1. 什麽是數學知識
就是和數學有關的知識!
下面分別解釋什麼是數學,什麼是知識。
****************************************************************************
數學:
數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」
自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。
從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。
對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。
事實上,上述對數學本質特徵的認識是從數學的來源、存在方式、抽象水平等方面進行的,並且主要是從數學研究的結果來看數學的本質特徵的。顯然,結果(作為一種理論的演繹體系)並不能反映數學的全貌,組成數學整體的另一個非常重要的方面是數學研究的過程,而且從總體上來說,數學是一個動態的過程,是一個「思維的實驗過程」,是數學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數學研究的過程中,數學對象的豐富、生動且富於變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,「數學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什麼東西。由歐幾里德方法提出來的數學看來象是一門系統的演繹科學,但在創造過程中的數學看來卻像是一門實驗性的歸納科學。」弗賴登塔爾說,「數學是一種相當特殊的活動,這種觀點「是區別於數學作為印在書上和銘,記在腦子里的東西。」他認為,數學家或者數學教科書喜歡把數學表示成「一種組織得很好的狀態,」也即「數學的形式」是數學家將數學(活動)內容經過自己的組織(活動)而形成的;但對大多數人來說,他們是把數學當成一種工具,他們不能沒有數學是因為他們需要應用數學,這就是,對於大眾來說,是要通過數學的形式來學習數學的內容,從而學會相應的(應用數學的)活動。這大概就是弗賴登塔爾所說的「數學是在內容和形式的互相影響之中的一種發現和組織的活動」的含義。菲茨拜因(Efraim Fischbein)說,「數學家的理想是要獲得嚴謹的、條理清楚的、具有邏輯結構的知識實體,這一事實並不排除必須將數學看成是個創造性過程:數學本質上是人類活動,數學是由人類發明的,」數學活動由形式的、演算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,「數學是人類意志的表達,反映積極的意願、深思熟慮的推理,以及精美而完善的願望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統可能強調不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數學科學的生命、效用與高度的價值。」
另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(Mogens Niss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,另一方面,如果所考慮的領域存在於數學之外,數學就起著用科學的作用,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」
從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。
基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛性」王梓坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重要性。
***********************************************************************************
知識:
知識到底是什麼,目前仍然有爭議。我國對知識的定義一般是從哲學角度作出的,如在《中國大網路全書·教育》中「知識」條目是這樣表述的:「所謂知識,就它反映的內容而言,是客觀事物的屬性與聯系的反映,是客觀世界在人腦中的主觀映象。就它的反映活動形式而言,有時表現為主體對事物的感性知覺或表象,屬於感性知識,有時表現為關於事物的概念或規律,屬於理性知識。」從這一定義中我們可以看出,知識是主客體相互統一的產物。它來源於外部世界,所以知識是客觀的;但是知識本身並不是客觀現實,而是事物的特徵與聯系在人腦中的反映,是客觀事物的一種主觀表徵,知識是在主客體相互作用的基礎上,通過人腦的反映活動而產生的。
上述定義為我們討論知識的內涵提供了哲學基礎。但宏觀的哲學反映論的認識還需要從個體認知角度進行具體化,這樣才能有效地用以指導學校的具體教學。
與哲學不同,認知心理學是從知識的來源、個體知識的產生過程及表徵形式等角度對知識進行研究的。例如,皮亞傑認為,經驗(即知識)來源於個體與環境的交互作用,這種經驗可分為兩類:一類是物理經驗,它來自外部世界,是個體作用於客體而獲得的關於客觀事物及其聯系認識;另一類是邏輯——數學經驗,它來自主體的動作,是個體理解動作與動作之間相互協調的結果。如兒童通過擺弄物體,獲得關於數量守恆的經驗,學生通過數學推理獲得關於數學原理的認識。皮亞傑對知識的定義是從個體知識的產生過程來表述的。布盧姆在《教育目標分類學》中認為知識是「對具體事物和普遍原理的回憶,對方法和過程的回憶,或者對一種模式、結構或框架的回憶」,這是從知識所包含的內容的角度說的,屬於一種現象描述。
我們認為,在理解知識的含義時,有必要把作為人類社會共同財富的知識與作為個體頭腦中的知識區分開來。人類社會的知識是客觀存在的,但個體頭腦中的知識並不是客觀現實本身,而是個體的一種主觀表徵,即人腦中的知識結構,它既包括感覺、知覺、表象等,又包括概念、命題、圖式,它們分別標志著個體對客觀事物反應的不同廣度和深度,這是通過個體的認知活動而形成的。一般來說,個體的知識以從具體到抽象的層次網路結構(認知結構)的形式存儲於大腦之中。哲學主要對人類社會共同知識的性質進行研究,心理學則主要對個體知識的性質進行研究。
有關知識的名言
高爾基: 愛護書籍吧,它是知識的源泉。
諾思科特: 博學的人是知識的蓄水池,而不是源泉。
不吸取知識之光,心靈就會被黑暗籠罩。
弗萊克斯: 大學是這樣一種機構:它自覺地獻身於對知識的追,力爭解決難題,用挑剔的眼光去評價人們的成就,並用真正的高水平去教育人。
切斯特菲爾德: 當我們步入晚年,知識將是我們舒適而必要的隱退的去處;如果我們年輕時不去栽種知識之樹,到老就沒有乘涼的地方了。
宋·朱熹: 當務之急,不求難知;力行所知,不憚所難為。
切斯特菲爾德: 讀書能獲得知識;但更有用的知識對世界的認識卻只能通過研究各種各樣的人才能獲得。
塞·約翰遜: 對知識的渴求是人類的自然意向,任何頭腦健全的人都會為獲取知識而不惜一切。
恩格斯: 復雜的勞動包含著需要耗費或多或少的辛勞、時間和金錢去獲得的技巧和知識的運用。
卡斯特: 管理者不承擔創造知識的任務,他的任務是有效地運用知識。
·里格斯: 經理人員的管理能力是他在品質、知識和經驗方面的功能。這三種因素相互作用形成一個特殊的管理方式。
鄧小平: 靠空講不能實現現代化,必須有知識,有人才。沒有知識,沒有人才,怎麼上得去?
科爾莫戈羅夫: 科學是人類的共同財富,而真正的科學家的任務就是豐富這個令人類都能受益的知識寶庫。
赫·斯賓塞: 科學是系統化了的知識。
約瑟夫·魯: 科學是為了那些勤奮好學的人,詩歌是為了那些知識淵博的人。
奧·霍姆斯: 科學是「無知」的局部解剖學。
叔本華: 沒有深厚經驗襯托的廣博思想和知識,就像是一本每頁僅有兩行正文卻有四十行注釋的教科書。
論衡: 人有知識,則有力矣。
實踐是知識的母親,知識是生活的明燈。
愛因斯坦: 學習知識要善於思考,思考,再思考。
2. 小學數學的基礎知識有哪些
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
3. 關於數學知識
初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.
4. 數學知識介紹
數學小知識--------------------------------------------------------------------------------
數學符號的起源
數學除了記數以外,還需要一套數學符號來表示數和數、數和形的相互關系。數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。
例如加號曾經有好幾種,現在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。
到了十八世紀,美國數學家歐德萊確定,把"×"作為乘號。他認為"×"是"+"斜起來寫,是另一種表示增加的符號。
"÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將"÷"作為除號。
十六世紀法國數學家維葉特用"="表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號"="就從1540年開始使用起來。
1591年,法國數學家韋達在菱中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了"="號,他還在幾何學中用"∽"表示相似,用"≌"表示全等。
大於號"〉"和小於號"〈",是1631年英國著名代數學家赫銳奧特創用。至於≯""≮"、"≠"這三個符號的出現,是很晚很晚的事了。大括弧"{ }"和中括弧"[ ]"是代數創始人之一魏治德創造
5. 數學知識都有哪些
數學知識包羅萬象,上到天文地理,下至雞毛蒜皮都涉及數學知識,不過最基本的不外是幼兒園、小學所教內容:認識數字大小、加減乘除四則運算,最多加上分數、小數的知識,基本上就是日常都要用到的數學知識,熟練掌握運算以及所謂「應用題」的解決,再掌握一點關於面積、體積的計算更好。至於其他「數學知識」,即使頂尖數學家恐怕難以說清楚「數學」最終包括哪些內容,因為科學技術就是一個不斷探索、不斷發展的過程。
6. 關於數學的所有知識
「O」的自述
人人都輕視我,認為我可有可無、有時讀數不讀我,有時計算中一筆把我劃掉。可你們知道嗎?我也有許多實實在在的意義。
1.我表示「沒有」。在數物體時,如果沒有任何物體可數,就要用我來表示。
2.我有占數位的作用。記數時,如果數的某一數位上一個單位也沒有,就用我來佔位。比如:1080中百位、個位上一個單位也沒有就用:0來佔位。
3.我表示起點。直尺、秤的起點都是用我來表示的。
4.我表示界限。溫度計上,我的上邊叫「零上」,我的下邊叫「零下」。
5.我可以表示不同的精確度。在近似計算中,小數部分末尾的我可不能隨便劃去。如:7.00、7.0、7的精確度是不同的。
6.我不能做除數。讓我做除數可就麻煩了,因為我做除數是沒有意義的。
以後你們還會學到我的很多特殊性質、小朋友,請你不要看不起我。
為什麼電子計算機要用二進位制
由於人的雙手有十個手指,人類發明了十進位制記數法。然而,十進位制和電子計算機卻沒有天然的聯系,所以在計算機的理論和應用中難以暢通無阻。究竟為什麼十進位制和計算機沒有天然的聯系?和計算機聯系最自然的記數方法又是什麼呢?
這要從計算機的工作原理說起。計算機的運行要靠電流,對於一個電路節點而言,電流通過的狀態只有兩個:通電和斷電。計算機信息存儲常用硬磁碟和軟磁碟,對於磁碟上的每一個記錄點而言,也只有兩個狀態:磁化和未磁化。近年來用光碟記錄信息的做法也越來越普遍,光碟上海一個信息點的物理狀態有兩個:凹和凸,分別起著聚光和散光的作用。由此可見,計算機所使用的各種介質所能表現的都是兩種狀態,如果要記錄十進位制的一位數,至少要有四個記錄點(可有十六個信息狀態),但此時又有六個信息狀態閑置,這勢必造成資源和資金的大量浪費。因此,十進位制不適合於作為計算機工作的數字進位制。那麼該用什麼樣的進位制呢?人們從十進位制的發明中得到啟示:既然每種介質都是具有兩個狀態的,最自然的進位制當然是二進位制。
二進位制所需要的記數的基本符號只要兩個,即0和1。可以用1表示通電,0表示斷電;或1表示磁化,0表示未磁化;或1表示凹點,0表示凸點。總之,二進位制的一個數位正好對應計算機介質的一個信息記錄點。用計算機科學的語言,二進位制的一個數位稱為一個比特(bit),8個比特稱為一個位元組(byte)。
二進位制在計算機內部使用是再自然不過的。但在人機交流上,二進位制有致命的弱點——數字的書寫特別冗長。例如,十進位制的100000寫成二進位製成為11000011010100000。為了解決這個問題,在計算機的理論和應用中還使用兩種輔助的進位制——八進位制和十六進位制。二進位制的三個數位正好記為八進位制的一個數位,這樣,數字長度就只有二進位制的三分之一,與十進位制記的數長度相差不多。例如,十進位制的100000寫成八進位制就是303240。十六進位制的一個數位可以代表二進位制的四個數位,這樣,一個位元組正好是十六進位制的兩個數位。十六進位制要求使用十六個不同的符號,除了0—9十個符號外,常用A、B、C、D、E、F六個符號分別代表(十進位制的)10、11、12、13、14、15。這樣,十進位制的100000寫成十六進位制就是186A0。
二進位制和八進位制、二進位制和十六進位制之間的換算都十分簡便,而採用八進位制和十六進位制又避免了數字冗長帶來的不便,所以八進位制、十六進位制已成為人機交流中常用的記數法。
為什麼時間和角度的單位用六十進位制
時間的單位是小時,角度的單位是度,從表面上看,它們完全沒有關系。可是,為什麼它們都分成分、秒等名稱相同的小單位呢?為什麼又都用六十進位制呢?
我們仔細研究一下,就知道這兩種量是緊密聯系著的。原來,古代人由於生產勞動的需要,要研究天文和歷法,就牽涉到時間和角度了。譬如研究晝夜的變化,就要觀察地球的自轉,這里自轉的角度和時間是緊密地聯系在一起的。因為歷法需要的精確度較高,時間的單位「小時」、角度的單位「度」都嫌太大,必須進一步研究它們的小數。時間和角度都要求它們的小數單位具有這樣的性質:使1/2、1/3、1/4、1/5、1/6等都能成為它的整數倍。以1/60作為單位,就正好具有這個性質。譬如:1/2等於30個1/60,1/3等於20個1/60,1/4等於15個1/60……
數學上習慣把這個1/60的單位叫做「分」,用符號「′」來表示;把1分的1/60的單位叫做「秒」,用符號「〃」來表示。時間和角度都用分、秒作小數單位。
這個小數的進位制在表示有些數字時很方便。例如常遇到的1/3,在十進位制里要變成無限小數,但在這種進位制中就是一個整數。
這種六十進位制(嚴格地說是六十退位制)的小數記數法,在天文歷法方面已長久地為全世界的科學家們所習慣,所以也就一直沿用到今天。
長度單位的自述
一天,長度單位的弟兄們到一起開會,主持會議的是「公里」老大哥,它首先發了言:「我們長度等單位是個國際大家庭,今天來參加會的是我們大家庭中的少數派,人們對我們非常生疏,因此,我們先作一下自我介紹。」首先從會場中央站起來一個說道:「我叫『引』,是中國籍的單位長度,中國古代《漢書:律歷志上》有我的名字,所以我的年齡很大啦!是中國籍古時十丈為一引,今為『市引』的簡稱,1公里(千米)=30(市)引。」說完就坐下了。接著從會議室一個角落站起一個「單位」大聲喊道:「我叫『碼』,是英籍長度單位.英語『yard』的譯名,1碼=3英尺,1英里=1760碼。與公制及市制的關系是:1碼=0.9144米=2.743市尺。」「碼」發言完後,就一個接一個的說開了。「我叫『節』,我是無國籍『人士』,也可以說,每一國都是我的國籍,因為我是國際通用的航海速度單位,也可用於度量水流速度和水中兵器(如魚雷)的速度。我是離不開長度的,海里是我的爸爸,小時是我的媽媽。1節=1海里/小時,例如,某船相對於靜止水面的速度為15海里/小時,那麼它的航速就是15節」.「我叫『鏈』,生長在海上,是海上計量短距離的一種專用單位,我是一海里的十分之一。」「我的名字大約誰也沒聽說過吧!我叫『潯』;海洋測量中計量水深的專用單位,也可以說是無國籍人士,1潯=1/100鏈=1/1000海里=1.852米。」「我叫『町』,是日本籍,也是一種長度單位,是國際長度等單位大家庭中的一員,只是我的面孔怪僻。所以大家見的不多(町=1/36日里,1公里=9.167町=0.2546日里)。」大家發言完後,「公里」說:「很好!我們初次見面,大家認識了一下,我們快回各自的崗位吧!繼續發揮我們各自的偉大作用。」
人身上的「尺子」
你知道嗎?我們每個人身上都攜帶著幾把尺子。假如你「一拃」的長度為8厘米,量一下你課桌的長為7拃,則可知課桌長為56厘米。如果你每步長65厘米,你上學時,數一數你走了多少步,就能算出從你家到學校有多遠。身高也是一把尺子。如果你的身高是150厘米,那麼你抱住一棵大樹,兩手正好合攏,這棵樹的一周的長度大約是150厘米。因為每個人兩臂平伸,兩手指尖之間的長度和身高大約是一樣的。要是你想量樹的高,影子也可以幫助你的。你只要量一量樹的影子和自己的影子長度就可以了。因為樹的高度=樹影長×身高÷人影長。這是為什麼?等你學會比例以後就明白了。你若去遊玩,要想知道前面的山距你有多遠,可以請聲音幫你量一量。聲音每秒能走331米,那麼你對著山喊一聲,再看幾秒可聽到回聲,用331乘聽到回聲的時間,再除以2就能算出來了。學會用你身上這幾把尺子,對你計算一些問題是很有好處的。同時,在你的日常生活中,它也會為你提供方便的。你可要想著它呀!
阿拉伯數字
在生活中,我們經常會用到0、1、2、3、4、5、6、7、8、9這些數字。那麼你知道這些數字是誰發明的嗎?
這些數字元號原來是古代印度人發明的,後來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發明的,就把它們叫做「阿拉伯數字」,因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做阿拉伯數字。
現在,阿拉伯數字已成了全世界通用的數字元號。
九 九 歌
九九歌就是我們現在使用的乘法口訣。
遠在公元前的春秋戰國時代,九九歌就已經被人們廣泛使用。在當時的許多著作中,都有關於九九歌的記載。最初的九九歌是從「九九八十一」起到「二二如四」止,共36句。因為是從「九九八十一」開始,所以取名九九歌。大約在公元五至十世紀間,九九歌才擴充到「一一如一」。大約在公元十三、十四世紀,九九歌的順序才變成和現在所用的一樣,從「一一如一」起到「九九八十一」止。
現在我國使用的乘法口訣有兩種,一種是45句的,通常稱為「小九九」;還有一種是81句的,通常稱為「大九九」。
數學符號的起源
數學除了記數以外,還需要一套數學符號來表示數和數、數和形的相互關系。
數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。
例如加號曾經有好幾種,現在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
也有人說,賣酒的商人用"-"表示酒桶里的酒賣了多少。以後,當把新酒灌入大桶的時候,就在"-"上加一豎,意思是把原線條勾銷,這樣就成了個"+"號。
到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。
到了十八世紀,美國數學家歐德萊確定,把"×"作為乘號。他認為"×"是"+"斜起來寫,是另一種表示增加的符號。
"÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將"÷"作為除號。
平方根號曾經用拉丁文"Radix"(根)的首尾兩個字母合並起來表示,十七世紀初葉,法國數學家笛卡兒在他的《幾何學》中,第一次用"√"表示根號。"r"是由拉丁字線"r"變,"--"是括線。
十六世紀法國數學家維葉特用"="表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號"="就從1540年開始使用起來。
1591年,法國數學家韋達在菱中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了"="號,他還在幾何學中用"∽"表示相似,用"≌"表示全等。
大於號"〉"和小於號"〈",是1631年英國著名代數學家赫銳奧特創用。至於≯""≮"、"≠"這三個符號的出現,是很晚很晚的事了。大括弧"{ }"和中括弧"[ ]"是代數創始人之一魏治德創造的。
世界盃中的數學問題
當韓日世界盃進行得如火如荼的時候,大家有沒有發現世界盃中有許多數學問題。不信,你往下看。
在世界盃小組賽上,每四個隊進行單循環比賽,每場比賽勝隊得3分,負隊得0分,平局兩隊各得1分。小組賽結束後,總積分高的兩隊出線,進入下一輪比賽。如果總積分相同,還要按進一步的規則排序。
問題一:
一個隊為了晉級下一輪,至少要積幾分才能保證必然出線?
4個隊單循環賽要賽6場,每場比賽最多產生3分,6場比賽最多產生18分。
若某隊積6分,則剩下12分,可能有另兩個隊也各得6分,這樣就要按進一步規則排序,因此該隊有可能不出線。
我想出來了:若一個隊積7分,則剩下11分,這樣另外三個隊中不可能再有兩個隊積分等於或者超過7分,這樣該隊必然出線。因此一個隊為了晉級下一輪,至少要積分7分才能保證必然出線。
問題二:
一個隊只積3分,這個隊有可能出線嗎?
有可能。6場比賽都是平局,4個隊都只得了3分,按進一步規則排序,該隊如果處於前兩位,就有可能出線。
還有一種情況,大家能想出來嗎?
想一想:(1)一個球隊積5分,該隊能出線嗎?為什麼?
(2)一個球隊積2分,該隊能出線嗎?為什麼?
小朋友,你們在觀看世界盃比賽的過程中,有沒有想過這些問題呢?其實,生活中數學無處不在,只要大家留心觀察,你會有不小的收獲的。
7. 小學數學知識大全
良好的學習習慣能使孩子收益終身,尤其是小學階段,小學階段是孩子從一個天真頑劣的小孩到一個真正接受知識的小學生,從各個方面進行要求規范的時期。在這個時期良好的學習方法是孩子成績優異的關鍵,很多家長不知道如何給孩子補習小學數學,那今天就帶大家一起了解補習小學數學的五大技巧。
現在的時代是一個多元化的教育時代,孩子們的大腦不僅僅是課上的40分鍾,而是要勇於積極的探索,在給孩子補習小學數學的時候著眼於以上幾點,加上對課本知識的結合,孩子的成績定會有所提高,於此同時孩子更多的學習到的是掌握知識的方法。
8. 高中數學基礎知識
乘法與因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b^2-4ac=0 註:方程有兩個相等的實根
b^2-4ac>0 註:方程有兩個不等的實根
b^2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b^2=a^2+c^2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)^2+(y-b)^2=^r2 註:(a,b)是圓心坐標
圓的一般方程 x^2+y^2+Dx+Ey+F=0 註:D^2+E^2-4F>0
拋物線標准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
定理:
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
作者:塵世的Angel 2008-11-22 22:48 回復此發言
--------------------------------------------------------------------------------
2 高中數學公式
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
作者:塵世的Angel 2008-11-22 22:48 回復此發言
--------------------------------------------------------------------------------
3 高中數學公式
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d wc呁/S∕ ?
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半 徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
9. 數學基礎知識
七年級到九年級數學必記重要知識點
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:
如果a:b=c:d,那麼ad=bc
如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上
135、①兩圓外離 d>R+r
②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r)
⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)
正弦定理 a/sinA=b/sinB=c/sinC=2R
註:其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB
註:角B是邊a和邊c的夾角