1. 八年級下冊數學知識點概括
第十六章 分式
如果A、B表示兩個整式,並且B中含有字母,那麼式子A/B叫做分式(fraction)。
分式的分子與分母同乘或除以一個不等於0的整式,分式的值不變。
分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。
分式除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
分式乘方要把分子、分母分別乘方。
a^-n=1/a^n (a≠0) 這就是說,a^-n (a≠0)是a^n的倒數。
分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
第十七章 反比例函數
形如y=k/x(k為常數,k≠0)的函數稱為反比例函數(inverse proportional function)。
反比例函數的圖像屬於雙曲線(hyperbola)。
當k>0時,雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小;
當k<0時,雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。
第十八章 勾股定理
勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那麼a^2+b^2=c^2
勾股定理逆定理:如果三角形三邊長a,b,c滿足a^2+b^2=c^2,那麼這個三角形是直角三角形。
經過證明被確認正確的命題叫做定理(theorem)。
我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那麼另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
第十九章 四邊形
有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
平行四邊形的判定:
1.兩組對邊分別相等的四邊形是平行四邊形;
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
直角三角形斜邊上的中線等於斜邊的一半。
矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。
矩形判定定理:
1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
菱形的判定定理:
1.一組鄰邊相等的平行四邊形是菱形(rhombus)。
2.對角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。
S菱形=1/2×ab(a、b為兩條對角線)
正方形的性質:四條邊都相等,四個角都是直角。
正方形既是矩形,又是菱形。
正方形判定定理:
1.鄰邊相等的矩形是正方形。
2.有一個角是直角的菱形是正方形。
一組對邊平行,另一組對邊不平行的四邊形叫做梯形(trapezium)。
等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
線段的重心就是線段的中點。
平行四邊形的重心是它的兩條對角線的交點。
三角形的三條中線交於疑點,這一點就是三角形的重心。
寬和長的比是(根號5-1)/2(約為0.618)的矩形叫做黃金矩形。
第二十章 數據的分析
將一組數據按照由小到大(或由大到小)的順序排列,如果數據的個數是奇數,則處於中間位置的數就是這組數據的中位數(median);如果數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數。
一組數據中出現次數最多的數據就是這組數據的眾數(mode)。
一組數據中的最大數據與最小數據的差叫做這組數據的極差(range)。
方差越大,數據的波動越大;方差越小,數據的波動越小,就越穩定。
數據的收集與整理的步驟:1.收集數據 2.整理數據 3.描述數據 4.分析數據 5.撰寫調查報告 6.交流
2. 初二數學知識點
買本教參
3. 歸納初二下冊數學的知識重點
4. 初二數學上的知識點
這個肯定行
初二數學(上)應知應會的知識點
因式分解
1. 因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.
2.因式分解的方法:常用「提取公因式法」、「公式法」、「分組分解法」、「十字相乘法」.
3.公因式的確定:系數的最大公約數?相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最後結果要求分解到每一個因式都不能分解為止;
(4)因式分解的最後結果要求每一個因式的首項符號為正;
(5)因式分解的最後結果要求加以整理;
(6)因式分解的最後結果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括弧或去括弧整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數系數;(9)展開部分括弧或全部括弧;(10)拆項或補項.
7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對於二次三項式x2+px+q, 有「 x2+px+q是完全平方式 ? 」.
分式
1.分式:一般地,用A、B表示兩個整式,A÷B就可以表示為 的形式,如果B中含有字母,式子 叫做分式.
2.有理式:整式與分式統稱有理式;即 .
3.對於分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.
4.分式的基本性質與應用:
(1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;
(2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;
即
(3)繁分式化簡時,採用分子分母同乘小分母的最小公倍數的方法,比較簡單.
5.分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經常需要先因式分解.
6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最後結果要求化為最簡分式.
7.分式的乘除法法則: .
8.分式的乘方: .
9.負整指數計演算法則:
(1)公式: a0=1(a≠0), a-n= (a≠0);
(2)正整指數的運演算法則都可用於負整指數計算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡公分母.
11.最簡公分母的確定:系數的最小公倍數?相同因式的最高次冪.
12.同分母與異分母的分式加減法法則: .
13.含有字母系數的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數,a和b是用字母表示的已知數,對x來說,字母a是x的系數,叫做字母系數,字母b是常數項,我們稱它為含有字母系數的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數,用x、y、z等表示未知數.
14.公式變形:把一個公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質就是解含有字母系數的方程.特別要注意:字母方程兩邊同時乘以含字母的代數式時,一般需要先確認這個代數式的值不為0.
15.分式方程:分母里含有未知數的方程叫做分式方程;注意:以前學過的,分母里不含未知數的方程是整式方程.
16.分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數的代數式,所以可能產生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數的代數式,因為可能丟根.
17.分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數的值可能是原方程的增根.
18.分式方程的應用:列分式方程解應用題與列整式方程解應用題的方法一樣,但需要增加「驗增根」的程序.
數的開方
1.平方根的定義:若x2=a,那麼x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方數,(2)已知x求a叫乘方,已知a求x叫開方,乘方與開方互為逆運算.
2.平方根的性質:
(1)正數的平方根是一對相反數;
(2)0的平方根還是0;
(3)負數沒有平方根.
3.平方根的表示方法:a的平方根表示為 和 .注意: 可以看作是一個數,也可以認為是一個數開二次方的運算.
4.算術平方根:正數a的正的平方根叫a的算術平方根,表示為 .注意:0的算術平方根還是0.
5.三個重要非負數: a2≥0 ,|a|≥0 , ≥0 .注意:非負數之和為0,說明它們都是0.
6.兩個重要公式:
(1) ; (a≥0)
(2) .
7.立方根的定義:若x3=a,那麼x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方數;(2)a的立方根表示為 ;即把a開三次方.
8.立方根的性質:
(1)正數的立方根是一個正數;
(2)0的立方根還是0;
(3)負數的立方根是一個負數.
9.立方根的特性: .
10.無理數:無限不循環小數叫做無理數.注意:?和開方開不盡的數是無理數.
11.實數:有理數和無理數統稱實數.
12.實數的分類:(1) (2) .
13.數軸的性質:數軸上的點與實數一一對應.
14.無理數的近似值:實數計算的結果中若含有無理數且題目無近似要求,則結果應該用無理數表示;如果題目有近似要求,則結果應該用無理數的近似值表示.注意:(1)近似計算時,中間過程要多保留一位;(2)要求記憶: .
三角形
幾何A級概念:(要求深刻理解、熟練運用、主要用於幾何證明)
1.三角形的角平分線定義:
三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.(如圖) 幾何表達式舉例:
(1) ∵AD平分∠BAC
∴∠BAD=∠CAD
(2) ∵∠BAD=∠CAD
∴AD是角平分線
2.三角形的中線定義:
在三角形中,連結一個頂點和它的對邊的中點的線段叫做三角形的中線.(如圖)
幾何表達式舉例:
(1) ∵AD是三角形的中線
∴ BD = CD
(2) ∵ BD = CD
∴AD是三角形的中線
3.三角形的高線定義:
從三角形的一個頂點向它的對邊畫垂線,頂點和垂足間的線段叫做三角形的高線.
(如圖)
幾何表達式舉例:
(1) ∵AD是ΔABC的高
∴∠ADB=90°
(2) ∵∠ADB=90°
∴AD是ΔABC的高
※4.三角形的三邊關系定理:
三角形的兩邊之和大於第三邊,三角形的兩邊之差小於第三邊.(如圖)
幾何表達式舉例:
(1) ∵AB+BC>AC
∴……………
(2) ∵ AB-BC<AC
∴……………
5.等腰三角形的定義:
有兩條邊相等的三角形叫做等腰三角形. (如圖)
幾何表達式舉例:
(1) ∵ΔABC是等腰三角形
∴ AB = AC
(2) ∵AB = AC
∴ΔABC是等腰三角形
6.等邊三角形的定義:
有三條邊相等的三角形叫做等邊三角形. (如圖)
幾何表達式舉例:
(1)∵ΔABC是等邊三角形
∴AB=BC=AC
(2) ∵AB=BC=AC
∴ΔABC是等邊三角形
7.三角形的內角和定理及推論:
(1)三角形的內角和180°;(如圖)
(2)直角三角形的兩個銳角互余;(如圖)
(3)三角形的一個外角等於和它不相鄰的兩個內角的和;(如圖)
※(4)三角形的一個外角大於任何一個和它不相鄰的內角.
(1) (2) (3)(4) 幾何表達式舉例:
(1) ∵∠A+∠B+∠C=180°
∴…………………
(2) ∵∠C=90°
∴∠A+∠B=90°
(3) ∵∠ACD=∠A+∠B
∴…………………
(4) ∵∠ACD >∠A
∴…………………
8.直角三角形的定義:
有一個角是直角的三角形叫直角三角形.(如圖)
幾何表達式舉例:
(1) ∵∠C=90°
∴ΔABC是直角三角形
(2) ∵ΔABC是直角三角形
∴∠C=90°
9.等腰直角三角形的定義:
兩條直角邊相等的直角三角形叫等腰直角三角形.(如圖)
幾何表達式舉例:
(1) ∵∠C=90° CA=CB
∴ΔABC是等腰直角三角形
(2) ∵ΔABC是等腰直角三角形
∴∠C=90° CA=CB
10.全等三角形的性質:
(1)全等三角形的對應邊相等;(如圖)
(2)全等三角形的對應角相等.(如圖)
幾何表達式舉例:
(1) ∵ΔABC≌ΔEFG
∴ AB = EF ………
(2) ∵ΔABC≌ΔEFG
∴∠A=∠E ………
11.全等三角形的判定:
「SAS」「ASA」「AAS」「SSS」「HL」. (如圖)
(1)(2)
(3) 幾何表達式舉例:
(1) ∵ AB = EF
∵ ∠B=∠F
又∵ BC = FG
∴ΔABC≌ΔEFG
(2) ………………
(3)在RtΔABC和RtΔEFG中
∵ AB=EF
又∵ AC = EG
∴RtΔABC≌RtΔEFG
12.角平分線的性質定理及逆定理:
(1)在角平分線上的點到角的兩邊距離相等;(如圖)
(2)到角的兩邊距離相等的點在角平分線上.(如圖)
幾何表達式舉例:
(1)∵OC平分∠AOB
又∵CD⊥OA CE⊥OB
∴ CD = CE
(2) ∵CD⊥OA CE⊥OB
又∵CD = CE
∴OC是角平分線
13.線段垂直平分線的定義:
垂直於一條線段且平分這條線段的直線,叫做這條線段的垂直平分線.(如圖)
幾何表達式舉例:
(1) ∵EF垂直平分AB
∴EF⊥AB OA=OB
(2) ∵EF⊥AB OA=OB
∴EF是AB的垂直平分線
14.線段垂直平分線的性質定理及逆定理:
(1)線段垂直平分線上的點和這條線段的兩個端點的距離相等;(如圖)
(2)和一條線段的兩個端點的距離相等的點,在這條線段的垂直平分線上.(如圖)
幾何表達式舉例:
(1) ∵MN是線段AB的垂直平分線
∴ PA = PB
(2) ∵PA = PB
∴點P在線段AB的垂直平分線上
15.等腰三角形的性質定理及推論:
(1)等腰三角形的兩個底角相等;(即等邊對等角)(如圖)
(2)等腰三角形的「頂角平分線、底邊中線、底邊上的高」三線合一;(如圖)
(3)等邊三角形的各角都相等,並且都是60°.(如圖)
(1) (2) (3) 幾何表達式舉例:
(1) ∵AB = AC
∴∠B=∠C
(2) ∵AB = AC
又∵∠BAD=∠CAD
∴BD = CD
AD⊥BC
………………
(3) ∵ΔABC是等邊三角形
∴∠A=∠B=∠C =60°
16.等腰三角形的判定定理及推論:
(1)如果一個三角形有兩個角都相等,那麼這兩個角所對邊也相等;(即等角對等邊)(如圖)
(2)三個角都相等的三角形是等邊三角形;(如圖)
(3)有一個角等於60°的等腰三角形是等邊三角形;(如圖)
(4)在直角三角形中,如果有一個角等於30°,那麼它所對的直角邊是斜邊的一半.(如圖)
(1) (2)(3) (4) 幾何表達式舉例:
(1) ∵∠B=∠C
∴ AB = AC
(2) ∵∠A=∠B=∠C
∴ΔABC是等邊三角形
(3) ∵∠A=60°
又∵AB = AC
∴ΔABC是等邊三角形
(4) ∵∠C=90°∠B=30°
∴AC = AB
17.關於軸對稱的定理
(1)關於某條直線對稱的兩個圖形是全等形;(如圖)
(2)如果兩個圖形關於某條直線對稱,那麼對稱軸是對應點連線的垂直平分線.(如圖)
幾何表達式舉例:
(1) ∵ΔABC、ΔEGF關於MN軸對稱
∴ΔABC≌ΔEGF
(2) ∵ΔABC、ΔEGF關於MN軸對稱
∴OA=OE MN⊥AE
18.勾股定理及逆定理:
(1)直角三角形的兩直角邊a、b的平方和等於斜邊c的平方,即a2+b2=c2;(如圖)
(2)如果三角形的三邊長有下面關系: a2+b2=c2,那麼這個三角形是直角三角形.(如圖)
幾何表達式舉例:
(1) ∵ΔABC是直角三角形
∴a2+b2=c2
(2) ∵a2+b2=c2
∴ΔABC是直角三角形
19.RtΔ斜邊中線定理及逆定理:
(1)直角三角形中,斜邊上的中線是斜邊的一半;(如圖)
(2)如果三角形一邊上的中線是這邊的一半,那麼這個三角形是直角三角形.(如圖)
幾何表達式舉例:
(1) ∵ΔABC是直角三角形
∵D是AB的中點
∴CD = AB
(2) ∵CD=AD=BD
∴ΔABC是直角三角形
幾何B級概念:(要求理解、會講、會用,主要用於填空和選擇題)
一 基本概念:
三角形、不等邊三角形、銳角三角形、鈍角三角形、三角形的外角、全等三角形、角平分線的集合定義、原命題、逆命題、逆定理、尺規作圖、輔助線、線段垂直平分線的集合定義、軸對稱的定義、軸對稱圖形的定義、勾股數.
二 常識:
1.三角形中,第三邊長的判斷: 另兩邊之差<第三邊<另兩邊之和.
2.三角形中,有三條角平分線、三條中線、三條高線,它們都分別交於一點,其中前兩個交點都在三角形內,而第三個交點可在三角形內,三角形上,三角形外.注意:三角形的角平分線、中線、高線都是線段.
3.如圖,三角形中,有一個重要的面積等式,即:若CD⊥AB,BE⊥CA,則CD?AB=BE?CA.
4.三角形能否成立的條件是:最長邊<另兩邊之和.
5.直角三角形能否成立的條件是:最長邊的平方等於另兩邊的平方和.
6.分別含30°、45°、60°的直角三角形是特殊的直角三角形.
7.如圖,雙垂圖形中,有兩個重要的性質,即:
(1) AC?CB=CD?AB ; (2)∠1=∠B ,∠2=∠A .
8.三角形中,最多有一個內角是鈍角,但最少有兩個外角是鈍角.
9.全等三角形中,重合的點是對應頂點,對應頂點所對的角是對應角,對應角所對的邊是對應邊.
10.等邊三角形是特殊的等腰三角形.
11.幾何習題中,「文字敘述題」需要自己畫圖,寫已知、求證、證明.
12.符合「AAA」「SSA」條件的三角形不能判定全等.
13.幾何習題經常用四種方法進行分析:(1)分析綜合法;(2)方程分析法;(3)代入分析法;(4)圖形觀察法.
14.幾何基本作圖分為:(1)作線段等於已知線段;(2)作角等於已知角;(3)作已知角的平分線;(4)過已知點作已知直線的垂線;(5)作線段的中垂線;(6)過已知點作已知直線的平行線.
15.會用尺規完成「SAS」、「ASA」、「AAS」、「SSS」、「HL」、「等腰三角形」、「等邊三角形」、「等腰直角三角形」的作圖.
16.作圖題在分析過程中,首先要畫出草圖並標出字母,然後確定先畫什麼,後畫什麼;注意:每步作圖都應該是幾何基本作圖.
17.幾何畫圖的類型:(1)估畫圖;(2)工具畫圖;(3)尺規畫圖.
※18.幾何重要圖形和輔助線:
(1)選取和作輔助線的原則:
① 構造特殊圖形,使可用的定理增加;
② 一舉多得;
③ 聚合題目中的分散條件,轉移線段,轉移角;
④ 作輔助線必須符合幾何基本作圖.
(2)已知角平分線.(若BD是角平分線)
① 在BA上截取BE=BC構造全等,轉移線段和角;
② 過D點作DE‖BC交AB於E,構造等腰三角形 .
(3)已知三角形中線(若AD是BC的中線)
① 過D點作DE‖AC交AB於E,構造中位線 ;
② 延長AD到E,使DE=AD
連結CE構造全等,轉移線段和角;
③ ∵AD是中線
∴SΔABD= SΔADC
(等底等高的三角形等面積)
(4) 已知等腰三角形ABC中,AB=AC
① 作等腰三角形ABC底邊的中線AD
(頂角的平分線或底邊的高)構造全
等三角形;
② 作等腰三角形ABC一邊的平行線DE,構造
新的等腰三角形.
(5)其它
① 作等邊三角形ABC
一邊 的平行線DE,構造新的等邊三角形;
② 作CE‖AB,轉移角;
③ 延長BD與AC交於E,不規則圖形轉化為規則圖形;
④ 多邊形轉化為三角形;
⑤ 延長BC到D,使CD=BC,連結AD,直角三角形轉化為等腰三角形;
⑥ 若a‖b,AC,BC是角平
分線,則∠C=90°.
參考資料:去谷歌搜索:初二上數學知識點 然後點第一個
5. 初二數學知識點歸納
有這么些:
1. 分式
2.二次根式
3.三角形
4.一次函數
5.四邊形
6.相似
7.簡單概率統計
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.
2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
① 列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。
6. 初二數學都有哪些知識點
《新初二曹.笑數學秋季培優班(人教版高清視頻)》網路網盤資源下載
鏈接:
若資源有問題歡迎追問~
7. 初二下學期數學知識點歸納內容是什麼
1、無限小數都是無理數無限小數分:為無限循環小數和無限不循環小數,其中無限循環小數是有理數,只有無限不循環的小數才是無理數。
2、無理數包括正無理數、負無理數和零。受思維習慣的影響,有些同學錯誤認為正無理數與負無理數之間應有零,零也是無理數,其實零是一個有理數,因此,無理數只分為正無理數和負無理數兩類。
3、帶根號的數是無理數。是有理數2,是有理數-2,可見帶根號的數不一定是無理數。
4、無理數是用根號形式表示的數。是無理數,但並不是用根號形式表示的,再如:0.1010010001(兩個1之間依次多一個),亦為不帶根號的無理數。
5、無理數是開方開不盡的數。無理數並非由開方的結果來定義的,事實上,如,0.232232223,等無理數,都不是由開方得到的。
6、兩個無理數的和、差、積、商仍是無理數。兩個無理數的和,差,積,商不一定是無理數,如:等都是有理數。
8. 八年級下學期數學知識點
第1章 二次根式
二次根式屬於「數與代數」領域的內容,它是在學生學習了平方根、立方根等內容的基礎上進行的,是對七年級上冊「實數」「代數式」等內容的延伸和補充。二次根式的運算以整式的運算為基礎,在進行二次根式的有關運算時,所使用的運演算法則與整式、分式的相關法則類似;在進行二次根式的加減時,所採用的方法與合並同類項類似;在進行二次根式的乘除時,所使用的法則和公式與整式的乘法運演算法則及乘法公式類似。這些都說明了前後知識之間的內在聯系。
本章的主要內容有二次根式,二次根式的性質,二次根式的運算(根號內不含字母、不含分母有理化)。
一、教科書內容和教學目標
本章的教學要求。
(1)了解二次根式的概念,了解簡單二次根式的字母取值范圍;
(2)了解二次根式的性質;
(3)了解二次根式的加、減、乘、除的運演算法則;
(4)會用二次根式的性質和運演算法則進行有關實數的簡單四則運算(不要求分母有理化)。
本章教材分析。
課本在回顧算術平方根的基礎上,通過「合作學習」的三個問題引出二次根式的概念,並說明以前學的數的算術平方根也叫做二次根式。在例題和練習的安排上,著重體現三個方面的要求:一是求二次根式中字母的取值范圍;二是求二次根式的值;三是用二次根式表示有關的問題。
對於二次根式的性質,課本利用第4頁圖1-2給出的。該圖的含義是如果正方形的面積為,那麼這個正方形的邊長就是;反之,如果正方形的邊長為,那麼這個正方形的面積就是,因此就有。從而得出二次根式的第一個性質。至於第二個性質,可以通過學生的計算來發現,所以課本安排了一個「合作學習」,讓學生自己去發現和歸納。該節第一課時的重點在於對這兩個性質的理解和運用,例題和練習的設計就圍繞這兩個性質展開。第二課時是學習二次根式的另外兩個性質,課本安排兩組練習,意在讓學生通過自己的嘗試,與同學的合作交流來發現這兩個性質。通過兩個例題和一組練習,使學生知道運用二次根式的性質,可以簡化實數的運算,也可以對結果是二次根式的式子進行化簡。課本第9頁的「探究活動」既是對二次根式的運用,更在於培養學生的一種探究能力,觀察、發現、歸納等能力。
第1.3節二次根式的運算,包含了二次根式的加、減、乘、除四種運算以及簡單應用,課本安排了3個課時,逐步推進,逐漸綜合。第一課時側重於兩個(相當於兩個單項式)二次根式的乘除,其法則是從二次根式的性質得到的,比較自然。例1是對兩個運演算法則的直接運用,讓學生有一個對法則的熟悉和熟練過程;例2是一個結合實際問題的運用,其中有勾股定理和三角形的面積計算。第二課時是二次根式的加減和乘除混合運算,出現了類似單項式乘以多項式、多項式乘以多項式(包括乘法公式、乘方)、多項式除以單項式的運算。課本中沒有出現「同類二次根式」的概念,只是提到「類似於合並同類項」「相同二次根式的項」,這種類比的方法,學生是能夠理解的,也能夠與整式一樣進行運算。第三課時是二次根式運算的應用。例6的數字看上去比較復雜,其目的是為了二次根式的運算的應用;例7綜合運用了直角三角形的有關知識、圖形的分割、面積的計算等,其解答過程較長,也是對二次根式知識的綜合運用。
二、本章編寫特點
注重學生的觀察、分析、歸納、探究等能力的培養。
在本章知識的呈現方式上,課本比較突出地體現了「問題情境——數學活動——概括——鞏固、應用和拓展」的敘述模式,這種意圖大多通過「合作學習」 來完成。「合作學習」為學生創設了從事觀察、猜測、驗證交流等數學活動的機會。如第5頁先讓學生計算三組與的具體數值,再議一議與的關系,然後得出二次根式的性質「=」。二次根式的其他幾個性質,課本中也是採用類似的方法。在學習了二次根式的有關性質後,課本又設計了一個「探究活動」,通過化簡有關的二次根式,讓學生自己去發現規律、表示規律、驗證規律,並與同伴交流。所有這些都是教材編寫的一種導向,以引起教與學方式上的一些的改變。
注重數學知識與現實生活的聯系。
教材力求克服傳統觀念上學習二次根式的枯燥性,避免大量純式子的化簡或計算,適當穿插實際應用或賦予式子一些實際意義。無論是學習二次根式的概念,還是學習二次根式的性質和運算,都盡可能把所學的知識與現實生活相聯系,重視運用所學知識解決實際問題能力的培養。如二次根式概念的學習,課本通過三個實際問題來引入,其目的就是關注概念的實際背景與形成過程,克服機械記憶概念的學習方式。又如,課本第3頁,用二次根式表示輪船航行的的距離,第11頁求路標的面積,第21頁花草的種植面積問題等。特別是在二次根式的運算中,專門安排了一節內容學習二次根式運算的應用,例6選取的背景是學生熟悉的滑梯,例7選取的背景是學生感興趣的剪紙條,以及作業中的堤壩、快艇問題等等。
充分利用圖形,使代數與幾何有機結合。
對於數與代數的內容,教材重視有關內容的幾何背景,運用幾何直觀幫助學生理解、解決有關代數問題,是教材的一個編寫特點,也是對教學的一種導向。本章中,如二次根式與直角三角形有關邊的計算密切相關,課本在這方面選取了一定量的問題,既豐富了勾股定理的運用,又學習了二次根式的計算。又如二次根式的引入,課本以圖形作為條件,讓學生通過計算給出二次根式的概念;在學習二次根式的性質時,課本通過讓學生讀圖1-2,從正反兩方面來理解其含義,得出二次根式的性質。例題中結合圖形示意,幫助學生理解問題,解決問題;作業或課本練習中設計一些圖形中有關線段長度的計算;通過方格、直角坐標系來畫三角形、確定點的位置等等。課本在安排二次根式的運算在日常生活和生產實際中的應用時,所選取的問題也在於體現學生所學知識之間的聯系,感受所學知識的整體性,不斷豐富學生解決問題的策略,提高解決問題的能力。
三、教學建議
注意用好節前語。
本章的節前語不多,但都緊密結合本節學習的內容,提出一個具體的問題。教學中可以利用它們來創設問題情境,引入課題。如第1.1節「排球網的高AD為2.43米,CB為米,你能用代數式表示AC的長嗎?」短短的幾句話,既是一個學生熟悉的問題情境,又是一個看似熟悉但又具有一定的挑戰懷,與數學學習相聯系的問題,教師可以由此提出一個與本節課學習有關的問題。教學中不應忽視這種作用。
注意把握教學難度。
與以往的教材相比,二次根式已降低了要求。如運用二次根式的性質將二次根式化簡,只要求簡單的,不要出現過於復雜的式子,並且明確根號內不含字母。對二次根式的四則運算,也僅局限於簡單的,根號內不含字母,教學中不需補充超出課本題目要求的問題。當然對不同層次的學生,應該體現一定的彈性。課本第15頁的作業題中的第7,8題,還可以藉助於計算器進行計算。
充分運用類比的方法。
二次根式的運算以整式的運算為基礎,其法則、公式都與整式的類似,特別是二次根式的加減,課本沒有提出同類二次根式的概念,完全參照合並同類項的方法;二次根式的乘除、乘方運算類似於整式的乘除、乘方運算。因此對於二次根式的四則運算的教學應充分運用類比的方法,讓學生理解其算理和演算法,提高運算能力。
第2章 一元二次方程
一、教科書內容和課程學習目標
(一)教科書內容
本章包括三節:
2.1 一元二次方程;
2.2一元二次方程的解法;
2.3一元二次方程的應用。
其中2.1節是全章的基礎部分,2.2節是全章的重點內容,2.3節是知識應用和引申的內容。另外,閱讀材料介紹了一元二次方程的發展,讓學生了解數學的發展史。
(二)本章的知識結構
(三)課程目標
(1)了解一元二次方程的概念,會用直接開平方法解形如(b≥0)的方程;
(2)理解配方法,會用配方法解數字系數的一元二次方程;掌握一元二次方程求根公式的推導,會用求根公式解一元二次方程;會用因式分解法解一元二次方程,使學生能夠根據方程的特徵,靈活運用一元二次方程的各種解法求方程的根。
(3)體驗用觀察法、畫圖或計算器等手段估計方程的解的過程。
(4)能夠根據具體問題中的數量關系,能夠列出一元二程方程解應用題,能夠發現、提出日常生活、生產或其他學科中可利用一元二次方程來解決的實際問題,並正確地用語言表達問題及解決過程。體會方程是刻畫現實世界的一個有效的數學模型。
(5)結合教學內容進一步培養學生邏輯思維能力,對學生進行辯證唯物主義觀點的教育,通過一元二次方程的教學,使學生進一步獲得對事物可以轉化的認識。
(四)課時安排
2.1 一元二次方程…………………………………………………………2課時
其中:一元二次方程的概念……………………1課時
因式分解法解一元二次方程……………1課時
2.2一元二次方程的解法………………………………………………4課時
其中:開方法、配方法………………………2課時
公式法…………………………………2課時
2.3一元二次方程的應用………………………………………………2課時
小結、目標與評定………………………………………………………2課時
二、編寫指導思想與特點
方程教學在中學數學教學中佔有很大的比例,一元二次方程在初中代數中佔有重要地位。一方面,一元二次方程可以看成是前面所學過的有關知識的綜合運用,如有理數、實數的概念和整式、分式、開平方等的運算,一元一次方程、一元一次方程組解法等知識,在本章都有應用。從數學角度看,這一章的學習有一定難度,如果前面某個環節薄弱或知識點有問題,就會給本章的學習帶來困難,因此,這一章的教學是對以前所學的有關知識的檢驗,又是一次復習與鞏固。當然,一元二次方程知識也是前面所學知識的繼續和發展,尤其是方程方面知識的深入和發展。
本章的主要內容是一元二次方程的解法和應用,課本首先引入一元二次方程的概念,從實數的性質,將分解成為兩個一次因式相乘積為零的一元二次方程轉化為兩個一元一次方程入手,介紹了利用因式分解法解一元二次方程的方法,體現了數學的轉化思想。接著課本首先從數的開平方的知識出發,直接講開平方法,然後依次介紹了配方法和公式法。在講述公式法的同時,課本特別給出了利用計算器解一元二次方程的解法示例,以揭示技術發展給數學學習帶來的影響,這也是一種新的嘗試。同時,以建立數學模型為主要著力點介紹了一元二次方程的應用,並在例題的設置上充分考慮了圖表、立體圖形、物體運動和經濟活動中的問題背景,力圖使學生在現實的環境中學習數學。
這一章是全書乃至整個初中代數的一個重點內容。因為這一部分內容既是對以前所學內容的總結、鞏固和提高,又是以後學習的知識基礎。因此這一章可以說是起到了承上啟下的作用。高中階段的指數方程、對數方程及三角方程,無非就是指數、對數、三角函數的有關知識與一元一次方程、一元二次方程的綜合而已。初中代數中的不少主要技能、解題方法以及一些常用的數學思想方法,在本章都有所體現。例如,換元法、因式分解法、配方法等。另外,從具體到抽象的概括能力、邏輯推理能力等等在本章也有體現。可以說,無論從基礎知識還是基本技能看,這一章都佔有重要的地位。在本章的內容中,應以一元二次方程的解法,特別是公式法作為重點。
三、教材體現的數學思想方法
本章從內容上看是初中代數的重點,從數學思想方法方面來看,也是初中數學中比較全面體現的一章。
1.方程的思想
方程本身就提供了一種重要的數學思想方法,這一點在一元二次方程中體現的更為充分。學習方程不僅為進一步學習其他知識打下基礎,不僅可用於解決一些實際問題,而且在更廣泛的意義上講,通過方程可以溝通已知與未知之間的聯系,從而由解方程就可以使問題得以解決,通常稱之為方程思想。方程思想作為一種數學思想,在數學發展史上有重要作用,對求解數學問題來說也有重要的意義。
2.公式解法
一元二次方程的公式解法在數學思想方法上有重要意義。首先,公式法是人們所知的多次方程的第一種公式(根式)解,它為以後進行公式解的研究開辟了道路,並且是引起近似代數的起源問題之一,在數學的學習中也有重要意義;其次,公式法解體現了數學中的運算元的思想,將數學問題進行抽象化、符號化、程序化,這是數學發展的重要的途徑。
3.分類討論的數學思想
一元二次方程求根公式中,涉及開方問題,即對要實施開平方,而前面已經學過負數沒有平方根。因此的狀態就決定了一元二次方程根的狀態。必須對的符號進行討論。分類討論的數學思想是一種極為重要的數學思想方法,教材中對Δ=的三種分類討論隱含在課堂教學之中,通過「想一想」讓學生自然地得到結論,降低由於數學思想上的要求所帶來的學習上的難度,這是一種合理的處理方法。實際上,判別式的討論是不解方程而對方程的根進行定性研究的重要指標。在研究二次函數的圖象和性質等方面有重要意義,在研究二次曲線的問題時有重要地位。判別式實質上是利用方程的系數研究方程的性質,是一種以局部研究探求具體性質的方法。找一種關鍵性的數量關系去定性地研究一類對象,也是一種常見的數學思想方法。
4.轉化(化歸)的數學思想
在本章中更突出地表示出「轉化」的思想方法。如利用因式分解法解一元二次方程就是將一元二次方程轉化為兩個一元一次方程。嚴格地說,轉化的思想是數學中認識和掌握新知識的重要途徑,掌握這種方法,可以提高學生的數學能力,拓展學生數學知識。如換元法就是一種很重要的轉化思想,這在本章也有不少的體現。
四、教材處理
關於教材處理,按教材內容的安排及課程標準的要求,分三部分進行分析:
1.一元二次方程
本節包括一元二次方程的概念、因式分解法解一元二次方程,這一單元是本章的基礎,教材兩個問題中引入了一元二次方程的概念,一個問題是學生所熟悉的正方形和長方形的面積,另一個問題是從報紙上公布的統計數據,教學的重點是對方程的一般形式的認識和對方程解的理解,在此基礎上,引入用因式分解法求一元二次方程解的方法,將這種解安排在此處,其目的是為了加強學生對學習方程目的的理解,並為後續通過轉化求方程解奠定思想基礎。
2.一元二次方程的解法
本節是本章的核心內容,主要是一元二次方程的各種解法。其中的一元二次方程的配方法和應用一元二次方程知識理解應用問題是重點,而這兩個重點又是教學過程中的難點。一元二次方程的解法,尤其是公式法是學好本章的關鍵。因此,本節又是全章的重點,是學好本章的基礎。
一元二次方程的解法,課本介紹了四種,即直接開平方法、配方法、公式法及因式分解法。
直接開平方法適用於(b≥0)模式的方程。實際上,給出的一般方程只要存在實根,就可以用配方法轉化為的形式。例如,課本中將方程轉化為,因此配方法是直接開方法的延伸,而直接開平方法是配方法的基礎。
在配方法解一元二次方程的基礎上,很自然地推出一元二次方程的求根公式,實際上就是對一般形式(a≠0)的一元二次方程實施配方法的結果。
對於三種解法,公式法可以是一種「萬能」方法,只要△=≥0,將系數a,b,c代入公式即可求解。在教學中注意一元二次方程中的a≠0的條件。在配方時應強調方程兩邊同時加上「一次項系數之半的平方」或在左端加上「一次項系數之半的平方」再減去「一次項系數之半的平方」,實質上是方程的一種同解變形,這是必須反復訓練方可達到學生熟練進行配方的目的,它也是推導求根公式的基礎。
對△=的討論,首先要滲透分類討論的思想,另外,對△==0的情況,一定要強調有兩個相等的實根:這與方程根的理論一致,學生開始會認識只有一根,要反復強調,以糾正這種不正確的或說是不嚴密的結論。對△=<0的情況,不能說成方程無解,而應強調方程無實數根或在實數范圍內無解,強調數域是為今後在高中討論有復根的情況埋下伏筆。理論上的證明見教師用書。
關於一元二次方程根與系數的關系,實際上,求根公式就體現了根與系數的關系,由於課程標准中沒有涉及,但這部分內容對於今後的學習是很重要的,在教學中可以作為探索性學習的內容,讓學生自己進行探索並得出結論。
3.一元二次方程的應用
列方程解應用問題,前面一元一次方程的應用已學習過相關的知識,但是列一元二次方程解應用題仍然是難點,其原因是數量關系比較復雜且隱蔽;應用題所反映的實際背景比較復雜而學生又不太熟悉;所列方程也逐步復雜。主觀上學生一開始受算術解法思維的定勢影響,缺乏廣泛的社會經濟生產和生活以及相關學科方面的知識,理解文字語言和數學語言等方面的能力較差。
對於求解應用題,若從思想方法角度來看,列方程解應用題屬於數學模型法,其中方程應用題求解,大體上都是這樣六個步驟:①審題,理解題意,明確題中涉及幾個量,有幾個是已知量,有幾個是未知量,它們之間有什麼關系等等;②設元,根據題目要求,選擇合適的未知數,又分為直接設元法、間接設元法。同時還要考慮設幾個未知數為宜;③列式,分析題目中量與量的關系,關鍵是找出題目中的相等關系,這時,要注意挖掘題目中的那些隱蔽的相等關系,有時,又要輔之使用圖示法、列表法等一些直觀手段;④求解;⑤檢驗,既要檢驗得到的解是否符合原方程或原方程組,又要檢驗所得的解對實際問題是否有意義;⑥作答,寫出正確合理的答案。在教學中可以結合問題解決的策略,讓學生主動參與,自主建構和合作學習,體會數學建模的基本思想與方法。
(金克勤)
第3章 頻數及其分布
統計學是搜集數據、分析數據,並根據它獲得總體信息的科學.本套教材在七年級上冊安排了 「數據與圖表」,著重介紹了數據的收集、整理的初步方法;在八年級上冊安排了「樣本與數據分析初步」,通過對數據集中程度和離散程度的統計量的計算,初步了解了如何對數據的基本狀態進行分析.為了進一步分析、處理數據,供決策時參考,有時我們還要了解數據的分布情況,找出新的特徵數.「頻數及其分布」這一章就是解決了這一問題.「頻數及其分布」這部分內容在原總指浙江版義務教材中也有,但只是作為概率統計初步中的一小節.考慮到頻數、頻率、頻數直方圖、頻數折線圖與日常生活、自然、社會和科學技術領域的密切聯系,《數學課程標准》增加了這塊內容的份量.本套教材將這塊內容獨立設章的目的,一方面可用足夠的篇幅來更清楚、更詳細闡述,也是為每冊循序漸進地學習概率與統計知識所作的精心安排.
本章教學時間約需7課時 ,具體安排如下:
3.1 頻數和頻率 1課時
3.2 頻數分布 1課時
3.3 頻數的應用 3課時
復習、評估1課時,機動使用1課時,合計7課時.
一、教科書內容和課程教學目標
(1)本章知識結構框圖如下:
(2)本章教學目標如下:
目標類別
目標層次
知識點及相關技能 知識技能目標 過程性目標
了解 理解 掌握 靈活運用 經歷(感受) 體驗(體會) 探索
頻
數
及
其
分
布 極差 √ √
頻數的概念 √ √
頻數分布表 √ √
頻率的概念 √ √
頻數分布的意義和作用 √ √
頻數分布直方圖 √ √
頻數分布折線圖 √ √
根據頻數分布直方圖估計平均數 √ √
(3)本章教學要求
① 通過實例,理解頻數、頻率的概念,了解頻數分布的意義和作用.
② 會計算極差,會對數據合理分組,並求出每一組的頻數、頻率,列出頻數分布表.
③ 會畫頻數分布直方圖和頻數分布折線圖,能根據頻數分布直方圖估計平均數,能根據數據處理的結果,作出合理的判斷和預測,並在這一過程中體會統計對決策的作用.
④ 通過畫直方圖、折線圖養成學生耐心細致的工作作風,實事求是的工作態度,善於觀察、分析問題的能力.
二、本章編寫特點
以《數學課程標准》為本,刪繁就簡、突出重要內容
畫頻數分布直方圖不採用傳統按部就班的逐步介紹的方法,步驟多、方法繁將會影響這個年齡段的學生學習興趣.事實上,如3.1節做一做,「下面給出以0.4 kg為組距,取2.75~3.15、3.15~3.55……為端點」;對連續型、離散型數據的不同處理等,裡面還有許多道理.不在繁瑣的具體枝節上糾纏,突出重要概念,讓學生體驗頻數、頻率的真實含義,理解頻數、頻率分布的意義和作用才是教學的真正目的,也是本章教材編寫的特點之一.
精心選擇實例,貼近學生生活,引起學生興趣
頻數、頻率本身就是處理實際問題,從實際中來,在解決實際問題的過程中引入概念.教材精心挑選、引入大量學生熟悉的例子,創設學生熟悉的情境,引起學生興趣,使學生能產生解決它的慾望.掃除一定程度上因為敘述事例的冗長而引起學生反感.如血型分布、運動鞋鞋號的選擇、學科成績、午餐等候時間、礦泉水質量等等都是學生身邊的事,學生熟悉且親切.同時也培養了學生從統計的角度思考與數據信息有關的問題,通過收集、分析數據的過程能初步作出合理的決策,提高學生處理問題、決策問題的能力.
重實踐操作,設計一定量的數學活動,在交流中增強數學應用意識
本章內容安排了一定量的實習操作性的活動,如「八年級男生、女生身高和所穿運動鞋的分布」「八年級學生跳繩次數的頻數分布」「八年級男生、女生體重數據的分布」「商場不同價格的彩電銷售情況」等,這些活動都需要學生分小組合作,事前精心設計策劃,調查廣泛接觸不太熟悉的人和事,希望學生通過這些活動認識現實世界中蘊含的大量的數學信息,數學與現實世界有著緊密聯系,增強學生的數學應用意識,也培養學生實際工作能力,從中獲得克服困難經歷或者體會獲得成功的喜悅.
三、教學建議
(1) 畫頻數分布直方圖的一般步驟是:①計算極差;②決定組數與組距.一般當數據在100個以內時,按照數據多少,常分為5~12組;組距是指每個小組的兩個端點之間的「距離」 , = 組距;③決定分點,為了避免有些數據本身落在分點上,常常將分點多取一位小數;④列表、劃記;⑤畫頻數分布直方圖.教師根據實際情況在講解中靈活應用,但不要完全在黑板上重復以上步驟,這樣違背了教材編寫的初衷.
(2) 利用頻數分布表、頻數直方圖、頻數折線圖來分析數據的一些特徵是教學的重點之一,教學中應該充分發揮學生的積極性,讓學生仔細地觀察、大膽地推測、合理地驗證.「統一訂購運動服、運動鞋,應注意哪些問題?」「校方安排學生多長的午餐時間為宜?」「估計魚塘中有多少條魚」「分析男生、女生游泳項目成績差異」等等,不像原來數學題有唯一標准答案,應鼓勵學生各抒已見,最後在充分討論的基礎上形成比較一致的意見.這是與人交流、勇於探索、比較清晰表達自己觀點的重要方式,也是新課程數學教學的一個重要方面,教師可視具體情況在本章教學中盡量體現.
(3)計算繁瑣,聯系實際緊密是本章的主要特點.除了課本提供的範例外,教學中教師可根據實際情況進行適當補充.同時教師還應該充分利用多媒體預先製作好一些教具,不要使課堂上寶貴的時間浪費在抄寫、繪圖上面.
四、本章教學中應注意的問題
(1)數據有「連續型」與「離散型」兩種,對離散型數據,如課本第51頁的血型分組一般比較容易,對離散型數據分組不唯一,僅是根據經驗,不同的分組一般得到的結論也有所差別,但只要合理均認為正確.
(2)進行實踐活動時,要注意有些問題可能涉及學生的個人隱私,如較胖的女同學不願意論及自己的體重,她認為公開自己的體重是侵犯了個人隱私權;一分鍾跳繩次數比較少的同學也可能覺得沒面子而出現一些不愉快事情.針對這些情況任課教師應有充分的思想准備,採取迴避或選擇一些合適的同學或選擇另外適當的數據作調查對象等辦法.我們的目的是通過一些實踐活動在交流中培養互相合作的精神,與人合作中體會愉快,用數學知識解決實際問題中,增強應用數學的自信心.不要因為個別特殊原因干擾整個教學計劃.
(3)直方圖的縱坐標與橫坐標一般來說有不同的單位,每個單位的具體長度應在比較中進行選擇.最終的要求是畫出來的圖形比較美觀,能清楚反映分布情況、及變化趨勢.課本所採用畫折線 的辦法就是避免圖形畫在極端的位置.在不影響整個圖形所反映基本特徵的情況下,使頻數直方圖或頻數折線圖更加美觀.也可以採用將學生所畫的圖比較展覽的辦法,讓學生在交流中取長補短,互相吸收別人好的經驗,來完善自己畫圖技能.
(王利明)
命題與證明
9. 八年級下冊數學考試有那些重要的知識點
一次函數比較重要,一般會結合初三所學的拋物線或是幾何一起考;代數方程部分要求一般,但要打好基礎,保證拿分,以後求函數解析式等等會融入考察;四邊形部分是重點,中考會有一道證明題,雖然基本考相似,但是以四邊形為背景的;另外向量和概率是基礎,中考一般一道填空題