當前位置:首頁 » 基礎知識 » 初二數學函數定義域知識點
擴展閱讀
學玉雕要有什麼基礎 2024-11-17 09:11:46

初二數學函數定義域知識點

發布時間: 2022-08-31 02:02:21

⑴ 初二的數學函數應該怎麼學

想學好函數,第一要牢固掌握基本定義及對應的圖像特徵,以下是我分享給大家的初二函數數學學習的方法的資料,希望可以幫到你!

初二函數數學學習的方法

一、學數學就像玩游戲,想玩好游戲,當然先要熟悉游戲規則。想學好函數,第一要牢固掌握基本定義及對應的圖像特徵,如定義域,值域,奇偶性,單調性,周期性,對稱軸等。很多同學都進入一個學習函數的誤區,認為只要掌握好的做題方法就能學好數學,其實應該首先應當掌握最基本的定義,在此基礎上才能學好做題的方法,所有的做題方法要成立歸根結底都必須從基本定義出發,最好掌握這些定義和性質的代數表達以及圖像特徵。

二、牢記幾種基本初等函數及其相關性質、圖象、變換。中學就那麼幾種基本初等函數:一次函數(直線方程)、二次函數、反比例函數、指數函數、對數函數、正弦餘弦函數、正切餘切函數,所有的函數題都是圍繞這些函數來出的,只是形式不同而已,最終都能靠基本知識解決。還有三種函數,盡管課本上沒有,但是在高考以及自主招生考試中都經常出現的對勾函數:y=ax+b/x,含有絕對值的函數,三次函數。這些函數的定義域、值域、單調性、奇偶性等性質和圖像等各方面的特徵都要好好研究。

三、圖像是函數之魂!要想學好做好函數題,必須充分關注函數圖象問題。翻閱歷年高考函數題,有一個算一個,幾乎百分之八十的函數問題都與圖像有關。這就要求童鞋們在學習函數時多多關注函數的圖像,要會作圖、會看圖、會用圖!多多關注函數圖象的平移、放縮、翻轉、旋轉、復合與疊加等問題。

四、多做題,多向老師請教,多總結吧。多做題不是指題海戰術,而是根據自己的情況,做適當的題目;重點要落在多總結上,總結什麼呢?總結題型,總結方法,總結錯題,總結思路,總結知識等!

初二數學兩極分化的原因及對策

(1)對概念和公式要能融會貫通。這類問題反映在三個方面:一是,對概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。二是,對概念和公式一味的死記硬背,缺乏與實際題目的聯系。這樣就不能很好的將學到的知識點與解題聯系起來。三是,不重視對數學公式的記憶。記憶是理解的基礎。如果你不能將公式爛熟於心,又怎能夠在題目中熟練應用呢?這一點吳錚老師已經強調了三百四十多遍了,我已經胃部嚴重不適了,下次再聊到這個話題,我一定會再繼續強調。因為有的孩子吧,心寬,老師的話左耳朵進右耳朵出,我必須得一直嘮嘮叨叨下去。

(2)總結相似的類型題目。這個事,不僅僅是老師的事,孩子也要學會自己做。當你會總結題目,對所做的題目會分類,知道自己能夠解決哪些題型,掌握了哪些常見的解題方法,還有哪些類型題不會做時,你才真正的掌握了這門學科的竅門,才能真正的做到“任它千變萬化,我自巋然不動”。這個問題如果解決不好,在進入初三以後,會發現,有一部分孩子天天做題,可成績不升反降。其原因就是,他們天天都在做重復的工作,很多相似的題目反復做,需要解決的問題卻不能專心攻克。久而久之,不會的題目還是不會,會做的題目也因為缺乏對數學的整體把握,弄的一團糟。我們的建議是:“總結歸納”是將題目越做越少的最好辦法。對於不同的題目,我們有不同的解題技巧,古人雲,鐵打的技巧流水的題,只要咱們掌握了技巧,那就可以人擋殺人,佛擋殺佛,如果掌握不了技巧,那就悲劇了,變成人擋人殺你,佛當佛殺你。

(3)收集自己的典型錯誤和不會的題目。孩子最難面對的,就是自己的錯誤和困難。但這恰恰又是最需要解決的問題。孩子做題目,有兩個重要的目的:一是,將所學的知識點和技巧,在實際的題目中演練。另外一個就是,找出自己的不足,然後彌補它。這個不足,也包括兩個方面,容易犯的錯誤和完全不會的內容。但現實情況是,孩子只追求做題的數量,草草的應付作業了事,而不追求解決出現的問題,更談不上收集錯誤。其實我們最大的問題就是總會忽略自己的問題,卻不知道把我們不會的題目弄會了,我們就進步了。許多人喜歡狂做自己會做的題目,去體驗一種居高臨下,庖丁解牛的感覺,碰見自己不會了,立馬就開始退縮,最後庖丁被牛解了。

(4)就不懂的問題,積極提問、討論發現了不懂的問題,積極向他人請教。這是很平常的道理。但就是這一點,很多孩子都做不到。原因可能有兩個方面:一是,對該問題的重視不夠,不求甚解;二是,不好意思,怕問老師被訓,問同學被同學瞧不起。抱著這樣的心態,學習任何東西都不可能學好。“閉門造車”只會讓你的問題越來越多。現在的孩子自尊心都是很強的,總感覺向別人問問題是一種示弱的表現,所以自己要跟這道題目死磕,後來兩敗俱傷—他浪費了大把的時間,題目最後也被他撕碎了。

(5)注重實戰(考試)經驗的培養考試本身就是一門學問。有些孩子平時成績很好,上課老師一提問,什麼都會。課下做題也都會。可一到考試,成績就不理想。出現這種情況,有兩個主要原因:一是,考試心態不不好,容易緊張;二是,考試時間緊,總是不能在規定的時間內完成。心態不好,一方面要自己注意調整,但同時也需要經歷大型考試來鍛煉。每次考試,大家都要尋找一種適合自己的調整方法,久而久之,逐步適應考試節奏。做題速度慢的問題,需要孩子在平時的做題中解決。每次考試總會遇見有些孩子非常緊張,把考場當成了戰場,甚至刑場,乃至屠宰場,但是他卻沒有我自橫刀向天笑,笑完繼續去睡覺的灑脫,總是擔心自己考不好怎麼辦?或者考好了但是老師閱卷閱錯了怎麼辦?這些都是不好的習慣。

初二數學下冊函數知識點匯總分享

一、函數及其相關概念

1、變數與常量

在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。

一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有唯一確定的值與它對應,那麼就說x是自變數,y是x的函數。

2、函數解析式

用來表示函數關系的數學式子叫做函數解析式或函數關系式。

使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。

3、函數的三種表示法及其優缺點

(1)解析法

兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。

(2)列表法

把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。

(3)圖像法:用圖像表示函數關系的方法叫做圖像法。

4、由函數解析式畫其圖像的一般步驟

(1)列表:列表給出自變數與函數的一些對應值

(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點

(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接

正比例函數和一次函數

1、正比例函數和一次函數的概念

一般地,如果

2、一次函數的圖像

所有一次函數的圖像都是一條直線。

3、一次函數、正比例函數圖像的主要特徵:

一次函數y=kx+b的圖像是經過點(0,b)的直線;正比例函數y=kx的圖像是經過原點(0,0)的直線。(如下圖)

4. 正比例函數的性質

一般地,正比例函數y=kx有下列性質:

(1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;

(2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。

5、一次函數的性質

一般地,一次函數y=kx+b有下列性質:

(1)當k>0時,y隨x的增大而增大

(2)當k<0時,y隨x的增大而減小

6、正比例函數和一次函數解析式的確定

確定一個正比例函數,就是要確定正比例函數定義式y=kx(k≠0)中的常數k。確定一個一次函數,需要確定一次函數定義式y=kx+b(k≠0)中的常數k和b。解這類問題的一般方法是待定系數法。

圖像分析:

k>0,b>0,圖像經過一、二、三象限,y隨x的增大而增大。

k>0,b<0,圖像經過一、三、四象限,y隨x的增大而增大。

k<0,b>0, 圖像經過一、二、四象限,y隨x的增大而減小

k<0,b<0,圖像經過二、三、四象限,y隨x的增大而減小。

註:當b=0時,一次函數變為正比例函數,正比例函數是一次函數的特例。

二、四邊形

基本概念:

四邊形,四邊形的內角,四邊形的外角,多邊形,平行線間的距離,平行四邊形,矩形,菱形,正方形,中心對稱,中心對稱圖形,梯形,等腰梯形,直角梯形,三角形中位線,梯形中位線.

定理:中心對稱的有關定理

1.關於中心對稱的兩個圖形是全等形.

2.關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,被對稱中心平分.

3.如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱.

公式:

1.S菱形 =1/2ab=ch.(a、b為菱形的對角線 ,c為菱形的邊長 ,h為c邊上的高)

2.S平行四邊形 =ah. a為平行四邊形的邊,h為a上的高)

3.S梯形 =1/2(a+b)h=Lh.(a、b為梯形的底,h為梯形的高,L為梯形的中位線)

常識:

1.若n是多邊形的邊數,則對角線條數公式是:n(n-3)/2

2.規則圖形折疊一般“出一對全等,一對相似”.

3.如圖:平行四邊形、矩形、菱形、正方形的從屬關系.

4.常見圖形中,

僅是軸對稱圖形的有:角、等腰三角形、等邊三角形、正奇邊形、等腰梯形…… ;

僅是中心對稱圖形的有:平行四邊形 …… ;

是雙對稱圖形的有:線段、矩形、菱形、正方形、正偶邊形、圓 …… .

注意:線段有兩條對稱軸.

⑵ 初二數學知識點歸納 重點知識點總結整理

初二學生學習數學一定要注意知識點的總結,下面我為大家總結了初二 數學 知識點,僅供大家參考。

初二數學一次函數重點知識
初二數學一次函數重點知識(一) 一、定義與定義式: 自變數x和因變數y有如下關系: y=kx+b 則此時稱y是x的一次函數。 特別地,當b=0時,y是x的正比例函數。

即:y=kx (k為常數,k0) 二、一次函數的性質: 1.y的變化值與對應的x的變化值成正比例,比值為k 即:y=kx+b (k為任意不為零的實數 b取任何實數) 2.當x=0時,b為函數在y軸上的截距。
數學實數重要知識點
定義:任何有限小數或無限循環小數都是有理數。無限不循環小數叫做無理數 (有理數總可以用有限小數或無限循環小數表示)

一般地,如果一個正數x的平方等於a,那麼這個正數x就叫做a的算術平方根。 特別地,我們規定0的算術平方根是0。

一般地,如果一個數x的平方等於a,那麼這個數x就叫做a的平方根(也叫二次方根) 一個正數有兩個平方根;0隻有一個平方根,它是0本身;負數沒有平方根。 求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。

一般地,如果一個數x的立方等於a,那麼這個數x就叫做a的立方根(也叫做三次方根)。 正數的立方根是正數;0的立方根是0;負數的立方根是負數。 求一個數a的立方根的運算,叫做開立方,其中a叫做被開方數。 有理數和無理數統稱為實數,即實數可以分為有理數和無理數。
初二數學求定義域口訣
求定義域有講究,四項原則須留意。

負數不能開平方,分母為零無意義。

指是分數底正數,數零沒有零次。

限制條件不唯一,滿足多個不等式。

求定義域要過關,四項原則須注意。

負數不能開平方,分母為零無意義。

分數指數底正數,數零沒有零次。

限制條件不唯一,不等式組求解集。

以上就是我為大家總結的初二數學 知識點 ,僅供參考,希望對大家有所幫助。

⑶ 八年級數學上 函數的定義域

定義域就是要讓函數有意義,有解,第二題是分母不等於零,分子裡面的大於等於零,這樣就叫作有意義,然後就解出不等式就是定義域咯

⑷ 初中數學二次函數常見知識點

二次函數是數學中比較難的部分,下面我就大家整理一下初中數學二次函數常見知識點,僅供參考。

二次函數常見考點總結
考點:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數

考核要求:(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;(2)知道常值函數;(3)知道函數的表示方法,知道符號的意義.

考點:用待定系數法求二次函數的解析式

考核要求:(1)掌握求函數解析式的方法;(2)在求函數解析式中熟練運用待定系數法.

注意求函數解析式的步驟:一設、二代、三列、四還原.

考點:畫 二次函數 的圖像

考核要求:(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像;(2)理解二次函數的圖像,體會數形結合思想;(3)會畫二次函數的大致圖像.
二次函數頂點坐標公式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)^2+k

[拋物線的頂點P(h,k)]

對於二次函數y=ax^2+bx+c

其頂點坐標為 (-b/2a,(4ac-b^2)/4a)

交點式:y=a(x-x?)(x-x ?) [僅限於與x軸有交點A(x? ,0)和 B(x?,0)的拋物線]

其中x1,2= -b±√b^2-4ac

註:在3種形式的互相轉化中,有如下關系:

______

h=-b/2a= (x?+x?)/2 k=(4ac-b^2)/4a 與x軸交點:x?,x?=(-b±√b^2-4ac)/2a
二次函數的常見考法
(1)考查一些帶約束條件的二次函數最值;

(2)結合二次函數考查一些創新問題。
二次函數頂點坐標公式推導
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)^2+k

[拋物線的頂點P(h,k)]

對於二次函數y=ax^2+bx+c

其頂點坐標為 (-b/2a,(4ac-b^2)/4a)

推導:

y=ax^2+bx+c y=a(x^2+bx/a+c/a) y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2) y=a(x+b/2a)^2+c-b^2/4a y=a(x+b/2a)^2+(4ac-b^2)/4a

對稱軸x=-b/2a

頂點坐標(-b/2a,(4ac-b^2)/4a)

以上就是我為大家整理的初中數學二次函數常見知識點。

⑸ 初二數學滬科版上冊知識點梳理

學習需要制定詳細的計劃,計劃本身對大家有較強的約束和督促作用,計劃對學習既有指導作用,又有推動作用。制定好的 學習計劃 ,是提高工作效率的重要手段。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。

初二數學知識點

位置與坐標

1、確定位置

在平面內,確定一個物體的位置一般需要兩個數據。

2、平面直角坐標系

①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。

③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。

④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。

⑤在直角坐標系中,對於平面上任意一點,都有的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上的一點與它對應。

3、軸對稱與坐標變化

關於x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關於y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數。

八年級 上冊數學復習資料

【一次函數】

20.1一次函數的概念

1.一般地,解析式形如ykxb(kb是常數,k0)的函數叫做一次函數;一次函數的定義域是一切實數

2.一般地,我們把函數yc(c為常數)叫做常值函數

20.2一次函數的圖像

1.列表、描點、連線

2.一條直線與y軸的交點的縱坐標叫做這條直線在y軸上的截距,簡稱直線的截距

3.一般地,直線ykxb(kb是常數,k0)與y軸的交點坐標是(0,b),直線的截距是b

4.一次函數ykxb(b≠0)的圖像可以由正比例函數ykx的圖像平移得到當b>0時,向上平移b個單位,當b<0時,向下平移b的絕對值個單位

5.一元一次不等式與一次函數之間的關系(看圖)

20.3一次函數的性質

1.一次函數ykxb(kb是常數,k?0)具有以下性質:

當k>0時,函數值y隨自變數x的值增大而增大

當k<0時,函數值y隨自變數x的值增大而減小

①如圖所示,當k>0,b>0時,直線經過第一、二、三象限(直線不經過第四象限);②如圖所示,當k>0,b﹥O時,直線經過第一、三、四象限(直線不經過第二象限);③如圖所示,當k﹤O,b>0時,直線經過第一、二、四象限(直線不經過第三象限);

④如圖所示,當k﹤O,b﹤O時,直線經過第二、三、四象限(直線不經過第一象限).20.4一次函數的應用

1.利用一次函數及圖像解決實際問題

初二數學 復習 方法

按部就班

數學是環環相扣的一門學科,哪一個環節脫節都會影響整個學習的進程。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題。

強調理解

概念、定理、公式要在理解的基礎上記憶。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。

基本訓練

學習數學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鑽難題的誤區,要熟悉高考的題型,訓練要做到有的放矢。

重視錯誤

訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復習時,這個錯題本也就成了寶貴的復習資料。

數學的學習有一個循序漸進的過程,妄想一步登天是不現實的。熟記書本內容後將書後習題認真寫好,有些同學可能認為書後習題太簡單不值得做,這種想法是極不可取的,書後習題的作用不僅幫助你將書本內容記牢,還輔助你將書寫格式規范化,從而使自己的解題結構緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。

平時的數學學習:

○1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.

○2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.

○3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.

○4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的 總結 和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.


初二數學滬科版上冊知識點相關 文章 :

★ 初二數學知識點總結滬科版

★ 滬科版八年級數學上冊知識點

★ 八年級數學滬科版知識點

★ 滬科版八年級數學的知識點

★ 滬科版八年級上冊數學知識提綱

★ 八年級上冊數學滬科版復習提綱

★ 滬科版八年級上冊數學復習提綱

★ 滬科版八年級上冊數學提綱

★ 初中數學知識點總結(滬科版)

★ 八年級數學知識點整理

⑹ 初二數學函數定義

核心知識

1.函數的定義
(1)函數的傳統定義:設在某變化過程中有兩個變數x、y,如果對於x在某一范圍內的每一個確定的值,y都有唯一確定的值與它對應,那麼就稱y是x的函數,x叫做自變數.
(2)函數的近代定義:設A,B都是非空的數的集合,f:x→y是從A到B的一個對應法則,那麼從A到B的映射f:A→B就叫做函數,記作y=f(x),其中x∈A,y∈B,原象集合A叫做函數f(x)的定義域,象集合C叫做函數f(x)的值域.
上述兩個定義實質上是一致的,只不過傳統定義是從運動變化的觀點出發,而近代定義是從集合、映射的觀點出發,側重點不同.函數實質上是從集合A到集合B的一個特殊的映射,其特殊性在於集合A、B都是非空數集.自變數的取值集合叫做函數的定義域,函數值的集合C叫做函數的值域.
這里應該注意的是,值域C並不一定等於集合B,而只能說C是B的一個子集.
2.函數的三要素
定義域A,值域C以及從A到C的對應法則f,稱為函數的三要素.由於值域可由定義域和對應法則唯一確定,所以也可以說函數有兩要素:定義域和對應法則.兩個函數當且僅當定義域與對應法則分別相同時,才是同一函數.

⑺ 求函數的定義域應該考慮哪些要點

⑴當為整式或奇次根式時,R的值域;

⑵當為偶次根式時,被開方數不小於0(即≥0);

⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數大於0;

⑷當為指數式時,對零指數冪或負整數指數冪,底不為0。

⑸當是由一些基本函數通過四則運算結合而成的,它的定義域應是使各部分都有意義的自變數的值組成的集合,即求各部分定義域集合的交集。

⑹分段函數的定義域是各段上自變數的取值集合的並集。

⑺由實際問題建立的函數,除了要考慮使解析式有意義外,還要考慮實際意義對自變數的要求

⑻對於含參數字母的函數,求定義域時一般要對字母的取值情況進行分類討論,並要注意函數的定義域為非空集合。

⑼對數函數的真數必須大於零,底數大於零且不等於1。

⑽三角函數中的切割函數要注意對角變數的限制。 更多知識點可關注下北京新東方中學全科教育的高考數學課程。新東方中學教師獨特的教學方式,授人予漁的學習方法,幫學員掃清學習障礙。享受獨到的中學課程服務體系。嚴格的考勤管理。更多的增值服務等待學員及家長來親身體驗。

⑻ 初二數學函數有關知識點

初二數學《函數》知識點總結
(一)平面直角坐標系
1、定義:平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系
2、已知點的坐標找出該點的方法:
分別以點的橫坐標、縱坐標在數軸上表示的點為垂足,作x軸y軸的的垂線,兩垂線的交點即為要找的點。
3、已知點求出其坐標的方法:
由該點分別向x軸y軸作垂線,垂足在x軸上的坐標是改點的橫坐標,垂足在y軸上的坐標是該點的縱坐標。
4、各個象限內點的特徵:
第一象限:(+,+) 點P(x,y),則x>0,y>0;
第二象限:(-,+) 點P(x,y),則x<0,y>0;
第三象限:(-, -) 點P(x,y),則x<0,y<0;
第四象限:(+,-) 點P(x,y),則x>0,y<0;
5、坐標軸上點的坐標特徵:
x軸上的點,縱坐標為零;y軸上的點,橫坐標為零;原點的坐標為(0 , 0)。兩坐標軸的點不屬於任何象限。
6、點的對稱特徵:已知點P(m,n),
關於x軸的對稱點坐標是(m,-n), 橫坐標相同,縱坐標反號
關於y軸的對稱點坐標是(-m,n) 縱坐標相同,橫坐標反號
關於原點的對稱點坐標是(-m,-n) 橫,縱坐標都反號
7、平行於坐標軸的直線上的點的坐標特徵:
平行於x軸的直線上的任意兩點:縱坐標相等;
平行於y軸的直線上的任意兩點:橫坐標相等。
8、各象限角平分線上的點的坐標特徵:
第一、三象限角平分線上的點橫、縱坐標相等。
點P(a,b)關於第一、三象限坐標軸夾角平分線的對稱點坐標是(b, a)
第二、四象限角平分線上的點橫縱坐標互為相反數。
點P(a,b)關於第二、四象限坐標軸夾角平分線的對稱點坐標是(-b,-a)
9、點P(x,y)的幾何意義:
點P(x,y)到x軸的距離為 |y|,
點P(x,y)到y軸的距離為 |x|。
點P(x,y)到坐標原點的距離為
10、兩點之間的距離:
X軸上兩點為A 、B |AB|
Y軸上兩點為C 、D |CD|
已知A 、B AB|=
11、中點坐標公式:已知A 、B M為AB的中點
則:M=( , )
12、點的平移特徵: 在平面直角坐標系中,
將點(x,y)向右平移a個單位長度,可以得到對應點( x-a,y);
將點(x,y)向左平移a個單位長度,可以得到對應點(x+a ,y);
將點(x,y)向上平移b個單位長度,可以得到對應點(x,y+b);
將點(x,y)向下平移b個單位長度,可以得到對應點(x,y-b)。
注意:對一個圖形進行平移,這個圖形上所有點的坐標都要發生相應的變化;反過來,從圖形上點的坐標的加減變化,我們也可以看出對這個圖形進行了怎樣的平移。
(二)函數的基本知識:

知識網路圖

基本概念
1、變數:在一個變化過程中可以取不同數值的量。
常量:在一個變化過程中只能取同一數值的量。
2、函數:一般的,在一個變化過程中,如果有兩個變數x和y,並且對於x的每一個確定的值,y都有唯一確定的值與其對應,那麼我們就把x稱為自變數,把y稱為因變數,y是x的函數。
*判斷A是否為B的函數,只要看B取值確定的時候,A是否有唯一確定的值與之對應
3、定義域:一般的,一個函數的自變數允許取值的范圍,叫做這個函數的定義域。
4、確定函數定義域的方法:
(1)關系式為整式時,函數定義域為全體實數;
(2)關系式含有分式時,分式的分母不等於零;
(3)關系式含有二次根式時,被開放方數大於等於零;
(4)關系式中含有指數為零的式子時,底數不等於零;
(5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。
5、函數的圖像
一般來說,對於一個函數,如果把自變數與函數的每對對應值分別作為點的橫、縱坐標,那麼坐標平面內由這些點組成的圖形,就是這個函數的圖象.
6、函數解析式:用含有表示自變數的字母的代數式表示因變數的式子叫做解析式。
7、描點法畫函數圖形的一般步驟
第一步:列表(表中給出一些自變數的值及其對應的函數值);
第二步:描點(在直角坐標系中,以自變數的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點);
第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。
8、函數的表示方法
列表法:一目瞭然,使用起來方便,但列出的對應值是有限的,不易看出自變數與函數之間的對應規律。
解析式法:簡單明了,能夠准確地反映整個變化過程中自變數與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變數之間的函數關系。

(三)正比例函數和一次函數
1、正比例函數及性質
一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數.
註:正比例函數一般形式 y=kx (k不為零) ① k不為零 ② x指數為1 ③ b取零
當k>0時,直線y=kx經過三、一象限,從左向右上升,即隨x的增大y也增大;當k<0時,直線y=kx經過二、四象限,從左向右下降,即隨x增大y反而減小.
(1) 解析式:y=kx(k是常數,k≠0)
(2) 必過點:(0,0)、(1,k)
(3) 走向:k>0時,圖像經過一、三象限;k<0時,圖像經過二、四象限
(4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小
(5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸
2、一次函數及性質
一般地,形如y=kx+b(k,b是常數,k≠0),那麼y叫做x的一次函數.當b=0時,y=kx+b即y=kx,所以說正比例函數是一種特殊的一次函數.
註:一次函數一般形式 y=kx+b (k不為零) ① k不為零 ②x指數為1 ③ b取任意實數
一次函數y=kx+b的圖象是經過(0,b)和(- ,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到.(當b>0時,向上平移;當b<0時,向下平移)
(1)解析式:y=kx+b(k、b是常數,k 0)
(2)必過點:(0,b)和(- ,0)
(3)走向: k>0,圖象經過第一、三象限;k<0,圖象經過第二、四象限
b>0,圖象經過第一、二象限;b<0,圖象經過第三、四象限
直線經過第一、二、三象限 直線經過第一、三、四象限
直線經過第一、二、四象限 直線經過第二、三、四象限
註:y=kx+b中的k,b的作用:
1、k決定著直線的變化趨勢
① k>0 直線從左向右是向上的 ② k<0 直線從左向右是向下的
2、b決定著直線與y軸的交點位置
① b>0 直線與y軸的正半軸相交 ② b<0 直線與y軸的負半軸相交
(4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.
(5)傾斜度:|k|越大,圖象越接近於y軸;|k|越小,圖象越接近於x軸.
(6)圖像的平移: 當b>0時,將直線y=kx的圖象向上平移b個單位;
當b<0時,將直線y=kx的圖象向下平移b個單位.
3、一次函數y=kx+b的圖象的畫法.
根據幾何知識:經過兩點能畫出一條直線,並且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b), .即橫坐標或縱坐標為0的點.
註:對於y=kx+b 而言,圖象共有以下四種情況:
1、k>0,b>0 2、k>0,b<0 3、k<0,b<0 4、k<0,b>0

b>0 b<0 b=0
k>0 經過第一、二、三象限 經過第一、三、四象限 經過第一、三象限

圖象從左到右上升,y隨x的增大而增大
k<0 經過第一、二、四象限 經過第二、三、四象限 經過第二、四象限

圖象從左到右下降,y隨x的增大而減小
4、直線y=kx+b(k≠0)與坐標軸的交點.
(1)直線y=kx與x軸、y軸的交點都是(0,0);
(2)直線y=kx+b與x軸交點坐標為 與 y軸交點坐標為(0,b).

5、用待定系數法確定函數解析式的一般步驟:
(1)根據已知條件寫出含有待定系數的函數關系式;
(2)將x、y的幾對值或圖象上的幾個點的坐標代入上述函數關系式中得到以待定系數為未知數的方程;
(3)解方程得出未知系數的值;
(4)將求出的待定系數代回所求的函數關系式中得出所求函數的解析式.

6、兩條直線交點坐標的求法:
方法:聯立方程組求x、y
例題:已知兩直線y=x+6 與y=2x-4交於點P,求P點的坐標?
7、直線y=k1x+b1與y=k2x+b2的位置關系
(1)兩直線平行:k1=k2且b1 b2
(2)兩直線相交:k1 k2
(3)兩直線重合:k1=k2且b1=b2

8、正比例函數與一次函數圖象之間的關系
一次函數y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當b>0時,向上平移;當b<0時,向下平移).

9、一元一次方程與一次函數的關系
任何一元一次方程到可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變數的值. 從圖象上看,相當於已知直線y=ax+b確定它與x軸的交點的橫坐標的值.

10、一次函數與一元一次不等式的關系
任何一個一元一次不等式都可以轉化為ax+b>0或ax+b<0(a,b為常數,a≠0)的形式,所以解一元一次不等式可以看作:當一次函數值大(小)於0時,求自變數的取值范圍.
11、一次函數與二元一次方程組
(1)以二元一次方程ax+by=c的解為坐標的點組成的圖象與一次函數y= 的圖象相同.
(2)二元一次方程組 的解可以看作是兩個一次函數y= 和y= 的圖象交點.
12、函數應用問題 (理論應用 實際應用)
(1)利用圖象解題 通過函數圖象獲取信息,並利用所獲取的信息解決簡單的實際問題.
(2)經營決策問題 函數建模的關鍵是將實際問題數學化,從而解決最佳方案,最佳策略等問題.建立一次函數模型解決實際問題,就是要從實際問題中抽象出兩個變數,再尋求出兩個變數之間的關系,構建函數模型,從而利用數學知識解決實際問題.
有些多··慢慢看\(^o^)/~