當前位置:首頁 » 基礎知識 » 六年級數學小報知識點
擴展閱讀
動漫設計類是什麼專業 2024-11-17 23:13:02

六年級數學小報知識點

發布時間: 2022-09-01 21:18:39

Ⅰ 數學小報六年級內容是什麼

數學小報六年級內容是如下:

1、我總是盡我的精力和才能來擺脫那種繁重而單調的計算。

2、數學是一種會不斷進化的文化。

3、數學是一切知識中的最高形式。

4、數學是人類智慧皇冠上最燦爛的明珠。

5、數學是知識的工具,亦是其它知識工具的泉源。所有研究順序和度量的科學均和數學有關。

6、數學是研究現實生活中數量關系和空間形式的數學。

7、數學是一種理性的精神,使人類的思維得以運用到最完善的程度。

8、在數學中,我們發現真理的主要工具是歸納和模擬。

9、數學是各式各樣的證明技巧。

10、新的數學方法和概念,常常比解決數學問題本身更重要。

Ⅱ 六年級上冊數學知識點總結大全

讀書不是為了考試,本來考試是一件正確的事情,它是用來檢查我們對學習過的知識是否懂了,懂了多少 多深 分數只是反映了我們對學過知識的掌握程度,下面我給大家分享一些 六年級數學 知識點,希望能夠幫助大家!

六年級上冊數學知識點大全

六年級上冊數學知識 總結 1

一、圓的特徵

1、圓是平面內封閉曲線圍成的平面圖形。

2、圓的特徵:外形美觀,易滾動。

3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。

圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。

半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。

直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。

同圓或等圓內直徑是半徑的2倍:d=2r 或 r=d÷2

4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。

同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。

5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的直線叫做對稱軸。

有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。

有二條對稱軸的圖形:長方形

有三條對稱軸的圖形:等邊三角形

有四條對稱軸的圖形:正方形

有無條對稱軸的圖形:圓,圓環

6、畫圓

(1)圓規兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉一周。

二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。

1、圓的周長總是直徑的三倍多一些。

2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。

即:圓周率π = 周長÷直徑≈3.14

所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd, c=2πr

圓周率π是一個無限不循環小數,3.14是近似值。

3、周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。

4、半圓周長=圓周長一半+直徑= πr+d

三、圓的面積s

1、圓面積公式的推導

如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。

圓的半徑=長方形的寬

圓的周長的一半=長方形的長

長方形面積=長×寬

所以:圓的面積=圓的周長的一半(πr)×圓的半徑(r)

S圓 =πr×r=πr2

2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。

周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。

3、圓面積的變化的規律:半徑擴大多少倍,直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。

4、環形面積 =大圓–小圓=πR2-πr2

扇形面積=πr2×n÷360(n表示扇形圓心角的度數)

5、跑道:每條跑道的周長等於兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。

一個圓的半徑增加a厘米,周長就增加2πa厘米。

一個圓的直徑增加b厘米,周長就增加πb厘米。

6、任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π。

7、常用數據

π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

六年級上冊數學知識總結2

比:兩個數相除也叫兩個數的比

1、比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。

連比如:3:4:5讀作:3比4比5

2、比表示的是兩個數的關系,可以用分數表示,寫成分數的形式,讀作幾比幾。

例:12∶20= =12÷20= =0.6 12∶20讀作:12比20

區分比和比值:比值是一個數,通常用分數表示,也可以是整數、小數。

比是一個式子,表示兩個數的關系,可以寫成比,也可以寫成分數的形式。

3、比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。

4、化簡比:化簡之後結果還是一個比,不是一個數。

(1)、用比的前項和後項同時除以它們的最大公約數。

(2)、兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的 方法 來化簡。也可以求出比值再寫成比的形式。

(3)、兩個小數的比,向右移動小數點的位置,也是先化成整數比。

5、求比值:把比號寫成除號再計算,結果是一個數(或分數),相當於商,不是比。

6、比和除法、分數的區別:

除法:被除數除號(÷) 除數(不能為0) 商不變性質 除法是一種運算

分數:分子 分數線 (—)分母(不能為0) 分數的基本性質 分數是一個數

比:前項比號(∶) 後項(不能為0) 比的基本性質 比表示兩個數的關系

商不變性質:被除數和除數同時乘或除以相同的數(0除外),商不變。

分數的基本性質:分子和分母同時乘或除以相同的數(0除外),分數的大小不變。

分數除法和比的應用

1、已知單位「1」的量用乘法。

2、未知單位「1」的量用除法。

3、分數應用題基本數量關系(把分數看成比)

(1)甲是乙的幾分之幾?

甲=乙×幾分之幾 乙=甲÷幾分之幾 幾分之幾=甲÷乙

(2)甲比乙多(少)幾分之幾?

4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。

5、畫線段圖:

(1)找出單位「1」的量,先畫出單位「1」,標出已知和未知。

(2)分析數量關系。(3)找等量關系。(4)列方程。

兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。

六年級上冊數學知識總結3

分數乘法

(一)分數乘法意義:

1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。

「分數乘整數」指的是第二個因數必須是整數,不能是分數。

2、一個數乘分數的意義就是求一個數的幾分之幾是多少。

「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)

(二)分數乘法計演算法則:

1、分數乘整數的運演算法則是:分子與整數相乘,分母不變。

(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。

2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)

(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。

(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。

(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。

(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。

(三)積與因數的關系:

一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b >1時,c>a。

一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b<1時,c<a(b≠0)。< p="">

一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b =1時,c=a 。

在進行因數與積的大小比較時,要注意因數為0時的特殊情況。

(四)分數乘法混合運算

1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。

2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。

乘法交換律:a×b=b×a 乘法結合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒數的意義:乘積為1的兩個數互為倒數。

1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)

2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為「1」。例如:a×b=1則a、b互為倒數。

3、求倒數的方法:

①求分數的倒數:交換分子、分母的位置。

②求整數的倒數:整數分之1。

③求帶分數的倒數:先化成假分數,再求倒數。

④求小數的倒數:先化成分數再求倒數。

4、1的倒數是它本身,因為1×1=1

0沒有倒數,因為任何數乘0積都是0,且0不能作分母。

5、真分數的倒數是假分數,真分數的倒數大於1,也大於它本身。

假分數的倒數小於或等於1。帶分數的倒數小於1。

(六)分數乘法應用題——用分數乘法解決問題

1、求一個數的幾分之幾是多少?(用乘法)

已知單位「1」的量,求單位「1」的量的幾分之幾是多少,用單位「1」的量與分數相乘。

2、巧找單位「1」的量:在含有分數(分率)的語句中,分率前面的量就是單位「1」對應的量,或者「占」「是」「比」字後面的量是單位「1」。

3、什麼是速度?

速度是單位時間內行駛的路程。

速度=路程÷時間 時間=路程÷速度 路程=速度×時間

單位時間指的是1小時1分鍾1秒等這樣的大小為1的時間單位,每分鍾、每小時、每秒鍾等。

4、求甲比乙多(少)幾分之幾?

多:(甲-乙)÷乙 少:(乙-甲)÷乙

六年級上冊數學知識總結4

百分數(一)

一、百分數的意義:表示一個數是另一個數的百分之幾的數叫做百分數。百分數又叫百分比或百分率,百分數不能帶單位。

注意:百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比。

1、百分數和分數的區別和聯系:

(1)聯系:都可以用來表示兩個量的倍比關系。

(2)區別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。百分數的分子可以是小數,分數的分子只可以是整數。

注意:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數並不是百分數,必須把分母寫成「%」才是百分數,所以「分母是100的分數就是百分數」這句話是錯誤的。「%」的兩個0要小寫,不要與百分數前面的數混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70%、80%,出油率在30%、40%。

2、小數、分數、百分數之間的互化

(1)百分數化小數:小數點向左移動兩位,去掉「%」。

(2)小數化百分數:小數點向右移動兩位,添上「%」。

(3)百分數化分數:先把百分數寫成分母是100的分數,然後再化簡成最簡分數。

(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然後化成百分數。

(5)小數化分數:把小數成分母是10、100、1000等的分數再化簡。

(6)分數化小數:分子除以分母。

二、百分數應用題

1、求常見的百分率,如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾。

2、求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。

求甲比乙多百分之幾:(甲-乙)÷乙

求乙比甲少百分之幾:(甲-乙)÷甲

3、求一個數的百分之幾是多少。一個數(單位「1」)×百分率

4、已知一個數的百分之幾是多少,求這個數。

部分量÷百分率=一個數(單位「1」)

5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十

折扣、成數=幾分之幾、百分之幾、小數

八折=八成=十分之八=百分之八十=0.8

八五折=八成五=十分之八點五=百分之八十五=0.85

五折=五成=十分之五=百分之五十=0.5=半價

6、利率

(1)存入銀行的錢叫做本金。

(2)取款時銀行多支付的錢叫做利息。

(3)利息與本金的比值叫做利率。

利息=本金×利率×時間

稅後利息=利息-利息的應納稅額=利息-利息×5%

註:國債和 教育 儲蓄的利息不納稅

7、百分數應用題型分類

(1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾

(2)求甲比乙多百分之幾——(甲-乙)÷乙×100%

(3)求甲比乙少百分之幾——(乙-甲)÷乙×100%

六年級上冊數學知識總結5

扇形統計圖的意義

1、扇形統計圖的意義:用整個圓的面積表示總數,用圓內各個扇形面積表示各部分數量同總數之間關系,也就是各部分數量占總數的百分比,因此也叫百分比圖。

2、常用統計圖的優點:

(1)條形統計圖直觀顯示每個數量的多少。

(2)折線統計圖不僅直觀顯示數量的增減變化,還可清晰看出各個數量的多少。

(3)扇形統計圖直觀顯示部分和總量的關系。

數學廣角--數與形

2+4+6+8+10+12+14+16+18+20=(110)

規律:從2開始的n個連續偶數的和等於n×(n+1)。

10×(10+1)=10×11=110

位置與方向(二)

1、什麼是數對?

數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即「先列後行」。

數對的作用:確定一個點的位置。經度和緯度就是這個原理。

2、確定物體位置的方法:

(1)、先找觀測點;(2)、再定方向(看方向夾角的度數);(3)、最後確定距離(看比例尺)。

描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。

位置關系的相對性:兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。

相對位置:東--西;南--北;南偏東--北偏西。

六年級上冊數學知識點總結相關 文章 :

★ 六年級上冊數學知識點整理歸納

★ 六年級數學上冊知識點總結

★ 六年級數學期末復習知識點匯總

★ 六年級上冊數學知識點

★ 六年級數學上冊《百分數》知識點總結

★ 六年級上冊數學課本知識點歸納

★ 六年級數學上冊知識點復習

★ 小學六年級數學學習方法和技巧大全

★ 六年級數學上冊知識人教版

★ 小學六年級數學知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅲ 六年級數學手抄報內容

我把六上的一部分給你吧。
分數乘法
分數乘法的意義:分數乘整數與整數乘法的意義相同,也是求幾個相同加數和的簡便運算。 分數乘法的法則:分數與整數相乘,用分數的分子和整數相乘的積做分子,分母不變。能約分的可以先約分,再計算。分數乘分數,應該分子乘分子,分母乘分母。 乘法的三個類型:○1求幾個相同加數的和是多少。○2求一個數的幾倍是多少。○ 3求一個數的幾分之幾是多少。 一個非0的數乘以比1大的數,積比原來的數大。 一個非0的數乘以1,積不變。 一個非0的數乘以比1小的數,積比原來的數小。 分數混合運算的順序和整數運算的順序相同。 整數乘法的交換律、結合律、 分配律,對於分數成法也適用。 單位「1」*分率=分率所對應的數量 單位「1」在是的後面 解分數乘法應用題的步驟1畫出關鍵句2找單位「1」3畫圖4列式 乘積式1的兩個數互為倒數。1的倒數是1,0沒有倒數

圓是平面上的一種曲線圖形。 摺痕相交於圓中心的一點,這一點叫做圓心,一般用字母O表示。連接圓心和圓上任意一點的線段叫做半徑,一般用字母r表示。通過圓心並且兩端都在圓上的線段叫做直徑,一般用字母d表示。 一個圓里有無數條直徑與半徑。在同一個圓里,半徑的長度是直徑的一半。 直徑是圓中最長的線段。 任意一個圓的周長與它的直徑的比值是一個固定的數,我們把它叫做圓周率,用字母∏表示。它是一個無限不循環小數,∏=3.1415926535…….但在實際應用中一般只取它的近似值,即∏≈3.14. 圓的周長公式:C=∏d或c=2∏r 把圓分成若干(偶數)等份,分的份數越多,拼成的圖形就會越接近長方形。 圓的面積公式:S=∏r 圓環是一個空心的同心圓。 圓環的面積公式:∏(R –r ) R-r=環寬 平方差≠差平方 對角線 /2=S正 在周長相等的情況下,S圓>S正方形>S>長方形 在一個圓中畫一個最大的正方形,正方形的面積是圓的一百五十七分之一百。 (2:∏)(100:157) 在一個正方形中畫一個最大的圓,正方形和圓的比是4:∏。(200:157)

百分數
百分數表示一個數是另一個數的百分之幾。百分數也叫做百分率或百分比。 百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。 百分數和分數在意義上的不同:百分數表示一個數是另一個數的百分之幾,指的是兩個數的 一種關系,分數不僅表示一個數是另一個數的百分之幾,也可以表示具體的數量。 小數化百分數:把小數點往右移動兩位,同時添上百分號。百分數化小數:去掉百分號,小 數點同時向左移動兩位。

Ⅳ 六年級數學的手抄報內容

六年級數學的手抄報內容

導語:在數學的領域中, 提出問題的藝術比解答問題的藝術更為重要。以下是我為大家整理分享的六年級數學的手抄報內容,歡迎閱讀參考。

六年級數學的手抄報內容 篇1

1、數學格言:

1、 數學是無窮的科學. ——外爾(weil)

2、問題是數學的心臟.—— 哈爾默斯(p.r.halmos )

3、只要一門科學分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預示著獨立發展的終止或衰亡.—— 希爾伯特(hilbert )

4、 數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深.——高斯 (gauss)

5、數學是科學的皇後,而數論是數學的皇後 ——高斯(gauss)

6、數學比喻: 古希臘哲學家芝諾號稱"悖論之父",他有四個數學悖論一直傳到今天。他曾講過一句名言:"大圓圈比小圓圈掌握的知識要多一點,但因為大圓圈的圓周比小圓圈的長,所以它與外界空白的接觸面也就比小圓圈大,因此更感到知識的不足,需要努力去學習"。

7、 把數學當成一門語言學習,學會每一個術語的用法,熟悉每一個符號的意義

8、不要放過任何一道看上去很簡單的例題——他們往往並不那麼簡單,或者可以引申出很多知識點。

9、會用數學公式,並不說明你會數學。

10、如果不是天才的話,想學數學就不要想玩游戲——你以為你做到了,其實你的數學水平並沒有和你通關的能力一起變高——其實可以時刻記住:學數學是你玩「生活」這個大游戲玩的`更好!

2、數學故事:高斯念小學的時候,有一次在老師教完加法後,因為老師想要休息,所以便出了一道題目要同學們算算看,題目是:

1+2+3+ ..... +97+98+99+100 = ?

老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被 高斯叫住了!! 原來呀,高斯已經算出來了,小朋友你可知道他是如何算的嗎?

高斯告訴大家他是如何算出的:把 1加 至 100 與 100 加至 1 排成兩排相加,也就是說:

1+2+3+4+ ..... +96+97+98+99+100

100+99+98+97+96+ ..... +4+3+2+1

=101+101+101+ ..... +101+101+101+101

共有一百個101相加,但算式重復了兩次,所以把10100 除以 2便得到答案等於<5050>

從此以後高斯小學的學習過程早已經超越了其它的同學,也因此奠定了他以後的數學基礎,更讓他成為——數學天才!

3、數學小問題:

(1)在下題數字之間分別添上合適的運算符號。

1()2()3()4=1

1()2()3()4()5=1

1()2()3()4()5()6=1

1()2()3()4()5()6()7=1

1()2()3()4()5()6()7()8() =1

(2)改正一個錯的符號。

1+2+3+4+5+6+7+8+9=44

1+2+3+4+5+6+7+8+9=50

1+2+3+4+5+6+7+8+9=86

1+2+3+4+5+6+7+8+9=39

1+2+3+4+5+6+7+8+9=31

六年級數學的手抄報內容 篇2

古時候,有一位糊塗的縣官,因為聽信他師爺的讒言,就把無辜的張三抓了起來,在審問時,他對張三說:"明天給你最後一次機會,到時我這里有兩枚簽,一枚簽上寫著'死'字,另一枚簽上寫著'生'字,你抽到哪一枚簽,就判你什麼。"小朋友,如果讓張三抽的話,可能會怎樣呢?"

可是,一心想害死張三的師爺卻在兩個簽上都寫了一個"死"字,小朋友,如果再讓張三抽的話,結果會怎樣呢?幸虧張三的一位朋友把這個消息告訴了他。第二天,縣官在開堂時,讓張三抽簽。張三抽了一枚簽,連忙吞進肚子里。縣官只好打開另一枚簽,發現上面寫著"死"字,以為張三抽到的是"生"字簽,就只好放了張三。

六年級數學的手抄報內容 篇3

小明是個喜歡提問的孩子。一天,他對0—9 這幾個數字產生了興趣:為什麼它們被稱為「阿拉伯數字」呢?於是,他就去問媽媽:「0—9 既然叫『阿拉伯數字』,那肯定是阿拉伯人發明的了,對嗎?媽媽。」

媽媽搖搖頭說:「阿拉伯數字實際上是印度人發明的。大約在1500 年前,印度人就用一種特殊的字來表示數目,這些字有10 個,只要一筆兩筆就能寫成。後來,這些數字傳入阿拉伯,阿拉伯人覺得這些數字簡單、實用,就在自己的國家廣泛使用,並又傳到了歐洲。就這樣,慢慢變成了我們今天使用的數字。因為阿拉伯人在傳播這些數字發揮了很大的作用,人們就習慣了稱這種數字為『阿拉伯數字』。」

小明聽了說:「原來是這樣。媽媽,這可不可以叫做將錯就錯?」媽媽聽了小明的話,笑了。

六年級數學的手抄報內容 篇4

一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不長時間,徒弟三人摘完桃子高高興興回來。師父唐僧問:「你們每人各摘回多少個桃子?」

八戒憨笑著說:「師父,我來考考你。我們每人摘的一樣多,我筐里的桃子不到100個,如果3個3個地數,數到最後還剩1個。你們算算,我們每人摘了多少個?」

沙僧神秘地說:「師父,我也來考考你。我筐里的桃子,如果4個4個地數,數到最後還剩1個。你算算,我們每人摘了多少個?」

悟空笑眯眯地說:「師父,我也來考考你。我筐里的桃子,如果5個5個地數,數到最後還剩1個。你算算,我們每人摘了多少個?

唐僧很快說出他們每人摘桃子的個數。你知道他們每人摘了多少個桃子嗎?

;

Ⅳ 小學六年級數學知識點

知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。數學這門學科,不僅僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果,其他學科也大都雷同。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。

小學6年級 畢業 考試數學重難知識點

行程問題

基本概念:

行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.

基本公式:

路程=速度×時間;路程÷時間=速度;路程÷速度=時間

關鍵問題:

確定運動過程中的位置和方向。

相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)

追及問題:追及時間=路程差÷速度差(寫出其他公式)

流水問題:順水行程=(船速+水速)×順水時間

逆水行程=(船速-水速)×逆水時間

順水速度=船速+水速

逆水速度=船速-水速

靜水速度=(順水速度+逆水速度)÷2

水 速=(順水速度-逆水速度)÷2

流水問題:關鍵是確定物體所運動的速度,參照以上公式。

過橋問題:關鍵是確定物體所運動的路程,參照以上公式。

主要 方法 :畫線段圖法

基本題型:

已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。

人教版學校六年級上冊數學知識點

百分數應用題

1、求常見的百分率,如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾。

2、求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。

求甲比乙多百分之幾:(甲-乙)÷乙

求乙比甲少百分之幾:(甲-乙)÷甲

3、求一個數的百分之幾是多少。一個數(單位「1」)×百分率

4、已知一個數的百分之幾是多少,求這個數。

部分量÷百分率=一個數(單位「1」)

5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十

折扣、成數=幾分之幾、百分之幾、小數

八折=八成=十分之八=百分之八十=0.8

八五折=八成五=十分之八點五=百分之八十五=0.85

五折=五成=十分之五=百分之五十=0.5=半價

利率

(1)存入銀行的錢叫做本金。

(2)取款時銀行多支付的錢叫做利息。

(3)利息與本金的比值叫做利率。

利息=本金×利率×時間

稅後利息=利息-利息的應納稅額=利息-利息×5%

註:國債和 教育 儲蓄的利息不納稅

百分數應用題型分類

(1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾

(2)求甲比乙多百分之幾——(甲-乙)÷乙×100%

(3)求甲比乙少百分之幾——(乙-甲)÷乙×100%

六年級數學位置與方向復習知識點

一、確定物體位置的方法:

1、先找觀測點;

2、再定方向(看方向夾角的度數);

3、最後確定距離(看比例尺)

二、描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。

三、位置關系的相對性:

1、兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。

四、相對位置:東--西;南--北;南偏東--北偏西。


小學六年級數學知識點相關 文章 :

★ 小學六年級數學知識點總結

★ 六年級數學期末復習知識點匯總

★ 小學六年級數學學習方法和技巧大全

★ 六年級數學上冊知識點復習

★ 一至六年級數學知識點復習資料整合

★ 小學六年級數學知識點盤點

★ 六年級數學總復習知識點整理(完整版)

★ 六年級數學小知識總結

★ 六年級上冊數學知識點整理歸納

Ⅵ 六年級數學知識點歸納

學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。

小學六年級上冊數學《位置與方向(二)》知識點

1.根據方向和距離可以確定物體在平面圖上的位置。

2.在平面圖上標出物體位置的方法:

先用量角器確定方向,再以選定的單位長度為基準用直尺確定圖上距離,最後找出物體的具體位置,並標上名稱。

3.描述路線圖時,要先按行走路線確定每一個參照點,然後以每一個參照點建立方向標,描述到下一個目標所行走的方向和路程,即每一步都要說清是從哪兒走,向什麼方向走了多遠到哪兒。

4.繪制路線圖的方法:

(1)確定方向標和單位長度。

(2)確定起點的位置。

(3)根據描述,從起點出發,找好方向和距離,一段一段地畫。除第一段(以起點為參照點)外,其餘每一段都要以前一段的終點為參照點。

(4)以誰為參照點,就以誰為中心畫出「十」字方向標,然後判斷下一地點的方向和距離。

小學六年級上冊數學《分數乘法》知識點

(一)分數乘法意義:

1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。

「分數乘整數」指的是第二個因數必須是整數,不能是分數。

2、一個數乘分數的意義就是求一個數的幾分之幾是多少。

「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)

(二)分數乘法計演算法則:

1、分數乘整數的計算方法:用分子乘整數的積作分子,分母不變。能約分的可以先約分,再計算。

(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)

(2)約分是用整數和下面的分母約掉公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。

2、分數乘分數的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母。(分子乘分子,分母乘分母)

(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。

(2)分數化簡的方法是:分子、分母同時除以它們的公因數。

(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。

(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。

(三)積與因數的關系:

一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b>1時,c>a。

一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b<1時,c

一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b=1時,c=a。

在進行因數與積的大小比較時,要注意因數為0時的特殊情況。

人教版小學六年級數學下冊知識點

比例

1.理解比例的意義和基本性質,會解比例。

2.理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。

3.認識正比例關系的圖像,能根據給出的有正比例關系的數據在有坐標系的方格紙上畫出圖像,會根據其中一個量在圖像中找出或估計出另一個量的值。

4.了解比例尺,會求平面圖的比例尺以及根據比例尺求圖上距離或實際距離。

5.認識放大與縮小現象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。

6.滲透函數思想,使學生受到辯證唯物主義觀點的啟蒙 教育 。

7.比例的意義:表示兩個比相等的式子叫做比例。如:2:1=6:

8.組成比例的四個數,叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內項。

9.比例的性質:在比例里,兩個外項的積等於兩個兩個內向的積。這叫做比例的基本性質。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。

10.解比例:根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例中的另外一個未知項。

求比例中的未知項,叫做解比例。

例如:3:x=4:8,內項乘內項,外項乘外項,則:4x=3×8,解得x=6。


六年級數學知識點歸納相關 文章 :

★ 六年級上冊數學知識點整理歸納

★ 六年級數學總復習知識點整理(完整版)

★ 小學六年級數學學習方法和技巧大全

★ 小學六年級數學知識點總結

★ 六年級數學上冊知識點復習

★ 六年級數學上冊知識點總結

★ 六年級數學圓的知識點總結

★ 六年級數學小知識總結

★ 一至六年級數學知識點復習資料整合

Ⅶ 小學六年級數學知識點梳理

求學的三個條件是:多觀察、多吃苦、多研究。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,也是要記、要背、要講練的。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。

六年級數學知識點

分數混合運算

1、分數混合運算的運算順序與整數混合運算的運算順序完全相同,都是先算乘除,再算加減,有括弧的先算括弧里的。

①如果是同一級運算,按照從左到右的順序依次計算。

②如果是分數連乘,可先進行約分,再進行計算;

③如果是分數乘除混合運算時,要先把除法轉換成乘法,然後按乘法運算。

2、解決問題

(1)用分數運算解決「求比已知量多(或少)幾分之幾的量是多少」的實際問題,方法是:

第①種方法:可以先求出多或少的具體量,再用單位「1」的量加或減去多或少的部分,求出要求的問題。

第②種方法:也可以用單位「1」加或減去多或少的幾分之幾,求出未知數占單位「1」的幾分之幾,再用單位「1」的量乘這個分數。

(2)「已知甲與乙的和,其中甲占和的幾分之幾,求乙數是多少?」

第①種方法:首先明確誰占單位「1」的幾分之幾,求出甲數,再用單位「1」減去甲數,求出乙數。

第②種方法:先用單位「1」減去已知甲數所佔和的幾分之幾,即得未知乙數所佔和的幾分之幾,再求出乙數。

(3)用方程解決稍復雜的分數應用題的步驟:

①要找准單位「1」。

②確定好其他量和單位「1」的量有什麼關系,畫出關系圖,寫出等量關系式。

③設未知量為X,根據等量關系式,列出方程。

④解答方程。

(4)要記住以下幾種算術解法解應用題:

①對應數量÷對應分率=單位「1」 的量

②求一個數的幾分之幾是多少,用乘法計算。

③已知一個數的幾分之幾是多少,求這個數,用除法計算,還可以用列方程解答。

3、要記住以下的解方程定律:

加數 +加數 = 和;

加數 = 和–另一個加數。

被減數–減數 = 差;

被減數=差+減數;

減數=被減數–差。

因數×因數 = 積;

因數 = 積÷另一個因數。

被除數÷除數 = 商;

被除數=商×除數;

除數=被除數÷商。

4、繪制簡單線段圖的方法:

分數應用題,分兩種類型,一種是知道單位「1」的量用乘法,另一種是求單位「1」的量,用除法。這兩種類型應用題的數量關系可以分成三種:(一)一種量是另一種量的幾分之幾。(二)一種量比另一種量多幾分之幾。(三)一種量比另一種量少幾分之幾。繪制時關鍵處理好量與量之間的關系,在審題確定單位「1」的量。繪制步驟:

①首先用線段表示出這個單位「1」的量,畫在最上面,用直尺畫。

②分率的分母是幾就把單位「1」的量平均分成幾份,用直尺畫出平均的等分。標出相關的量。

③再繪制與單位「1」有關的量,根據實際是上面的三種關系中的哪一種再畫。標出相關的量。

④問題所求要標出「?」號和單位。

5、補充知識點

分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

分數乘法的計演算法則

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。

分數乘法意義

分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

分數乘整數:數形結合、轉化化歸

倒數:乘積是1的兩個數叫做互為倒數。

分數的倒數

找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。

整數的倒數

找一個整數的倒數,例如12,把12化成分數,即12/1 ,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12 ,12是1/12的倒數。

六年級數學知識點歸納

體積和表面積

三角形的面積=底×高÷2。 公式 S= a×h÷2

正方形的面積=邊長×邊長 公式 S= a2

長方形的面積=長×寬 公式 S= a×b

平行四邊形的面積=底×高 公式 S= a×h

梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2

內角和:三角形的內角和=180度。

長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2

正方體的表面積=棱長×棱長×6 公式: S=6a2

長方體的體積=長×寬×高 公式:V = abh

長方體(或正方體)的體積=底面積×高 公式:V = abh

正方體的體積=棱長×棱長×棱長 公式:V = a3

圓的周長=直徑×π 公式:L=πd=2πr

圓的面積=半徑×半徑×π 公式:S=πr2

圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2

圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

圓錐的體積=1/3底面×積高。公式:V=1/3Sh

數量關系計算公式

單價×數量=總價 2、單產量×數量=總產量

速度×時間=路程 4、工效×時間=工作總量

加數+加數=和 一個加數=和+另一個加數

被減數-減數=差 減數=被減數-差 被減數=減數+差

因數×因數=積 一個因數=積÷另一個因數

被除數÷除數=商 除數=被除數÷商 被除數=商×除數

六年級數學必考知識點

1.比和比例的意義

比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括弧的含義而另一種形式,分數有括弧的含義!

2.比的基本性質:比的前項和後項都乘以或除以一個不為零的數。比值不變。用於化簡比。

3.比例的性質:在比例里,兩個外項的乘積等於兩個內項的乘積。比例的性質用於解比例。

4.比和比例的聯系:

比和比例有著密切聯系。比是研究兩個量之間的關系,所以它有兩項;比例是研究相關聯的兩種量中兩組相對應數的關系,所以比例是由四項組成。比例是由比組成的,成比例的兩個比的比值一定相等。

5.比和比例的區別

(1)意義、項數、各部分名稱不同。比表示兩個數相除;只有兩個項:比的前項和後項。如:a:b這是比比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4這是比例。

(2)比的基本性質和比例的基本性質意義不同、應用不同。聯系:比例是由兩個相等的比組成。

6.正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。比例尺:圖上距離與實際距離的比叫做比例尺。

六年級 數學學習方法

良好的學習習慣是一種良好的非智力因素,是學生必備的素質,是學好數學的最基本保證。小學數學學習習慣的培養,需要堅持不懈,持之以恆。

1. 課前預習 的習慣。

有效的預習,能提高學習新知識的目的性和針對性,可以提高學習的質量。通過布置預習提綱的方法來進行,以後逐步過渡到只布置預習內容,讓學生自己去讀書、去發現問題,讓學生課前對新知識有所了解。有些課上沒有條件、沒有時間做的活動,也可以讓學生課前去做。如講統計表時,就可以讓學生課前調查好同組同學的身高、體重等數據。

2.認真聽「講」的習慣。

這里的聽「講」,應包括兩方面的意思:一是說課堂上,精力要集中,不做與學習無關的動作,要認真傾聽老師的點撥、指導,要抓住新知識的生長點,新舊知識的聯系,弄清公式、法則的來龍去脈。二是說要認真地聽其他同學的發言,對他人的觀點、回答能做出評價和必要的補充。

3.認真完成作業的習慣。

完成作業,是學生最基本、最經常的學習實踐活動。要求學生從小就養成:(1)規范書寫,保持書寫清潔的習慣。作業的格式、數字的書寫、數學符號的書寫都要規范。(2)良好的行為習慣。要獨立思考,獨立完成作業,不要跟別人對算式和結果,更不要抄襲別人的作業。(3)認真審題,仔細運算的習慣。(4)驗算的習慣。

小學六年級數學知識點梳理相關 文章 :

★ 小學六年級數學知識點總結

★ 小學六年級數學上冊知識點總結

★ 六年級數學知識點梳理

★ 小學六年級數學學習方法和技巧大全

★ 六年級數學總復習知識點整理(完整版)

★ 六年級數學期末復習知識點匯總

★ 小學六年級數學知識點、難點及學習方法

★ 六年級數學知識點歸納

★ 六年級數學期末復習知識點匯總

★ 六年級上冊數學知識點整理歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅷ 六年級數學的知識點總結

每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。

人教版小學六年級數學下冊知識點

圓柱和圓錐

1.認識圓柱和圓錐,掌握它們的基本特徵。認識圓柱的底面、側面和高。認識圓錐的底面和高。

2.探索並掌握圓柱的側面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關的簡單實際問題。

3.通過觀察、設計和製作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯系,發展學生的空間觀念。

4.圓柱的兩個圓面叫做底面,周圍的面叫做側面,底面是平面,側面是曲面。

5.圓柱的側面沿高展開後是長方形,長方形的長等於圓柱底面的周長,長方形的寬等於圓柱的高,當底面周長和高相等時,側面沿高展開後是一個正方形。

6.圓柱的表面積=圓柱的側面積+底面積×2即S表=S側+S底×2或2πr×h+2×π。

7.圓柱的側面積=底面周長×高即S側=Ch或2πr×。

8.圓柱的體積=圓柱的底面積×高,即V=sh或πr2×。

進一法:實際中,使用的材料都要比計算的結果多一些,因此,要保留數的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。

9.圓錐只有一個底面,底面是個圓。圓錐的側面是個曲面。

10.從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離)

11.把圓錐的側面展開得到一個扇形。

12.圓錐的體積等於與它等底等高的圓柱體積的三分之一,即V錐=1/3Sh或πr2×h÷。

13.常見的圓柱圓錐解決問題:

①壓路機壓過路面面積(求側面積);

②壓路機壓過路面長度(求底面周長);

③水桶鐵皮(求側面積和一個底面積);

④廚師帽(求側面積和一個底面積);通風管(求側面積)。

小學6年級 畢業 考試數學重難知識點

比和比例

比:

兩個數相除又叫兩個數的比。比號前面的數叫比的前項,比號後面的數叫比的後項。

比值:

比的前項除以後項的商,叫做比值。

比的性質:

比的前項和後項同時乘以或除以相同的數(零除外),比值不變。

比例:

表示兩個比相等的式子叫做比例。a:b=c:d或

比例的性質:

小學六年級 數學學習方法

小學數學學習必須關注孩子創新意識的培養和創新能力的發展。從某種意義上講,養成創造性學習的習慣,比獲得了多少知識更重要。這需要從以下幾方面做起:

1.培養學生善於質疑的習慣。

在參與、經歷數學知識發現、形成的探究活動中,善於發現,提出有針對性、有價值的數學問題,質疑問難,是創造性學習習慣培養的一個重要方面。在數學學習過程中,要逐步培養學生自主探究、積極思考、主動質疑的學習習慣,讓他們想問、敢問、好問、會問。

質疑習慣的培養,也可從模仿開始,老師要注意質疑的「言傳身教」,教給學生可以在哪兒找疑點。一般來說,質疑可以發生在新舊知識的銜接處、學習過程的困惑處、法則規律的結論處、教學內容的重難點及關鍵點處,概念的形成過程中、解題思路的分析過程中、動手操作的實踐中;還要讓學生學會變換角度,提出問題。

2.培養學生手腦結合,注重實踐的習慣。

心理學研究告訴我們,小學生的思維正處在具體形象思維向 抽象思維 、 邏輯思維 發展的過渡階段,特別是低年級 兒童 ,他們的思維仍以具體形象思維為主要形式,他們的抽象思維需要在感性材料的支持下才能進行,因此小學數學 教育 必須重視培養學生動手、動腦、動口的良好習慣,使學生通過看一看、摸一摸、拼一拼、擺一擺、講一講來獲取新知。

例如在學習「角的初步認識」時,角的大小與兩邊的長短有沒有聯系?這個問題就可以通過操作自製的活動角,邊操作、邊觀察、邊討論,從而得出正確的結論。開展類似的教學活動,就能使學生養成手腦結合,勤於實踐的學習習慣。

3.培養學生的良好思維習慣。

培養學生多角度思考和解決問題的習慣,培養他們思維的多向性和靈活性。通過「你能想出不同的方法嗎?」「你還能想到什麼?」「你有獨特的見解嗎?」你能從另一個角度看問題嗎?「等言語,啟發和誘導,鼓勵學生敢想、敢說,不怕出錯、敢於發表不同的見解,培養學生的 創新思維 習慣。

兩個外項積等於兩個內項積(交叉相乘),ad=bc。

正比例:

若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。

反比例:

若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。

比例尺:

圖上距離與實際距離的比叫做比例尺。

按比例分配:

把幾個數按一定比例分成幾份,叫按比例分配。


六年級數學的知識點 總結 相關 文章 :

★ 六年級數學期末復習知識點匯總

★ 小學六年級數學知識點總結

★ 六年級數學上冊知識點總結

★ 六年級數學圓的知識點總結

★ 六年級數學知識點歸納

★ 六年級數學的重難點知識總結

★ 六年級數學知識點總結

★ 六年級上冊數學知識點整理歸納

★ 六年級上冊數學知識點總結

★ 六年級數學知識點梳理

Ⅸ 六年級數學知識點歸納整理

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。

小學6年級 畢業 考試數學重難知識點:行程問題

基本概念:

行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.

基本公式:

路程=速度×時間;路程÷時間=速度;路程÷速度=時間

關鍵問題:

確定運動過程中的位置和方向。

相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)

追及問題:追及時間=路程差÷速度差(寫出其他公式)

流水問題:順水行程=(船速+水速)×順水時間

逆水行程=(船速-水速)×逆水時間

順水速度=船速+水速

逆水速度=船速-水速

靜水速度=(順水速度+逆水速度)÷2

水 速=(順水速度-逆水速度)÷2

流水問題:關鍵是確定物體所運動的速度,參照以上公式。

過橋問題:關鍵是確定物體所運動的路程,參照以上公式。

主要方法:畫線段圖法

基本題型:

已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。

六年級數學知識點歸納

一、圓的特徵

1、圓是平面內封閉曲線圍成的平面圖形。

2、圓的特徵:外形美觀,易滾動。

3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。

圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。

半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。

直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。

同圓或等圓內直徑是半徑的2倍:d=2r或r=d÷2

4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。

5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的直線叫做對稱軸。

有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。

有二條對稱軸的圖形:長方形

有三條對稱軸的圖形:等邊三角形

有四條對稱軸的圖形:正方形

有無條對稱軸的圖形:圓,圓環

6、畫圓

(1)圓規兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉一周。

二、圓的周長:

圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。

1、圓的周長總是直徑的三倍多一些。

2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。

即:圓周率π=周長÷直徑≈3.14

所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd,c=2πr

圓周率π是一個無限不循環小數,3.14是近似值。

3、周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。

4、半圓周長=圓周長一半+直徑=πr+d

小學六年級數學 復習方法

一、要明確復習的目的、任務, 從實際出發

復習絕不能搞成簡單的機械重復。應通過復習系統整理小學階段所學的數學基礎知識,理清知識的重點和關鍵, 搞清知識間的內在聯系, 使學生的四則計算能力、初步的 邏輯思維 能力和空間觀念在原有的基礎上得到進一步的提高。

通過復習,學生能系統地掌握有關整數、小數、分數、百分數、比和比例、簡易方程等基礎知識, 並能正確、迅速地進行整數、小數和分教的四則計算, 提高計算能力。進一步掌握一常用的計量單位, 能夠比較熟練地計算一些幾何形體的周長、面積和體積, 並能進行簡單你土地丈量和土石方計算, 培養學生的空間觀念。能夠掌握所學的常見的數量關系和解}答應用題的方法, 提高學生用算術方法和列方程解應用題的能力,培養學生邏輯思維能力科解決實際間題的能力。

復習前一定要結合本班學生的實際確定重點, 選取的 教學方法 進行復習。每節課都要有明確的復習目的、要求和主攻方向,這樣才能提高復習質量。

二、確定復習的重點及范圍

復習不是簡單地重復以前所學的知識, 教師必須重視授課的內容, 對已學的知識進行系統的整理, 復習時,要注意發揮學生的主體作用,調動學生學習的積極性, 啟發他們自學, 自己歸納整理所學的知識, 使知識系統化。或啟發學生質疑間難, 由教師引導學生釋疑,以促進學生深入理解知識。下面是十個復習重點:

1)整數和小數的意義、讀寫法, 計量單位和名數的互化。

2)整數、小數、分數的四則混合運算。

3)平面圖形的概念、周長和面積。

4)簡易方程。

5)數的整除和珠算。

6)分數、百分數的意義和性質及繁分數的化簡。

7)立體圖形的表面積和體積。

8)比和比例。

9)各類應用題的解法及列方程解應用題。

1 0)統計表和統計圖。

三、採用靈活的復習方法

在復習時必須注意發揮學生的主動性。 促使學生獨立思考。復習不應只是讓學生把已學的數學知識簡單地再現。 這樣會助長學生死記硬背, 應當注意促進學生融會貫通和靈活運用所學的知識。

1)對比分析法。對於學生容易棍淆的一些概念、定義、公式和法則, 要讓學生在理解的基礎上逐漸掌握。並通過對比分析, 幫助學生了解它們之間的聯系與區別,從而加深記憶。

2)獨立閱讀法。復習的知識都是已經學過的,教師可選擇若干段有聯系的教材, 讓學生獨立閱讀,教師就關鍵性的伺題組織討論, 抓住重點或學生不懂之處扼要地進行講解, 擴散學生的思維, 培養學生獨立分析間題的能力。

3)分類整理法。縱觀小學數學的應用題內容,形式多種多樣。在教材中的編排也較為分散, 特別是幾何知識, 內容抽象, 概念多, 公式多, 計算繁。因此, 我們在復習時必須分類進行整理。 使知識系統化、條理化。找出各種知識的本質特徵, 培養學生的邏輯思維能力。

4)歸納綜合法。小學數學內容繁多, 知識面廣。每部分的內容大多涉及其他部分的知識,橫向聯系面大, 知識的遷移性較強。復習時應由易到難, 由一般到特殊, 由基本到靈活, 充分運用知識的遷移規律,進行綜合性的復習。

5)有側重點地進行復習。隨時掌握學生的學習情況, 發現學生中的知識缺陷,根據具體情況及時予以補救。要有針對性、有重點地進行復習、 完善學生的知識。

四、復習的具體 措施

1) 反思 教學,制定計劃。復習中我們不能按部就班地照書本編排重講知識,免得學生吃一遍冷飯,枯燥無味。教師應該有效合理地系統復習基礎知識,內化知識結構,激發學生積極主動的參與學習活動。因此第一階段的復習應該注重基礎,全面反思。同時,教師也要要求每個學生做好聽課筆記。老師上課復習的內容, 特別是綜合板書的關鍵語句, 學生都要做好筆記。老師每個星期還要抽查一次, 督促學生及時完成。

2)專題訓練,突破各個環節針對學生容易發生普遍性錯誤和個別性錯誤的知識點,應採用典型反思和個別反思相結合,加強針對訓練,展開專題復習方式,突破各個環節的復習思路。一方面,對學生進行專題訓練,針對復習。另一方面,注重單元試卷、綜合試卷、 學生 自我評價 的反思,把每一章節的知識聯系在一起復習。加強知識的連慣性,在這一階段中要靈活。再一方面,注重測試的批改與講評。

3)分層引導,全面提高。重視班級學生分層引導,發展共性,培養個性,激勵學生互幫互助,共同奮斗,共同提高。通過這幾個階段的復習,每個學生都會有很大提高。


六年級數學知識點歸納整理相關 文章 :

★ 六年級上冊數學知識點整理歸納

★ 六年級數學期末復習知識點匯總

★ 人教版六年級數學知識點整理

★ 六年級數學總復習知識點整理(完整版)

★ 一至六年級數學知識點復習資料整合

★ 小學六年級數學知識點總結

★ 六年級數學小知識總結

★ 六年級數學的重難點知識總結

★ 六年級數學上冊知識點總結

★ 小學六年級數學學習方法和技巧大全