當前位置:首頁 » 基礎知識 » 七年級蘇教版上冊數學知識點歸納
擴展閱讀
動漫設計類是什麼專業 2024-11-17 23:13:02

七年級蘇教版上冊數學知識點歸納

發布時間: 2022-09-01 12:00:43

Ⅰ 初一數學上冊知識點總結

= 總結 所學內容,進行學法的理性 反思 ,強化並進行遷移運用,在訓練中掌握學法。下面給大家帶來一些關於初一數學上冊知識點總結,希望對大家有所幫助。

初一數學上冊知識點1

正負數

1.正數:大於0的數。

2.負數:小於0的數。

3.0即不是正數也不是負數。

4.正數大於0,負數小於0,正數大於負數。

(二)有理數

1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

2.整數:正整數、0、負整數,統稱整數。

3.分數:正分數、負分數。

(三)數軸

1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2.數軸的三要素:原點、正方向、單位長度。

3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(四)有理數的加減法

1.先定符號,再算絕對值。

2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。

4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。5.a?b=a+(?b)減去一個數,等於加這個數的相反數。

(五)有理數乘法(先定積的符號,再定積的大小)

1.同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

2.乘積是1的兩個數互為倒數。

3.乘法交換律:ab=ba

4.乘法結合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理數除法

1.先將除法化成乘法,然後定符號,最後求結果。

2.除以一個不等於0的數,等於乘這個數的倒數。

3.兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。(七)乘方1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。3.同底數冪相乘,底不變,指數相加。

4.同底數冪相除,底不變,指數相減。

(八)有理數的加減乘除混合運演算法則

1.先乘方,再乘除,最後加減。

2.同級運算,從左到右進行。

3.如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

(九)科學記數法、近似數、有效數字。

初一數學上冊知識點2

1.有理數:

(1)凡能寫成 形式的數,都是有理數,整數和分數統稱有理數.

注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;?不是有理數;

(2)有理數的分類: ① ②

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

(4)自然數? 0和正整數; a>0 ? a是正數; a<0 ? a是負數;

a≥0 ? a是正數或0 ? a是非負數; a≤ 0 ? a是負數或0 ? a是非正數.

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0; (2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

(3)相反數的和為0 ? a+b=0 ? a、b互為相反數.

(4)相反數的商為-1.

(5)相反數的絕對值相等

4.絕對值:

(1)正數的絕對值等於它本身,0的絕對值是0,負數的絕對值等於它的相反數;

注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2) 絕對值可表示為: 或 ;

(3) ; ;

(4) |a|是重要的非負數,即|a|≥0;

5.有理數比大小:

(1)正數永遠比0大,負數永遠比0小;

(2)正數大於一切負數;

(3)兩個負數比較,絕對值大的反而小;

(4)數軸上的兩個數,右邊的數總比左邊的數大;

(5)-1,-2,+1,+4,-0.5,以上數據表示與標准質量的差, 絕對值越小,越接近標准。

6.倒數:乘積為1的兩個數互為倒數;

注意:0沒有倒數; 若ab=1? a、b互為倒數; 若ab=-1? a、b互為負倒數.

等於本身的數匯總:

相反數等於本身的數:0

倒數等於本身的數:1,-1

絕對值等於本身的數:正數和0

平方等於本身的數:0,1

立方等於本身的數:0,1,-1.

7. 有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大加數的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

10 有理數乘法法則:(1)兩數相乘,同號得正,異號得負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個因式都不為零,積的符號由負因式的個數決定.奇數個負數為負,偶數個負數為正。

11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .(簡便運算)

12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, .

13.有理數乘方的法則:(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;

14.乘方的定義:(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

(3)a2是重要的非負數,即a2≥0;若a2+|b|=0 ? a=0,b=0;

(4)據規律 底數的小數點移動一位,平方數的小數點移動二位.

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.

17.混合運演算法則:先乘方,後乘除,最後加減; 注意:不省過程,不跳步驟。

18.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種 方法 ,但不能用於證明.常用於填空,選擇。

初一數學上冊知識點3

實數:

—有理數與無理數統稱為實數。

有理數:

整數和分數統稱為有理數。

無理數:

無理數是指無限不循環小數。

自然數:

表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。

數軸:

規定了圓點、正方向和單位長度的直線叫做數軸。

相反數:

符號不同的兩個數互為相反數。

倒數:

乘積是1的兩個數互為倒數。

絕對值:

數軸上表示數a的點與圓點的距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。

數學定理公式

有理數的運演算法則

⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

⑵減法法則:減去一個數,等於加上這個數的相反數。

⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0。

⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0。

角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。

數學第一章相交線

一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,並且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關系和數量關系的角,即鄰補角一定是補角,但補角不一定是鄰補角。

二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成「把一個角的兩邊反向延長而形成的兩個角叫做對頂角」。

初一數學上冊知識點4

多項式除以單項式

一、單項式

1、都是數字與字母的乘積的代數式叫做單項式。

2、單項式的數字因數叫做單項式的系數。

3、單項式中所有字母的指數和叫做單項式的次數。

4、單獨一個數或一個字母也是單項式。

5、只含有字母因式的單項式的系數是1或―1。

6、單獨的一個數字是單項式,它的系數是它本身。

7、單獨的一個非零常數的次數是0。

8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

9、單項式的系數包括它前面的符號。

10、單項式的系數是帶分數時,應化成假分數。

11、單項式的系數是1或―1時,通常省略數字「1」。

12、單項式的次數僅與字母有關,與單項式的系數無關。

二、多項式

1、幾個單項式的和叫做多項式。

2、多項式中的每一個單項式叫做多項式的項。

3、多項式中不含字母的項叫做常數項。

4、一個多項式有幾項,就叫做幾項式。

5、多項式的每一項都包括項前面的符號。

6、多項式沒有系數的概念,但有次數的概念。

7、多項式中次數的項的次數,叫做這個多項式的次數。

三、整式

1、單項式和多項式統稱為整式。

2、單項式或多項式都是整式。

3、整式不一定是單項式。

4、整式不一定是多項式。

5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。

四、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

2、幾個整式相加減,關鍵是正確地運用去括弧法則,然後准確合並同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡。

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

五、同底數冪的乘法

1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an的結果叫做冪。

2、底數相同的冪叫做同底數冪。

3、同底數冪乘法的運演算法則:同底數冪相乘,底數不變,指數相加。即:am﹒an=am+n。

4、此法則也可以逆用,即:am+n=am﹒an。

5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。

六、冪的乘方

1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。

2、冪的乘方運演算法則:冪的乘方,底數不變,指數相乘。(am)n=amn。

3、此法則也可以逆用,即:amn=(am)n=(an)m。

七、積的乘方

1、積的乘方是指底數是乘積形式的乘方。

2、積的乘方運演算法則:積的乘方,等於把積中的每個因式分別乘方,然後把所得的冪相乘。即(ab)n=anbn。

3、此法則也可以逆用,即:anbn=(ab)n。

八、三種「冪的運演算法則」異同點

1、共同點:

(1)法則中的底數不變,只對指數做運算。

(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。

(3)對於含有3個或3個以上的運算,法則仍然成立。

2、不同點:

(1)同底數冪相乘是指數相加。

(2)冪的乘方是指數相乘。

(3)積的乘方是每個因式分別乘方,再將結果相乘。

九、同底數冪的除法

1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n(a≠0)。

2、此法則也可以逆用,即:am-n=am÷an(a≠0)。

十、零指數冪

1、零指數冪的意義:任何不等於0的數的0次冪都等於1,即:a0=1(a≠0)。

十一、負指數冪

1、任何不等於零的數的―p次冪,等於這個數的p次冪的倒數,即:

註:在同底數冪的除法、零指數冪、負指數冪中底數不為0。

十二、整式的乘法

(一)單項式與單項式相乘

1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其餘字母連同它的指數不變,作為積的因式。

2、系數相乘時,注意符號。

3、相同字母的冪相乘時,底數不變,指數相加。

4、對於只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。

5、單項式乘以單項式的結果仍是單項式。

6、單項式的乘法法則對於三個或三個以上的單項式相乘同樣適用。

(二)單項式與多項式相乘

1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。

2、運算時注意積的符號,多項式的每一項都包括它前面的符號。

3、積是一個多項式,其項數與多項式的項數相同。

4、混合運算中,注意運算順序,結果有同類項時要合並同類項,從而得到最簡結果。

(三)多項式與多項式相乘

1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合並同類項之前,積的項數等於兩個多項式項數的積。

3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用「同號得正,異號得負」。

4、運算結果中有同類項的要合並同類項。

5、對於含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。

十三、平方差公式

1、(a+b)(a-b)=a2-b2,即:兩數和與這兩數差的積,等於它們的平方之差。

2、平方差公式中的a、b可以是單項式,也可以是多項式。

3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

4、平方差公式還能簡化兩數之積的運算,解這類題,首先看兩個數能否轉化成

(a+b)?(a-b)的形式,然後看a2與b2是否容易計算。


初一數學上冊知識點總結相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊重點知識整理

★ 七年級上冊數學知識點總結三篇

★ 七年級上冊數學月考知識點整理

★ 七年級英語上冊各單元知識點匯總

★ 初一年級上冊數學的21個熱門知識點

★ 初一上冊數學知識點手抄報

★ 初一上冊數學合並同類項教案

★ 初中七年級上冊數學《整式》教案優質範文五篇

Ⅱ 蘇教版初一上冊數學主要學哪些知識,請羅列一下,謝謝

首先就是將幾何體啦:小學也有學過一些,算是很簡單得了。比如說:主視圖、左視圖、右試圖、俯視圖(就是從正面、左面、右面、上面所看到的圖形啦~)

然後是有理數:整數與分數統稱為有理數。還有絕對值、相反數、有理數的加減乘除法、混合運算,然後是科學計數法,用計算器運算。

之後就到整式:單項式、多項式、(單項式和多項式統稱為整式)單項式的系數、單項式的次數、多項式的項、多項式的次數【這里應該是這個學期最難得部分了】

基本平面圖形:正多邊形,線段、射線、直線,1平角=180°,1周角=360°,【1°的1/60為一分,記作1′,即1°=60′】【1′的1/60為一秒,記作1″,即1′=60″】【角平分線:將角平分為兩個相等的角】

一元一次方程:【一個方程中,只含有一個未知數,且未知數的指數都是1,這樣的的方程叫做一元一次方程】其實這個跟小學的方程式也沒什麼兩樣的。

數據的收集與整理:就是講普查的抽樣調查啦~頻數直方圖啦,根據所給數據的最大值和最小值分組還有小學學過的條形統計圖,扇形統計圖,折現統計圖。

望採納~謝謝

Ⅲ 七年級上冊數學書重點內容總結

初一數學是初中數學的基礎,這篇文章我給大家總結歸納了初一上冊數學課本的重要知識點,供同學們參考。

整式的加減

1.單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式。

2.單項式的系數與次數:單項式中的數字因數,稱單項式的系數;單項式中所有字母指數的和,叫單項式的次數。

3.多項式:幾個單項式的和叫多項式。

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

5.整式:①單項式②多項式。

6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項。

7.合並同類項法則:系數相加,字母與字母的指數不變。

8.去(添)括弧法則:去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號。

9.整式的加減:

一找:(劃線);

二「+」:(務必用+號開始合並);

三合:(合並)。

10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列)。

一次函數

(一)一次函數是函數中的一種,一般形如y=kx+b(k,b是常數,k≠0),其中x是自變數,y是因變數。特別地,當b=0時,y=kx+b(k為常數,k≠0),y叫做x的正比例函數。

(二)函數三要素

1.定義域:設x、y是兩個變數,變數x的變化范圍為D,如果對於每一個數x∈D,變數y遵照一定的法則總有確定的數值與之對應,則稱y是x的函數,記作y=f(x),x∈D,x稱為自變數,y稱為因變數,數集D稱為這個函數的定義域。

2.在函數經典定義中,因變數改變而改變的取值范圍叫做這個函數的值域,在函數現代定義中是指定義域中所有元素在某個對應法則下對應的所有的象所組成的集合。如:f(x)=x,那麼f(x)的取值范圍就是函數f(x)的值域。

3.對應法則:一般地說,在函數記號y=f(x)中,「f」即表示對應法則,等式y=f(x)表明,對於定義域中的任意的x值,在對應法則「f」的作用下,即可得到值域中唯一y值。

(三)一次函數的表示方法

1.解析式法:用含自變數x的式子表示函數的方法叫做解析式法。

2.列表法:把一系列x的值對應的函數值y列成一個表來表示的函數關系的方法叫做列表法。

3.圖像法:用圖象來表示函數關系的方法叫做圖象法。

(四)一次函數的性質

1.y的變化值與對應的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等於0,且k,b為常數)。

2.當x=0時,b為函數在y軸上的交點,坐標為(0,b)。當y=0時,該函數圖象在x軸上的交點坐標為(-b/k,0)。

3.k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。

4.當b=0時(即y=kx),一次函數圖象變為正比例函數,正比例函數是特殊的一次函數。

5.函數圖象性質:當k相同,且b不相等,圖像平行;當k不同,且b相等,圖象相交於Y軸;當k互為負倒數時,兩直線垂直。

6.平移時:上加下減在末尾,左加右減在中間。

角的知識點

1.角:角是由兩條有公共端點的射線組成的幾何對象。

2.角的度量單位:度、分、秒

3.頂點:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點

4.角的比較:

(1)角可以看成是由一條射線繞著他的端點旋轉而成的。

(2)平角和周角:一條射線繞著他的端點旋轉,當始邊和終邊成一條直線時,所成的角叫平角。當它又和始邊重合的時候,所成的角角周角。平角等於108度,周角等於360度,直角等於90度。

(3)平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

5.餘角和補角:

(1)餘角:如果兩個角的和是90度,那麼稱這兩個角「互為餘角」,簡稱「互余」。

性質:等角的餘角相等。

(2)補角:如果兩個角的和是180度,那麼稱這兩個角「互為補角」,簡稱「互補」。

性質:等角的補角相等。

一元一次方程

(1)定義:

一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

(2)解一元一次方程的步驟

①去分母:把系數化成整數。

②去括弧

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項

⑤系數化為1.

平行線

1.在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3.如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4.判定兩條直線平行的方法:

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5.平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

Ⅳ 七年級上冊數學知識點總結三篇

學習是每個一個學生的職責,而學習的動力是靠自己的夢想,也可以這樣說沒有自己的夢想就是對自己的一種不責任的表現,也就和人失走肉沒啥兩樣,只是改變命運,同時知識也不是也不是隨意的摘取。要通過自己的努力,要把我自己生命的鑰匙。以下是我為您整理的七年級上冊數學知識點 總結 三篇,供大家學習參考。

七年級上冊數學知識點總結篇一

單項式與多項式

1、沒有加減運算的整式叫做單項式。(數字與字母的積---包括單獨的一個數或字母)

2、幾個單項式的和,叫做多項式。其中每個單項式叫做多項式的項,不含字母的項叫做常數項。

說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。

單項式

1、都是數字與字母的乘積的代數式叫做單項式。

2、單項式的數字因數叫做單項式的系數。

3、單項式中所有字母的指數和叫做單項式的次數。

4、單獨一個數或一個字母也是單項式。

5、只含有字母因式的單項式的系數是1或―1。

6、單獨的一個數字是單項式,它的系數是它本身。

7、單獨的一個非零常數的次數是0。

8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

9、單項式的系數包括它前面的符號。

10、單項式的系數是帶分數時,應化成假分數。

11、單項式的系數是1或―1時,通常省略數字「1」。

12、單項式的次數僅與字母有關,與單項式的系數無關。

多項式

1、幾個單項式的和叫做多項式。

2、多項式中的每一個單項式叫做多項式的項。

3、多項式中不含字母的項叫做常數項。

4、一個多項式有幾項,就叫做幾項式。

5、多項式的每一項都包括項前面的符號。

6、多項式沒有系數的概念,但有次數的概念。

7、多項式中次數的項的次數,叫做這個多項式的次數。

整式

1、單項式和多項式統稱為整式。

2、單項式或多項式都是整式。

3、整式不一定是單項式。

4、整式不一定是多項式。

5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。

七年級上冊數學知識點總結篇二

第一單元有理數

1.1正數和負數

以前學過的0以外的數前面加上負號「-」的書叫做負數。

以前學過的0以外的數叫做正數。

數0既不是正數也不是負數,0是正數與負數的分界。

在同一個問題中,分別用正數和負數表示的量具有相反的意義

1.2有理數

1.2.1有理數

正整數、0、負整數統稱整數,正分數和負分數統稱分數。

整數和分數統稱有理數。

1.2.2數軸

規定了原點、正方向、單位長度的直線叫做數軸。

數軸的作用:所有的有理數都可以用數軸上的點來表達。

注意事項:⑴數軸的原點、正方向、單位長度三要素,缺一不可。

⑵同一根數軸,單位長度不能改變。

一般地,設是一個正數,則數軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度。

1.2.3相反數

只有符號不同的兩個數叫做互為相反數。

數軸上表示相反數的兩個點關於原點對稱。

在任意一個數前面添上「-」號,新的數就表示原數的相反數。

1.2.4絕對值

一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。

一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。

在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小於右邊的數。

比較有理數的大小:⑴正數大於0,0大於負數,正數大於負數。

⑵兩個負數,絕對值大的反而小。

1.3有理數的加減法

1.3.1有理數的加法

有理數的加法法則:

⑴同號兩數相加,取相同的符號,並把絕對值相加。

⑵絕對值不相等的餓異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

⑶一個數同0相加,仍得這個數。

兩個數相加,交換加數的位置,和不變。

加法交換律:a+b=b+a

三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變。

加法結合律:(a+b)+c=a+(b+c)

1.3.2有理數的減法

有理數的減法可以轉化為加法來進行。

有理數減法法則:

減去一個數,等於加這個數的相反數。

a-b=a+(-b)

1.4有理數的乘除法

1.4.1有理數的乘法

有理數乘法法則:

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數同0相乘,都得0。

乘積是1的兩個數互為倒數。

幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數。

兩個數相乘,交換因數的位置,積相等。

ab=ba

三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。(ab)c=a(bc)

一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。a(b+c)=ab+ac

數字與字母相乘的書寫規范:

⑴數字與字母相乘,乘號要省略,或用「」

⑵數字與字母相乘,當系數是1或-1時,1要省略不寫。

⑶帶分數與字母相乘,帶分數應當化成假分數。

用字母x表示任意一個有理數,2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數。

一般地,合並含有相同字母因數的式子時,只需將它們的系數合並,所得結果作為系數,再乘字母因數,即

ax+bx=(a+b)x

上式中x是字母因數,a與b分別是ax與bx這兩項的系數。

去括弧法則:

括弧前是「+」,把括弧和括弧前的「+」去掉,括弧里各項都不改變符號。括弧前是「-」,把括弧和括弧前的「-」去掉,括弧里各項都改變符號。括弧外的因數是正數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相同;括弧外的因數是負數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相反。

1.4.2有理數的除法

有理數除法法則:

除以一個不等於0的數,等於乘這個數的倒數。

a÷b=a〃1

b(b≠0)

兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於

0的數,都得0。

因為有理數的除法可以化為乘法,所以可以利用乘法的運算性質簡化運算。乘除混合運算往往先將除法化成乘法,然後確定積的符號,最後求出結果。

1.5有理數的乘方

1.5.1乘方

求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數,當an看作a的n次方的結果時,也可以讀作a的n次冪。

負數的奇次冪是負數,負數的偶次冪是正數。

正數的任何次冪都是正數,0的任何正整數次冪都是0。

有理數混合運算的運算順序:

⑴先乘方,再乘除,最後加減;

⑵同極運算,從左到右進行;

⑶如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行

1.5.2科學記數法

把一個大於10的數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學記數法。

用科學記數法表示一個n位整數,其中10的指數是n-1。

1.5.3近似數和有效數字

接近實際數目,但與實際數目還有差別的數叫做近似數。

精確度:一個近似數四捨五入到哪一位,就說精確到哪一位。

從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字。

對於用科學記數法表示的數a×10n,規定它的有效數字就是a中的有效數字。

七年級上冊數學知識點總結篇三

整式的加減

一、代數式

1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

二、整式

1、單項式:

(1)由數和字母的乘積組成的代數式叫做單項式。

(2)單項式中的數字因數叫做這個單項式的系數。

(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2、多項式

(1)幾個單項式的和,叫做多項式。

(2)每個單項式叫做多項式的項。

(3)不含字母的項叫做常數項。

3、升冪排列與降冪排列

(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。

(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。

三、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

(4)在掌握合並同類項時注意:

a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.

b.不要漏掉不能合並的項。

c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

說明:合並同類項的關鍵是正確判斷同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。

四、角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

五、餘角和補角

1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。

2、如果兩個角的和等於180(平角),就說這兩個角互為補角。

3、等角的補角相等。

4、等角的餘角相等。

六、相交線

1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

2、注意:

⑴垂線是一條直線。

⑵具有垂直關系的兩條直線所成的4個角都是90。

⑶垂直是相交的特殊情況。

⑷垂直的記法:a⊥b,AB⊥CD。

3、畫已知直線的垂線有無數條。

4、過一點有且只有一條直線與已知直線垂直。

5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。

七、平行線

1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、判定兩條直線平行的 方法 :

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5、平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

相關 文章 :

1. 初一數學復習三篇

2. 初一上冊數學知識點歸納整理

3. 初一數學上冊知識點歸納

4. 初一數學課本知識點總結

Ⅳ 七年級數學上冊知識點總結歸納

沒有加倍的勤奮,就沒有才能,也沒有天才。天才其實就是可以持之以恆的人。勤能補拙是良訓,一分辛苦一分才,勤奮一直都是學習通向成功的最好捷徑。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

七年級數學知識點

整式的加減

1.單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式。

2.單項式的系數與次數:單項式中的數字因數,稱單項式的系數;

單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;

5..

6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項.

7.合並同類項法則:系數相加,字母與字母的指數不變.

8.去(添)括弧法則:

去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號.

9.整式的加減:一找:(劃線);二「+」(務必用+號開始合並)三合:(合並)

10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).

一元一次方程

1.等式:用「=」號連接而成的式子叫等式.

2.等式的性質:

等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.

3.方程:含未知數的等式,叫方程.

4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:「方程的解就能代入」!

5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.

6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

7.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).

第一學期初一數學復習資料

一幾何圖形

幾何學:數學中以空間形式為研究對象的分支叫做幾何學。

從實物中抽象出的各種圖形統稱為幾何圖形。幾何圖形可分為立體圖形和平面圖形;各個部分不都在同一平面內的幾何圖形叫做立體圖形,各個部分都在同一平面內的幾何圖形叫做平面圖形。

1、幾何圖形的投影問題

每一種幾何體從不同的方向去看它,可以得到不同的簡單平面幾何圖形。實際上投影所得到的簡單平面幾何圖形是被投影幾何體可遮擋視線的部分在平面內所留下的影子。2、立體圖形的展開問題

將立體圖形的表面適當剪開,一、點、線、面、體

1、點、線、面、體的概念點動成線,線動成面,面動成體由平面和曲成圍成一個幾何體2、點、線、面和體之間的關系(1)點動成線、線動成面、面動成體;

(2)體是由面組成、面與 面相 交成線、線與線相交成點;

二、線段、射線、直線1、線段、射線、直線的定義

(1)線段:線段可以近似地看成是一條有兩個端點的崩直了的線。線段可以量出長度。(2)射線:將線段向一個方向無限延伸就形成了射線,射線有一個端點。射線無法量出長度。(3)直線:將線段向兩個方向無限延伸就形成了直線,直線沒有端點。直線無法量出長度。概念剖析:①線段有兩個端點,射線有一個端點,直線沒有端點;

②「線段可以量出長度」,即線段有明確的長度,「射線和直線都無法量出其長度」,即射線和直線既沒有明確的長度,

也沒有射線與射線、直線與直線、射線與直線之間的長短比較之說;

③線段只有長短之分,而沒有大小之別,射線和直線既沒有長短之分,也沒有大小之別;例1、下列說法正確的是()

A、5㎝長的直線比3㎝長的直線要長2㎝;B、線段向兩個方向無限延伸就形成了直線;

C、直線和射線都是不可度量的,所以它們都無法表示;D、直線AB、射線AB和線段AB表示的都是同一幾何圖形;

2、線段、射線、直線的表示 方法

(1)線段的表示方法有兩種:一是用兩個端點來表示,二是用一個小寫的英文字母來表示。(2)射線的表示方法只有一種:用端點和射線上的另一個點來表示,端點要寫在前面。

(3)直線的表示方法有兩種:一是用直線上的兩個點來表示,二是用一個小寫的英文字母來表示。

概念剖析:①將線段的兩個端點位置顛倒,得到的新線段與原來的線段是同一線段,即線段AB與線段BA是同一線段;

②將表示射線的兩個點位置顛倒,得到的新射線與原來的射線不是同一射線,即射線AB與射線BA不是同一射線,因為它們的端點和方向不同;

③將表示直線的兩個點位置顛倒,得到的新直線與原來的直線是同一直線,即直線AB與直線BA是同一直線;④識別圖中線段的條數要把握一點:只要有一個端點不相同,就是不同的線段;⑤識別圖中射線的條數要把握兩點:端點和方向缺一不可;

初一新生必看:數學 學習方法 指導

1.做好預習:單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。堅持預習,找到疑點,變被動學習為主動學習,能大大提高學習效率噢,興趣是的老師嘛。

2.認真聽課:聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點(記住預習中的疑點了嗎?更要聽仔細了),聽例題的解法和要求,聽蘊含的數學思想和方法,聽課堂小結。思,一是要善於聯想、類比和歸納,二是要敢於質疑,提出問題,大膽猜想。記,當然是指課堂筆記了,不是記得多就是有效的知道嗎?影響了聽課可就不如不記了,記什麼,什麼時候記,可是有學問的哩,記方法,記技巧,記疑點,記要求,記注意點,記住課後一定要整理筆記。

3.認真解題:課堂練習是最及時最直接的反饋,一定不能錯過的,不要急於完成作業,要先看看你的 筆記本 ,回顧學習內容,加深理解,強化記憶,很重要噢。

4.及時糾錯:課堂練習、作業、檢測,反饋後要及時查閱,分析錯題的原因,審題出問題了嗎?概念模糊了嗎?時間緊沒來得及?不會做嗎?切忌不要動不動就以粗心放過自己(形成習慣可就麻煩了),如果思路正確而計算出錯,及時訂正,必要時強化相關計算的訓練。概念模糊和審題出錯都說明你的學習容易出現似懂非懂卻還不自知的狀態,這可是學習數學的大忌,要堅決克服。至於不會做,當然要及時向同學和老師請教了,不能將問題處於懸而未解的狀態,養成今日事今日畢的好習慣。

5.學會 總結 :大人們常說,數學是一環扣一環,這意思是說知識間是緊密相關的,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,學習的目的性,必要性,知識性做到瞭然於心,融會貫通,解題時就能做到入手快,方法直接簡單,即使平時課堂上沒練到的題型,也能得心應手,即舉一反三。

6.學會管理:管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷,這可是大考復習時最有用的資料知道嗎?


七年級數學上冊知識點總結歸納相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一數學上冊知識點匯總歸納

★ 初一人教版數學上冊知識點總結歸納

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊知識點

★ 初一數學上冊知識點總結

★ 初中七年級數學知識點歸納整理

★ 七年級數學上冊知識點匯總

★ 初一數學上冊重點知識整理

★ 七年級數學上冊知識歸納

Ⅵ 蘇教版初中上冊數學知識點總結

蘇教版七年級數學上冊基本知識點
第一章
我們與數學同行(略)
第二章
有理數
一、正數和負數
⒈正數和負數的概念
負數:比0小的數

正數:比0大的數

0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時,-a是負數;當a表示負數時,-a是正數;當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)
②正數有時也可以在前面加「+」,有時「+」省略不寫。所以省略「+」的正數的符號是正號。

2.具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:-8℃

3.0表示的意義

⑴0表示「
沒有」,如教室里有0個人,就是說教室里沒有人;
⑵0是正數和負數的分界線,0既不是正數,也不是負數。
未完:參考資料:https://wenku..com/view/49f368483b3567ec102d8acb.html

Ⅶ 初一數學知識點上冊蘇教版

雖然在學習的過程中會遇到許多不順心的事,但古人說得好——吃一塹,長一智。多了一次失敗,就多了一次教訓;多了一次挫折,就多了一次 經驗 。沒有失敗和挫折的人,是永遠不會成功的。本篇 文章 是無憂考網為您整理的《蘇教版初一數學上冊期中》,供大家借鑒。


初一數學知識點上冊蘇教版

一、填得圓圓滿滿(每小題3分,共30分)

1.-1-(-3)=。

2.-0.5的絕對值是,相反數是,倒數是。

3.單項式的系數是,次數是。

4.若逆時針旋轉90o記作+1,則-2表示。

5.如果a、b互為相反數,x、y互為倒數,那麼(a+b)-xy+a2-b2=。

6.在數軸上,點A表示數-1,距A點2.5個單位長度的點表示的數是。

7.災難無情人有情!某次在抗震救災文藝匯演中,各界藝人和人士為地震災區人民捐款捐物達349.8萬元。將這個數字用科學計數法表示並保留三個有效數字為元。

8.長方形的長是a米,寬比長的2倍少b米,則寬為米。

9.若m、n滿足=0,則

10.某廠10月份的產值是125萬元,比3月份的產值的3倍少13萬元,若設3月份的產值為x萬元,則可列出的方程為

二、做出你的選擇(每小題3分,共30分)

11.如果向東走2km記作+2km,那麼-3km表示().

A.向東走3kmB.向南走3kmC.向西走3kmD.向北走3km

12.下列說法正確的是(C)

A.x的系數為0B.是一項式C.1是單項式D.-4x系數是4

13.下列各組數中是同類項的是()

A.4x和4yB.4xy2和4xyC.4xy2和-8x2yD.-4xy2和4y2x

14.下列各組數中,互為相反數的有()

①②③④

A.④B.①②C.①②③D.①②④

15.若a+b<0,ab<0,則下列說法正確的是()

A.a、b同號B.a、b異號且負數的絕對值較大

C.a、b異號且正數的絕對值較大D.以上均有可能

16.下列計算正確的是()

A.4x-9x+6x=-xB.xy-2xy=3xy

C.x3-x2=xD.a-a=0

17.數軸上的點M對應的數是-2,那麼將點M向右移動4個單位長度,此時點M表示的數是()

A.-6B.2C.-6或2D.都不正確

18.若的相反數是3,,則x+y的值為().

A.-8B.2C.8或-2D.-8或2

19.若3x=6,2y=4則5x+4y的值為()

A.18B.15C.9D.6

20.若-3xy2m與5x2n-3y8的和是單項式,則m、n的值分別是()

A.m=2,n=2B.m=4,n=1C.m=4,n=2D.m=2,n=3

三、用心解答(共60分)

21.(16分)計算

(1)-26-(-15)(2)(+7)+(-4)-(-3)-14

(3)(-3)×÷(-2)×(-)(4)-(3-5)+32×(-3)

22.解方程(本題8分)

(1)x+3x=-12(2)3x+7=32-2x

23.(6分)將下列各數在數軸上表示出來,並用「<」連接:

-22,-(-1),0,,-2.5

24.(6分)若a是絕對值最小的數,b是的負整數。先化簡,再求值:

25.(6分)列方程解應用題。

把一批圖書分給某班學生閱讀,如果每人分3本,則剩餘20本,如果每人分4本,則還缺25本。這個班有多少名學生?

26.(9分)計程車司機小李某天上午營運時是在東西走向的大街上進行的,如果規定向東為正,向西為負,他這天上午所接六位乘客的行車里程(單位:km)如下:-2,+5,-1,+1,-6,-2,問:

(1)將最後一位乘客送到目的地時,小李在什麼位置?

(2)若汽車耗油量為0.2L/km(升/千米),這天上午小李接送乘客,計程車共耗油多少升?

(3)若計程車起步價為8元,起步里程為3km(包括3km),超過部分每千米1.2元,問小李這天上午共得車費多少元?

27.(9分)從2開始,連續的偶數相加,它們和的情況如下表:

加數的個數nS

12=1×2

22+4=6=2×3

32+4+6=12=3×4

42+4+6+8=20=4×5

52+4+6+8+10=30=5×6

(1)若n=8時,則S的值為_____________.

(2)根據表中的規律猜想:用n的式子表示S的公式為:

S=2+4+6+8+…+2n=____________.

(3)根據上題的規律計算2+4+6+8+10+…+98+100的值.

【參考答案】:

一填得圓圓滿滿(每小題3分,共30分)

1、22、0.5,0.5,-23、,34、順時針旋轉180o5、-16、-3.5或1.57、3.50×106

8、2a-b9、910、3x-13=125

二.做出你的選擇(每小題3分,共30分)

11、C12、C13、D14、B15、D16、D17、B18、D19、A20、C

三、用心解答(共60分)

21、(16分)(1)-11(2)8

(3)-(4)-25

22、(8分)(1)x=-3(2)x=25

23、(6分)-22<-2.5<0<-(-1)<

24、(6分)解:由題意,得a=0,b=-1

原式=2a2-4ab-2b2-a2+3ab+3b2

=a2-ab+b2

當a=0,b=-1時,原式=(-1)2=1

25、(6分)這個班有45名學生

26、(9分)解:(1)-2+5-1+1-6-2=-5

答:小李在起始的西5km的位置

(2)

=2+5+1+1+6+2=1717×0,2=3.4

答:計程車共耗油3.4升

(3)6×8+(2+3)×1.2=54

答:小李這天上午共得車費54元。

27、(9分)(1)72;(2);

(3)2+4+6+8+10+…+98+100=50×51=2550

初一數學知識點上冊蘇教版

一、精心選一選(本大題共10小題,每題3分,共30分)

1.方程5(x-1)=5的解是………………………………………………()

A.x=1B.x=2C.x=3D.x=4

2.下列關於單項式一的說法中,正確的是…………………………()

A.系數是-,次數是4B.系數是-,次數是3

C.系數是-5,次數是4D.系數是-5,次數是3

3.甲、乙、丙三地的海拔高度分別為20m、-15m和-10m,那麼的地方比最低的地方高………………………………………………………………()

A.5mB.10mC.25mD.35m

4.根據國家安排,今年江蘇省保障性安居工程計劃建設106800套,106800用科學記數學法可表示為…………………………………………………()

A.1068×102B.10.68×104C.1.068×105D.0.1068×106

5.兩個數的商是正數,下面判斷中正確的是………………………………()

A.和是正數B.差是正數C.積是正數D.以上都不對

6.如圖,圖中數軸的單位長度為1.如果點B,C表示的數的絕對值相等,那麼點A與點D表示的數分別是……………………………………………()

A.—2,2B.—4,1C.—5,1D.—6,2

7.若A、B都是五次多項式,則A-B一定是………………………………()

A.四次多項式B.五次多項式

C.十次多項式D.不高於五次的多項式

8.下列計算中正確的是……………………………………………………()

A.6a-5a=1B.5x-6x=11xC.m2-m=mD.x3+6x3=7x3

9.已知(x-1)3=ax3+bx2+cx+d.,則a+b+c+d的值為……………………………()

A.—1B.0C.1D.2

10.在一條筆直的公路邊,有一些樹和路燈,每相鄰的兩盞燈之間有3棵樹,相鄰的樹與樹、樹與燈間的距離是10m,如圖,第一棵樹左邊5m處有一個路牌,則從此路牌起向右340m~380m之間樹與燈的排列順序是…………………………………………()

二、細心填一填(本大題共9小題13空,每空2分,共26分)

11.-2的絕對值是,相反數是

12.當x=時,代數式的值是0.已知多項式2x2-4x的值為10,則多項式x2?2x+6的值為.

13.若4x4yn+1與-5xmy2的和仍為單項式,則m=,n=.

14.方程x+a=2的解與方程2x+3=-5的解相同,則a=

15.已知|a-2|+(b+1)2=0,則(a+b)2012=

16.如圖所示的運算程序中,若開始輸入的x的值為10,我們發現第一次輸出的結果為5,第二次輸出的結果為8,…,則第10次輸出的結果為

17.請寫出一個方程的解是2的一元一次方程:.

18.如圖,邊長為(m+3)的正方形紙片剪出一個邊長為m的正方形之後,剩餘部分又剪拼成一個矩形(不重疊無縫隙),若拼成的矩形一邊長為3,則另一邊長是.

19.已知a=|x—5|+|x—2|+|x+3|,求當x=時,a有最小值為

三、認真答一答(本大題共7小題,共44分)

20.計算:(本題共2小題,每題3分,共6分)

(1)-23+(-37)-(-12)+45;(2)(-6)2.

21.解方程:(本題共2小題,每題3分,共6分)

(1)2(2x+1)=1-5(x-2);(2)-=1

22.(本題5分)已知,

(1)求的值;(結果用x、y表示)

(2)當與互為相反數時,求(1)中代數式的值.

23.(本題5分)某自行車廠一周計劃生產1050輛自行車,平均每天生產150輛,由於各種原因實際每天生產量與計劃量相比有出入.下表是某周的生產情況(超產為正、減產為負):

星期一二三四五六日

增減+5-2-4+13-10+16-9

(1)產量最多的一天比產量最少的一天多生產輛;

(2)根據記錄可知前三天共生產輛;

(3)該廠實行計件工資制,每輛車50元,超額完成任務每輛獎10元,少生產一輛扣10元,那麼該廠工人這一周的工資總額是多少?

24.(本題7分)世博會某國國家館模型的平面圖如圖所示,其外框是一個大正方形,中間四個大小相同的小正方形(陰影部分)是支撐展館的核心筒,標記了字母的五個大小相同的正方形是展廳,剩餘的四個大小相同的休息廳,已知核心筒的正方形邊長比展廳的正方形邊長的一半多1米.

(1)若設展廳的正方形邊長為x米,用含x的代數

式表示核心筒的正方形邊長為米.

(2)若設核心筒的正方形邊長為y米,求該模型的

平面圖外框大正方形的周長及每個休息廳的圖形周長.

(用含y的代數式表示)

(3)若設核心筒的正方形邊長為2米,求該國家展廳(除四根核心筒)的佔地面積。

25.(本題6分)我們把分子為1的分數叫做單位分數.如,,…,任何一個單位分數都可以拆分成兩個不同的單位分數的和,如=,=,=,…

(1)根據對上述式子的觀察,你會發現=.請寫出□,○所表示的數;

(2)思考,單位分數(n是不小於2的正整數)=,請寫出△,☆所表示的式。

(3)計算:

26.(本題9分)用水平線和豎直線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點,叫格點,以格點為頂點的多邊形叫格點多邊形,設格點多邊形的面積為S,它各邊上格點的個數和為x。

(1)如上圖所示中的格點多邊形,其內部都只有一個格點,它們的面積與各邊上格點的個數和的對應關系如下表,請寫出S與x之間的關系式,答:S=_____。

多邊形的序號①②③④…

多邊形的面積S23…

各邊上格點的個數和x456…

(2)請你再畫出一些格點多邊形,使這些多邊形內部都有而且只有2個格點。

此時所畫的各個多邊形的面積S與它各邊上格點的個數和x之間的關系式S=____。

(3)請你繼續探索,當格點多邊形內部有且只有n個格點時,猜想S與x有怎樣的關系?

初一數學知識點上冊蘇教版

一、選擇題(每題3分,共30分)

1.2013年中國糧食總產量達到601900000噸,數據601900000用科學記數法表示為()

A.60.19×107B.6.019×108C.6.019×109D.6.019×1010

2.已知a、b在數軸上的位置如圖所示,則下列結論中正確的是()

A.a+b>0B.ab0

3.下列各組數中,數值相等的是()

A.34和43B.﹣42和(﹣4)2

C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×32

4.下列關於0的說法中錯誤的是()

A.0是絕對值最小的數B.0的相反數是0

C.0是整數D.0的倒數是0

5.下列各組數中,互為相反數的是()

A.+(﹣3)和﹣(﹣3)B.﹣(﹣3)和﹢3C.﹣1和﹣12D.﹣|﹣2|和﹣2

6.一個數的平方等於16,則這個數是()

A.+4B.﹣4C.±4D.±8

7.下列式子中正確的是()

A.5﹣(﹣2)=7B.(﹣36)÷(﹣9)=﹣4C.(﹣8)2=﹣16D.﹣32=9

8.一個兩位數,十位數字是x,個位數字是y,這個兩位數是()

A.xyB.yxC.10x﹢yD.10y﹢x

9.已知代數式x+2y的值是3,則代數式2x+4y﹣1的值是()

A.7B.2C.﹣1D.5

10.下列各題運算正確的是()

A.3x+3y=6xyB.x+x=x2C.16y2﹣9y2=7D.9a2b﹣9a2b=0

二、填空題(每空2分,共28分)

11.如果物體向東運動6米記作+6米,那麼﹣5米表示的意義是.

12.某天銀川市的最低氣溫是﹣3℃,氣溫10℃,這一天的溫差是℃.

13.﹣3的相反數是;2的絕對值是;﹣0.5的倒數是.

14.比較大小:(填「<」或「>」).

﹣30.1;

﹣1﹣8;

0﹣10.

15.如果a、b互為相反數,x、y互為倒數,那麼2a+2b﹣xy=.

16.單項式的系數是,次數是.

17.有四張牌,分別是黑桃1、紅桃2、方塊3、梅花4,規定:黑色牌代表正數,紅色牌代表負數.一次抽取兩張,用牌面數字作乘法運算,乘積的值是.

18.按照規律填寫單項式:a,﹣2a2,3a3,﹣4a4…,第8個單項式是,第2013個單項式是.

三、解答題(本題共42分).

19.把下列各數填入表示它所在的集合里

﹣2,7,﹣,0,2014,3.4,﹣1.732,﹣(+5),﹣(﹣3)

正數:{…}

負分數:{…}

整數:{…}.

20.把「絕對值等於3的數、﹣2和它的倒數」表示在數軸上.

21.(24分)計算

(1)10+(﹣20)﹣(﹣8)

(2)(﹣2)×(﹣3)

(3)5+16÷(﹣2)

(4)20﹣(﹣5)2×(﹣2)

(5)(0.25﹣﹣)×(﹣36)

(6)﹣16﹢[5﹢(﹣2)3]÷3.

22.合並同類項

(1)7a+2﹣4a﹣5;

(2)8x2﹣5x+5+2x﹣7.

四、解答題(本題共20分)

23.小蟲從點A出發一直在某一直線上來回爬,假定向右爬的路程為正數,向左爬行的路程記為負數,爬行的各段路程依次為(單位:cm):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.

(1)小蟲最後能否回到出發點A;

(2)若小蟲每爬出1cm就獎勵一粒芝麻,則小蟲應得多少粒芝麻?

24.閱讀下面的文字,完成後面的問題:

我們知道:=1﹣,=,=﹣

那麼:

(1)=;=;

(2)用含有n的式子表示你發現的規律;

(3)求式子++…+旳值.

25.股市一周內周六、周日兩天不開市,股民小王上周五以每股25.20元的價格買進某公司股票10000股,下表為本周內每天該股票的漲跌情況:

星期一二三四五

每股漲

跌情況﹣0.1+0.4﹣0.2﹣0.4+0.5

註:表中正數表示股價比前一天上漲,負數表示股價比前一天下跌.

(1)星期四收盤時,每股多少元?

(2)本周內哪一天股價,是多少元?

(3)股民小王本周末將該股票全部售出(不記交易稅),小王在本次交易中獲利多少元?

(4)股民在本周哪一天將股票全部售出獲利最多?(不計交易稅)


初一數學知識點上冊蘇教版重點相關文章:

★ 初一數學上冊知識點歸納

★ 初一數學上冊重點知識整理

★ 初一數學上冊知識點總結

★ 初一數學上冊知識點

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊知識點大全

★ 初一數學上冊知識點匯總歸納

★ 初一數學知識點整理

★ 初一數學必考的21個知識點,附考試重難點

★ 七年級數學上冊知識點匯總

Ⅷ 七年級數學上冊知識點匯總

一個沒有幾分詩人氣的數學家永遠成不了一個完全的數學家.下面給大家帶來一些關於 七年級數學 上冊知識點匯總,希望對大家有所幫助。

1、有理數減法法則:減去一個數等於加上這個數的相反數,即:a-b=a+(-b).

2、加減法統一成加法:有理數的加減法運算可以通過有理數的減法法則將減法轉化為加法,統一成只有加法運算的和式.

3、和式的寫法:在和式里,通常把各個加數的括弧和它前面的加號省略不寫,寫成省略加

號的和的形式.

4、加減混合運算的 方法 和步驟

(1)將減法統一成加法,並寫成省略加號的和的形式;

(2)運用加法的交換律和結合律,簡化運算.

5、有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與零相乘,都得0.

6、有理數乘法步驟:先確定積的符號;再計算絕對值的積.

7、倒數:乘積是1的兩個數互為倒數.

8、有理數的除法法則

(1)除以一個數等於乘以這個數的倒數;

(2)兩數相除,同號得正,異號得負,並把絕對值相除;

(3)0除以任何一個不等於零的數,都得0.

9、乘方的有關概念

(1)求n個相同因數的積的運算叫乘方,乘方的結果叫冪,a叫底,n叫指數,a n讀作:a的n 次方(或a的n次冪).

(2)正數的任何次冪都是正數;負數的奇次方冪是負數,偶次方冪是正數.

10、科學計數法

把一個大於10的數記成a×10n的形式,其中0≤a<10,n是正數,這種計數法叫做科學計數法.

11、有理數的混合運算順序

(1)先算乘方,再算乘除,最後算加減;

(2)同級運算,按照從左至右的順序依次進行;

(3)如果有括弧,就先算小括弧,再算中括弧,然後算大括弧.

12、近似數:與實際很接近的數.

13、精確度:反映近似數的精確程度的量.一般地,一個近似數四捨五入到某一位,就說這個

近似數精確到那一位.

14、計算器的組成:計算器的面板由 顯示器 和按鍵組成.

第3章整式的加減

1、用字母表示數後,有些數量之間的關系用含有字母的式子表示,看上去更加簡明,更具有普

遍意義.

2、用字母表示數後,字母的取值要根據實際情景來確定.

3、用運算符號把數或表示數的字母連接而成的式子,稱為代數式.

4、單獨一個數或單獨一個字母也是代數式.

5、列代數式的實質就是把文字語言轉化為符號語言.

6、列代數式的一般方法有:

(1)抓住關鍵詞,由關鍵詞確定相應的運算符號;

(2)理清運算順序,一般是先讀的先算,必要時添上括弧;

(3)較復雜的數量關系,可分段處理;

(4)根據實際問題中的基本數量關系或公式列代數式.

7、用數值代替代數式中的字母,按照代數式中的運算關系計算得出結果,叫做代數式的值.

8、求代數式的值的步驟:先代入,再求值.

9、數與字母的乘積所組成的代數式叫做單項式,單獨的數或字母也是單項式.

10、單項式中的數字因數叫做這個單項式的系數,所有字母指數之和叫做這個單項式的次數.

11、幾個單項式的和叫做多項式,在多項式中,每個單項式叫做多項式的項,其中不含字母

的項叫做常數項.

12、在多項式里,最高次項的次數就是這個多項式的次數.

13、單項式和多項式統稱為整式.

14、把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把這個多項式按這個

字母的降冪排列.

15、把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把這個多項式按這個

字母的升冪排列.

16、所含字母相同,並且相同字母的指數也相等的項叫做同類項,所有的常數項都是同類項.

17、把多項式中的同類項合並成一項,叫做合並同類項.

18、合並同類項的法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數不變.

19、去括弧法則:

(1)括弧前面是「+」,把括弧和它前面的「+」號去掉,括弧里各項不改變正負號;

(2)括弧前面是「—」,把括弧和它前面的「—」號去掉,括弧里各項改變正負號;

20、添括弧法則:

(1)所添括弧前面是「+」號,括到括弧里的各項不改變正負號;

(2)所添括弧前面是「—」號,括到括弧里的各項改變正負號;

21、整式加減的一般步驟:先去括弧,再合並同類項.

第4章生活中的立體圖形

1、生活中的立體圖形有很多,常見的有柱體、錐體和球體,其中柱體分為圓柱和稜柱,錐體分

為圓錐和棱錐

2、從正面、上面和側面(左面或右面)三個不同的方向看一個物體,然後描繪出三幅所看到的

圖,即視圖.

3、從正面看到的圖形,稱為主視圖;從上面看到的圖形,稱為俯視圖;從側面看到的圖形,稱

為側視圖,依觀看的方向不同,有左視圖和右視圖.

4、單一的規則的立體圖形的三視圖,如果主視圖和側視圖是三角形,一般和錐體有關,可根據

俯視圖是圓形或n邊形,可以判斷是圓錐或,n棱錐;對於主視圖和側視圖是長方形的,一般和柱體有關,再觀察俯視圖是圓形或n邊形,可以判斷是圓柱或n稜柱.

5、圓柱的側面展開圖是矩形(長方形或正方形),圓錐的側面展開圖是扇形.

6、同一個立體圖形,按不同的方式展開得到的平面展開圖是不同的.

7、圓是由曲面圍成的封閉圖形;多邊形是由線段圍成的封閉圖形.

8、在多邊形中,最基本的圖形是三角形.

9、兩點之間線段最短.

10、經過兩點有1條直線,並且只有1條直線,即兩點確定一條直線.

11、線段的長短比較有兩種方法:一種是度量的方法;一種是疊合的方法.

12、把一條線段分成兩條相等線段的點,叫做這條線段的中點.

13、角是由兩條有公共端點的射線組成的圖形,角也可以看做是一條射線繞著它的端點旋轉

而成的圖形.

14、角的表示方法

(1)當頂點處只有一個角時,用一個大寫字母表示;

(2)用三個大寫字母表示,注意頂點字母必須寫在中間;

(3)用希臘字母或阿拉伯數字表示.

15、角的大小比較:

(1)「形的比較」——疊合法;

(2)「數的比較」——度量法.

16、從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的

角平分線.

17、兩個角的和等於90°(直角),就說這兩個角互為餘角;兩個角的和等於180°(平角),

就說這兩個角互為補角.

18、同角(或等角)的餘角相等;同角(或等角)的補角相等.

第5章相交線與平行線

1、對頂角相等.

2、在同一平面內,經過直線外或直線上一點,有且只有1條直線與已知直線垂直.

3、直線外一點與直線上各點連接的所有線段中,垂線段最短.

4、兩條直線被第三條直線所截,位於截線的同側,被截直線的同一方的兩個角叫做同位角;位

於截線的兩側,被截直線之間的兩個角叫做內錯角;位於截線的同側,被截直線之間的兩個角叫做同旁內角.

5、在同一平面內不相交的兩條直線叫做平行線.

6、經過直線外一點,有1條直線與這條直線平行.

7、如果兩條直線都和第三條直線平行,那麼這兩條直線也互相平行.

8、平行線的判定方法

(1)同位角相等,兩直線平行;

(2)內錯角相等,兩直線平行;

(3)同旁內角互補,兩直線平行;

(4)如果有兩條直線與第三條直線平行,那麼這兩條直線也互相平行;

(5)在同一平面內,垂直於同一條直線的兩條直線互相平行.

9、平行線的性質

(1)兩直線平行,同位角相等;

(2)兩直線平行,內錯角相等;

(3)兩直線平行,同旁內角互補.

第1章走進數學世界

1、數學伴我們成長,測量、稱重、計算等都與數學有關.

2、數學與現實生活密切聯系,人類離不開數學.

3、人人都能學好數學.

第2章有理數

1、相反意義的量:像向東和向西、零上和零下、收入和支出、升高和降低、買入和賣出等都表

示具有相反意義的量.

2、正數和負數

(1)正數都大於零;

(2)在正數前面加上一個「—」號的數叫做負數,負數都小於零;

(3)0既不是正數也不是負數,它是正數和負數的分界點.

3、有理數

(4)有理數:正數和分數統稱為有理數;

(5)整數包括正整數、0、負整數;

(6)分數包括正分數、負分數.

4、有理數的分類:0和正數統稱為非負數,0和負數統稱為非正數.

5、數軸的概念:規定了正方向、原點和單位長度的直線叫做數軸.

6、有理數的大小比較

(1)利用數軸:在數軸上表示兩個數,右邊的數總比左邊的數大;

(2)利用比較法則:正數都大於零,負數都小於零,正數大於負數.

7、相反數的意義

(1)代數意義:只有符號不同的兩個數稱互為相反數,零的相反數是0;

(2)幾何意義:在數軸上表示互為相反數的兩個點分別位於原點的兩側,且與原點的距離相等.

8、相反數的表示方法:數a的相反數是-a,這里的a可以表示任何一個數.

9、絕對值的意義

(1)幾何意義:把數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|;

(2)代數意義:一個正數的絕對值等於本身,零的絕對值是0,一個負數的絕對值等於相反數.

10、絕對值的非負性:對於任何有理數a,都有|a|≥0.

11、兩個負數的大小比較法則:兩個負數,絕對值大的反而小.

12、有理數大小的比較方法

(1)利用數軸:在數軸上表示兩個數,右邊的數總比左邊的數大;

(2)利用比較法則:正數都大於零,負數都小於零,正數大於負數.

兩個正數,絕對值大的數大;兩個負數絕對值大的數反而小.

13、有理數的加法法則

(1)同號兩數相加,取加數的符號,並把絕對值相加;

(2)絕對值不相等的異號兩數相加,取絕對值較大加數的符號,並用較大的絕對值減較小的絕對值;

(3)互為相反數的兩個數相加得0;

(4)一個數同0相加仍得這個數.

14、在進行有理數的加法運算時,應分兩步:首先,判斷符號;然後,再計算絕對值.

15、有理數的加法運算律

(1)交換律:兩個數相加,交換加數的位置,和不變,即:a+b=b+a;(用字母表示)

(2)結合律:三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變,即:(a+b)+c=a+(b+c).(用字母表示)

16、運用加法運算律的技巧:正負結合;湊整結合;相反數結合;同分母結合;整分結合.

七年級數學上冊知識點匯總相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊重點知識整理

★ 初一數學上冊基本概念匯總與學習方法

★ 七年級上冊數學知識點總結三篇

★ 七年級數學知識點整理大全

★ 初中七年級數學知識點歸納整理

★ 初一數學有理數知識點

★ 七年級上冊數學全冊概念總結復習

★ 初一年級上冊數學的21個熱門知識點

Ⅸ 七年級數學上冊知識點歸納總結

七年級數學是整個初中數學的基礎,一定要好好把握,我整理了一些重要的知識點。

有理數

1、有理數減法法則:減去一個數等於加上這個數的相反數,即:a-b=a+(-b)。

2、加減法統一成加法:有理數的加減法運算可以通過有理數的減法法則將減法轉化為加法,統一成只有加法運算的和式。

3、和式的寫法:在和式里,通常把各個加數的括弧和它前面的加號省略不寫,寫成省略加號的和的形式。

4、加減混合運算的方法和步驟

(1)將減法統一成加法,並寫成省略加號的和的形式;

(2)運用加法的交換律和結合律,簡化運算。

5、有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與零相乘,都得0。

6、有理數乘法步驟:先確定積的符號;再計算絕對值的積。

7、倒數:乘積是1的兩個數互為倒數。

8、有理數的除法法則

(1)除以一個數等於乘以這個數的倒數;

(2)兩數相除,同號得正,異號得負,並把絕對值相除;

(3)0除以任何一個不等於零的數,都得0。

整式

1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數. 單項式指的是數或字母的積的代數式。單獨一個數或一個字母也是單項式。因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式。

2、單項式的系數:是指單項式中的數字因數;

3、單項數的次數:是指單項式中所有字母的指數的和。

4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,常數項,多項式的次數就是多項式中次數最高的次數。多項式的次數是指多項式里次數最高項的次數,這是次數最高項,其次數是6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的項包括它前面的性質符號。

5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

6、單項式和多項式統稱為整式。

一元一次方程

1、方程是含有未知數的等式。

2、方程都只含有一個未知數x,未知數x的指數都是1,這樣的方程叫做一元一次方程。

注意:判斷一個方程是否是一元一次方程要抓住三點:

(1)未知數所在的式子是整式(方程是整式方程);

(2)化簡後方程中只含有一個未知數;

(3)經整理後方程中未知數的次數是1。

3、解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。

4、等式的性質:

(1)等式兩邊同時加(或減)同一個數(或式子),結果仍相等;

(2)等式兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。

注意:運用性質時,一定要注意等號兩邊都要同時變;運用性質2時,一定要注意0這個數。

以上是我整理的七年級上冊數學知識點,希望能幫到你。