓心

17. 切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

18. 圓的外切四邊形的兩組對邊的和相等 ,外角等於內對角

19. 如果兩個圓相切,那麼切點一定在連心線上

20. ① 兩圓外離 d>R+r

② 兩圓外切 d=R+r

③ 兩圓相交 R-rr)

④ 兩圓內切 d=R-r(R>r) ⑤兩圓內含dr)

21. 定理:相交兩圓的連心線垂直平分兩圓的公共弦

22. 定理:把圓分成n(n≥3):

(1)依次連結各分點所得的多邊形是這個圓的內接正n邊形

(2)經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

23. 定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

24. 正n邊形的每個內角都等於(n-2)×180°/n

25. 定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

26. 正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

27. 正三角形面積√3a/4 a表示邊長

28. 如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

29. 弧長計算公式:L=n兀R/180

30. 扇形面積公式:S扇形=n兀R^2/360=LR/2

31. 內公切線長= d-(R-r) 外公切線長= d-(R+r)

32. 定理:一條弧所對的圓周角等於它所對的圓心角的一半

33. 推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

34. 推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

35. 弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
初二數學幾何知識點三
三角形知識點、概念總結

1. 三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2. 三角形的分類

3. 三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4. 高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5. 中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6. 角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7. 高線、中線、角平分線的意義和做法

8. 三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9. 三角形內角和定理:三角形三個內角的和等於180°

推論1 直角三角形的兩個銳角互余

推論2 三角形的一個外角等於和它不相鄰的兩個內角和

推論3 三角形的一個外角大於任何一個和它不相鄰的內角;三角形的內角和是外角和的一半

10. 三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

11. 三角形外角的性質

(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

(2)三角形的一個外角等於與它不相鄰的兩個內角和;

(3)三角形的一個外角大於與它不相鄰的任一內角;

(4)三角形的外角和是360°。

猜你喜歡:

1. 初三上數學知識點歸納

2. 初中數學知識點歸納

3. 高考必備數學公式知識點

4. 初中數學圓的知識點歸納

5. 3年級數學歸納知識點有哪些

❽ 有關圓的知識點總結

1、在一個平面內,圍繞一個點並以一定長度為距離旋轉一周所形成的封閉曲線叫做圓(Circle)。

2、圓有無數條對稱軸。

3、圓形是一種圓錐曲線,由平行於圓錐底面的平面截圓錐得到。

4、圓形規定為360°,是古巴比倫人在觀察地平線太陽升起的時候,大約每4分鍾移動一個位置,一天24小時移動了360個位置,所以規定一個圓內角為360°。這個°,代表太陽。

5、圓可以看成由無數個無限小的點組成的正多邊形,當多邊形的邊數越多時,其形狀、周長、面積就都越接近於圓。

6、在同一平面內到定點的距離等於定長的點的集合叫做圓(circle)。這個定點叫做圓的圓心。

7、圓是一個正n邊形(n為無限大的正整數),邊長無限接近0但永遠無法等於0。

8、圓形一周的長度,就是圓的周長。能夠重合的兩個圓叫等圓,等圓有無數條對稱軸。

9、連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r(radius)

10、通過圓心並且兩端都在圓上的線段叫做直徑,字母表示為d(diameter)。直徑所在的直線是圓的對稱軸。

❾ 圓的概念和性質知識點初三

初三數學圓知識點總結

一、圓

1、圓的有關性質

在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

由圓的意義可知:

圓上各點到定點(圓心O)的距離等於定長的點都在圓上。

就是說:圓是到定點的距離等於定長的點的集合,圓的內部可以看作是到圓。心的距離小於半徑的點的集合。

圓的外部可以看作是到圓心的距離大於半徑的點的集合。連結圓上任意兩點的線段叫做弦,經過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大於半圓的弧叫優弧;小於半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

圓心相同,半徑不相等的兩個圓叫同心圓。

能夠重合的兩個圓叫等圓。

同圓或等圓的半徑相等。

在同圓或等圓中,能夠互相重合的弧叫等弧。

二、過三點的圓

l、過三點的圓

過三點的圓的作法:利用中垂線找圓心

定理不在同一直線上的三個點確定一個圓。

經過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內接三角形。

2、反證法

反證法的三個步驟:

①假設命題的結論不成立;

②從這個假設出發,經過推理論證,得出矛盾;

③由矛盾得出假設不正確,從而肯定命題的結論正確。

例如:求證三角形中最多隻有一個角是鈍角。

證明:設有兩個以上是鈍角

則兩個鈍角之和>180°

與三角形內角和等於180°矛盾。

∴不可能有二個以上是鈍角。

即最多隻能有一個是鈍角。

三、垂直於弦的直徑

圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。

垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧。

推理1:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對兩條弧。

弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。

平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一個條弧。

推理2:圓兩條平行弦所夾的弧相等。

四、圓心角、弧、弦、弦心距之間的關系

圓是以圓心為對稱中心的中心對稱圖形。

實際上,圓繞圓心旋轉任意一個角度,都能夠與原來的圖形重合。

頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那麼它們所對應的其餘各組量都分別相等。

五、圓周角

頂點在圓上,並且兩邊都和圓相交的角叫圓周角。

推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

推理3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。

由於以上的定理、推理,所添加輔助線往往是添加能構成直徑上的圓周角的輔助線。