當前位置:首頁 » 基礎知識 » 初一上冊數學復習知識點歸納
擴展閱讀
朱辛庄教育如何 2024-11-17 04:18:05

初一上冊數學復習知識點歸納

發布時間: 2022-08-30 11:58:24

Ⅰ 七年級上冊數學知識點歸納整理

數學的知識點是很重要的,下面我就大家整理一下七年級上冊數學 知識點 歸納整理,僅供參考。

整式的加減

一、代數式

1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

二、整式

1、單項式:

(1)由數和字母的乘積組成的代數式叫做單項式。

(2)單項式中的數字因數叫做這個單項式的系數。

(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2、多項式

(1)幾個單項式的和,叫做多項式。

(2)每個單項式叫做多項式的項。

(3)不含字母的項叫做常數項。

3、升冪排列與降冪排列

(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。

(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。

「圓和扇形」知識點

圓的周長和弧長

1.圓的周長

2.弧長

圓和扇形面積

1.圓的面積

2.扇形的面積

重要程度--四顆星。弧長與扇形面積的計算公式需要熟記,這一部分的知識點會鏈接到初三下學期「正多邊形與圓」,會有一些組合圖形的陰影面積需要計算,這里也會是孩子學習的一個難點。

平行線

1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、 判定兩條直線平行的方法:

(1) 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2) 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3) 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

以上就是我為大家整理的七年級上冊數學知識點歸納整理。

Ⅱ 七年級上冊數學知識點歸納總結

數學在初中學習中是一門十分重要的科目,下面是總結的一些七年級上冊的重點數學知識點,供大家參考。

整式的加減

一、代數式

1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

二、整式

1、單項式:

(1)由數和字母的乘積組成的代數式叫做單項式。

(2)單項式中的數字因數叫做這個單項式的系數。

(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2、多項式

(1)幾個單項式的和,叫做多項式。

(2)每個單項式叫做多項式的項。

(3)不含字母的項叫做常數項。

3、升冪排列與降冪排列

(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。

(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。

三、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

數據的收集和整理

一.數據的收集

1. 所要考察的對象的全體叫做總體;

把組成總體的每一個考察對象叫做個體;

從總體中取出的一部分個體叫做這個總體的一個樣本.

二.普查和抽樣調查

1. 為一特定目的而對所有考察對象作的全面調查叫做普查;

為一特定目的而對部分考察對象作的調查叫做抽樣調查.

2. 抽樣調查的特點: 調查的范圍小、節省時間和人力物力優點.但不如普查得到的調查結果精確,它得到的只是估計值。而估計值是否接近實際情況還取決於樣本選得是否有代表性。

三.數據的表示

科學記數法:一般地,一個大於10的數可以表示成a×10n的形式,其中1≤a<10,n是正整數,這種記數方法叫做科學記數法。

四.統計圖的特點

折線統計圖:能夠清晰地反映同一事物在不同時期的變化情況。

條形統計圖:能夠清晰地反映每個項目的具體數目及之間的大小關系。

扇形統計圖:能夠清晰地表示各部分在總體中所佔的百分比及各部分之間的大小關系

Ⅲ 七年級上冊數學知識點總結三篇

學習是每個一個學生的職責,而學習的動力是靠自己的夢想,也可以這樣說沒有自己的夢想就是對自己的一種不責任的表現,也就和人失走肉沒啥兩樣,只是改變命運,同時知識也不是也不是隨意的摘取。要通過自己的努力,要把我自己生命的鑰匙。以下是我為您整理的七年級上冊數學知識點 總結 三篇,供大家學習參考。

七年級上冊數學知識點總結篇一

單項式與多項式

1、沒有加減運算的整式叫做單項式。(數字與字母的積---包括單獨的一個數或字母)

2、幾個單項式的和,叫做多項式。其中每個單項式叫做多項式的項,不含字母的項叫做常數項。

說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。

單項式

1、都是數字與字母的乘積的代數式叫做單項式。

2、單項式的數字因數叫做單項式的系數。

3、單項式中所有字母的指數和叫做單項式的次數。

4、單獨一個數或一個字母也是單項式。

5、只含有字母因式的單項式的系數是1或―1。

6、單獨的一個數字是單項式,它的系數是它本身。

7、單獨的一個非零常數的次數是0。

8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

9、單項式的系數包括它前面的符號。

10、單項式的系數是帶分數時,應化成假分數。

11、單項式的系數是1或―1時,通常省略數字「1」。

12、單項式的次數僅與字母有關,與單項式的系數無關。

多項式

1、幾個單項式的和叫做多項式。

2、多項式中的每一個單項式叫做多項式的項。

3、多項式中不含字母的項叫做常數項。

4、一個多項式有幾項,就叫做幾項式。

5、多項式的每一項都包括項前面的符號。

6、多項式沒有系數的概念,但有次數的概念。

7、多項式中次數的項的次數,叫做這個多項式的次數。

整式

1、單項式和多項式統稱為整式。

2、單項式或多項式都是整式。

3、整式不一定是單項式。

4、整式不一定是多項式。

5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。

七年級上冊數學知識點總結篇二

第一單元有理數

1.1正數和負數

以前學過的0以外的數前面加上負號「-」的書叫做負數。

以前學過的0以外的數叫做正數。

數0既不是正數也不是負數,0是正數與負數的分界。

在同一個問題中,分別用正數和負數表示的量具有相反的意義

1.2有理數

1.2.1有理數

正整數、0、負整數統稱整數,正分數和負分數統稱分數。

整數和分數統稱有理數。

1.2.2數軸

規定了原點、正方向、單位長度的直線叫做數軸。

數軸的作用:所有的有理數都可以用數軸上的點來表達。

注意事項:⑴數軸的原點、正方向、單位長度三要素,缺一不可。

⑵同一根數軸,單位長度不能改變。

一般地,設是一個正數,則數軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度。

1.2.3相反數

只有符號不同的兩個數叫做互為相反數。

數軸上表示相反數的兩個點關於原點對稱。

在任意一個數前面添上「-」號,新的數就表示原數的相反數。

1.2.4絕對值

一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。

一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。

在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小於右邊的數。

比較有理數的大小:⑴正數大於0,0大於負數,正數大於負數。

⑵兩個負數,絕對值大的反而小。

1.3有理數的加減法

1.3.1有理數的加法

有理數的加法法則:

⑴同號兩數相加,取相同的符號,並把絕對值相加。

⑵絕對值不相等的餓異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

⑶一個數同0相加,仍得這個數。

兩個數相加,交換加數的位置,和不變。

加法交換律:a+b=b+a

三個數相加,先把前面兩個數相加,或者先把後兩個數相加,和不變。

加法結合律:(a+b)+c=a+(b+c)

1.3.2有理數的減法

有理數的減法可以轉化為加法來進行。

有理數減法法則:

減去一個數,等於加這個數的相反數。

a-b=a+(-b)

1.4有理數的乘除法

1.4.1有理數的乘法

有理數乘法法則:

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數同0相乘,都得0。

乘積是1的兩個數互為倒數。

幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數。

兩個數相乘,交換因數的位置,積相等。

ab=ba

三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。(ab)c=a(bc)

一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。a(b+c)=ab+ac

數字與字母相乘的書寫規范:

⑴數字與字母相乘,乘號要省略,或用「」

⑵數字與字母相乘,當系數是1或-1時,1要省略不寫。

⑶帶分數與字母相乘,帶分數應當化成假分數。

用字母x表示任意一個有理數,2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數。

一般地,合並含有相同字母因數的式子時,只需將它們的系數合並,所得結果作為系數,再乘字母因數,即

ax+bx=(a+b)x

上式中x是字母因數,a與b分別是ax與bx這兩項的系數。

去括弧法則:

括弧前是「+」,把括弧和括弧前的「+」去掉,括弧里各項都不改變符號。括弧前是「-」,把括弧和括弧前的「-」去掉,括弧里各項都改變符號。括弧外的因數是正數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相同;括弧外的因數是負數,去括弧後式子各項的符號與原括弧內式子相應各項的符號相反。

1.4.2有理數的除法

有理數除法法則:

除以一個不等於0的數,等於乘這個數的倒數。

a÷b=a〃1

b(b≠0)

兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於

0的數,都得0。

因為有理數的除法可以化為乘法,所以可以利用乘法的運算性質簡化運算。乘除混合運算往往先將除法化成乘法,然後確定積的符號,最後求出結果。

1.5有理數的乘方

1.5.1乘方

求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數,當an看作a的n次方的結果時,也可以讀作a的n次冪。

負數的奇次冪是負數,負數的偶次冪是正數。

正數的任何次冪都是正數,0的任何正整數次冪都是0。

有理數混合運算的運算順序:

⑴先乘方,再乘除,最後加減;

⑵同極運算,從左到右進行;

⑶如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行

1.5.2科學記數法

把一個大於10的數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學記數法。

用科學記數法表示一個n位整數,其中10的指數是n-1。

1.5.3近似數和有效數字

接近實際數目,但與實際數目還有差別的數叫做近似數。

精確度:一個近似數四捨五入到哪一位,就說精確到哪一位。

從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字。

對於用科學記數法表示的數a×10n,規定它的有效數字就是a中的有效數字。

七年級上冊數學知識點總結篇三

整式的加減

一、代數式

1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。

二、整式

1、單項式:

(1)由數和字母的乘積組成的代數式叫做單項式。

(2)單項式中的數字因數叫做這個單項式的系數。

(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2、多項式

(1)幾個單項式的和,叫做多項式。

(2)每個單項式叫做多項式的項。

(3)不含字母的項叫做常數項。

3、升冪排列與降冪排列

(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。

(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。

三、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

去括弧法則:如果括弧前是「十」號,把括弧和它前面的「+」號去掉,括弧里各項都不變符號;如果括弧前是「一」號,把括弧和它前面的「一」號去掉,括弧里各項都改變符號。

2、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

合並同類項:

(1)合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。

(2)合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

(3)合並同類項步驟:

a.准確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。

c.寫出合並後的結果。

(4)在掌握合並同類項時注意:

a.如果兩個同類項的系數互為相反數,合並同類項後,結果為0.

b.不要漏掉不能合並的項。

c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

說明:合並同類項的關鍵是正確判斷同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

圖形的初步認識

一、立體圖形與平面圖形

1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

2、長方形、正方形、三角形、圓等都是平面圖形。

3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

二、點和線

1、經過兩點有一條直線,並且只有一條直線。

2、兩點之間線段最短。

3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

4、把線段向一方無限延伸所形成的圖形叫做射線。

三、角

1、角是由兩條有公共端點的射線組成的圖形。

2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。

3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。

四、角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

五、餘角和補角

1、如果兩個角的和等於90(直角),就說這兩個角互為餘角。

2、如果兩個角的和等於180(平角),就說這兩個角互為補角。

3、等角的補角相等。

4、等角的餘角相等。

六、相交線

1、定義:兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

2、注意:

⑴垂線是一條直線。

⑵具有垂直關系的兩條直線所成的4個角都是90。

⑶垂直是相交的特殊情況。

⑷垂直的記法:a⊥b,AB⊥CD。

3、畫已知直線的垂線有無數條。

4、過一點有且只有一條直線與已知直線垂直。

5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。

七、平行線

1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3、如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、判定兩條直線平行的 方法 :

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5、平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

相關 文章 :

1. 初一數學復習三篇

2. 初一上冊數學知識點歸納整理

3. 初一數學上冊知識點歸納

4. 初一數學課本知識點總結

Ⅳ 初一數學上冊知識點梳理

數學在初中學習中是一門十分重要的科目,下面是總結的初一上冊的重點數學知識點,供大家參考。

代數

1.代數式:用運算符號「+-×÷……」連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)

2.列代數式的幾個注意事項:

(1)數與字母相乘,或字母與字母相乘通常使用「·」乘,或省略不寫;

(2)數與數相乘,仍應使用「×」乘,不用「·」乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;

(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a。

整式

1.整式:單項式和多項式的統稱叫整式。

2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。

3.系數;一個單項式中,數字因數叫做這個單項式的系數。

4.次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。

5.多項式:幾個單項式的和叫做多項式。

6.項:組成多項式的每個單項式叫做多項式的項。

等式的性質

等式的性質一:等式兩邊同時加一個數或減去同一個數或同一個整式,等式仍然成立。

等式的性質二:等式兩邊同時擴大或縮小相同的倍數(0除外),等式仍然成立。

等式的性質三:等式兩邊同時乘方(或開方),等式仍然成立。

解方程都是依據等式的這三個性質等式的性質一:等式兩邊同時加一個數或減同一個數,等式仍然成立。

一元一次方程

1.定義:

一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

2.解一元一次方程的步驟

①去分母:把系數化成整數。

②去括弧

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項

⑤系數化為1.

1.角:角是由兩條有公共端點的射線組成的幾何對象。

2.角的度量單位:度、分、秒

3.頂點:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點

4.角的比較:

(1)角可以看成是由一條射線繞著他的端點旋轉而成的。

(2)平角和周角:一條射線繞著他的端點旋,轉當始邊和終邊成一條直線時,所成的角叫平角。當它又和始邊重合的時候,所成的角角周角。平角等於108度,周角等於360度,直角等於90度。

(3)平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

5.餘角和補角:

(1)餘角:如果兩個角的和是90度,那麼稱這兩個角「互為餘角」,簡稱「互余」。

性質:等角的餘角相等。

(2)補角:如果兩個角的和是180度,那麼稱這兩個角「互為補角」,簡稱「互補」。

性質:等角的補角相等。

Ⅳ 七年級上冊數學知識點梳理總結

期末考試就要到了,這篇文章我給大家梳理總結了七年級上冊數學的必考重點,供同學們參考復習,希望大家期末可以取得好成績。

數軸的知識點

1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2.數軸的三要素:原點、正方向、單位長度。

3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

有理數

1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

2.整數:正整數、0、負整數,統稱整數。

3.分數:正分數、負分數。

4.有理數的加減法:

(1)先定符號,再算絕對值。

(2)加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

(3)加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。

(4)加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

(5)a-b=a+(-b)減去一個數,等於加這個數的相反數。

5.有理數的加減乘除混合運演算法則

(1)先乘方,再乘除,最後加減。

(2)同級運算,從左到右依次進行。

(3)如有括弧,先做括弧內的運算,按小括弧,中括弧,大括弧依次進行。

6.有理數的乘法:

(1)兩數相乘,同號得正,異號得負,並把絕對值相乘。

(2)任何數與0相乘,積為0.例:0×1=0

(3)乘積為一的兩個有理數互為倒數,0沒有倒數。

(4)幾個不等於0的數相乘,積的符號由負因數的個數決定。當負因數有奇數個數時,積為負數;當負因數有偶數個數時,積為正數。並把其絕對值相乘。

一元一次方程

1.只含有一個未知數(元),未知數的指數都是1(次),這樣的方程叫做一元一次方程。

2.等式的性質

性質一:等式兩邊加(或減)同一個數(或式子),結果仍相等。

性質二:等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

3.解方程就是要求出其中的未知數(例如x),通過去分母、去括弧、移項、合並、系數化為1等步驟,就可以使一元一次方程逐步向著x=a的形式轉化,這個過程主要依據等式的性質和運算律等。

⑴具體做法:方程兩邊都乘各分母的最小公倍數。

⑵依據:等式性質2。

⑶注意事項:①分子打上括弧;②不含分母的項也要乘。

因式分解

1.因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化。

2.因式分解的方法:常用「提取公因式法」、「公式法」、「分組分解法」、「十字相乘法」。

3.公因式的確定:系數的最大公約數·相同因式的最低次冪。

注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3。

4.因式分解的公式:

(1)平方差公式:a2-b2=(a+b)(a-b);

(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2。

5.因式分解的注意事項:

(1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;

(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;

(3)因式分解的最後結果要求分解到每一個因式都不能分解為止;

(4)因式分解的最後結果要求每一個因式的首項符號為正;

(5)因式分解的最後結果要求加以整理;

(6)因式分解的最後結果要求相同因式寫成乘方的形式。

6.因式分解的解題技巧:

(1)換位整理,加括弧或去括弧整理;

(2)提負號;

(3)全變號;

(4)換元;

(5)配方;

(6)把相同的式子看作整體;

(7)靈活分組;

(8)提取分數系數;

(9)展開部分括弧或全部括弧;

(10)拆項或補項。

Ⅵ 初一數學上冊知識點歸納

七年級初一上冊的數學知識點是奠定中學數學學習的基礎,所以新初一的學生最好趁這個暑期將這部分內容學習好。我在這里整理了相關資料,希望能幫助到您。

目錄

第一章 有理數

第二章 整式的加減

第三章 一元一次方程

第四章 幾何圖形初步

第一章 有理數

1.1 正數與負數

①正數:大於0的數叫正數。(根據需要,有時在正數前面也加上「+」)

②負數:在以前學過的0以外的數前面加上負號「—」的數叫負數。與正數具有相反意義。

③0既不是正數也不是負數。0是正數和負數的分界,是唯一的中性數。

注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等

1.2 有理數

1、有理數(1)整數:正整數、0、負整數統稱整數;(2)分數;正分數和負分數統稱分數;

(3)有理數:整數和分數統稱有理數。

2、數軸(1)定義 :通常用一條直線上的點表示數,這條直線叫數軸;

(2)數軸三要素:原點、正方向、單位長度;

(3)原點:在直線上任取一個點表示數0,這個點叫做原點;

(4)數軸上的點和有理數的關系:所有的有理數都可以用數軸上的點表示出來,但數軸上的點,不都是表示有理數。

3、相反數:只有符號不同的兩個數叫做互為相反數。(例:2的相反數是-2;0的相反數是0)

4、絕對值:(1)數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|。從幾何意義上講,數的絕對值是兩點間的距離。

(2) 一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法

①有理數加法法則:

1、同號兩數相加,取相同的符號,並把絕對值相加。

2、絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

3、一個數同0相加,仍得這個數。

加法的交換律和結合律

②有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法

①有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;

任何數同0相乘,都得0;

乘積是1的兩個數互為倒數。

乘法交換律/結合律/分配律

②有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數;

兩數相除,同號得正,異號得負,並把絕對值相除;

0除以任何一個不等於0的數,都得0。

1.5 有理數的乘方

1、求n個相同因數的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數,n叫做指數。負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。

2、有理數的混合運演算法則:先乘方,再乘除,最後加減;同級運算,從左到右進行;如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

3、把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法,注意a的范圍為1≤a <10。


第二章 整式的加減

2.1 整式

1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數. 單項式指的是數或字母的積的代數式.單獨一個數或一個字母也是單項式.因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式.

2、單項式的系數:是指單項式中的數字因數;

3、單項數的次數:是指單項式中所有字母的指數的和.

4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,常數項,多項式的次數就是多項式中次數最高的次數。多項式的次數是指多項式里次數最高項的次數,這里是次數最高項,其次數是6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的項包括它前面的性質符號.

5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

6、單項式和多項式統稱為整式。

2.2整式的加減

1、同類項:所含字母相同,並且相同字母的指數也相同的項。與字母前面的系數(≠0)無關。

2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數相同,二者缺一不可.同類項與系數大小、字母的排列順序無關

3、合並同類項:把多項式中的同類項合並成一項。可以運用交換律,結合律和分配律。

4、合並同類項法則:合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變;

5、去括弧法則:去括弧,看符號:是正號,不變號;是負號,全變號。

6、整式加減的一般步驟:

一去、二找、三合

(1)如果遇到括弧按去括弧法則先去括弧. (2)結合同類項. (3)合並同類項


第三章 一元一次方程

3.1 一元一次方程

1、方程是含有未知數的等式。

2、方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。

注意:判斷一個方程是否是一元一次方程要抓住三點:

1)未知數所在的式子是整式(方程是整式方程);

2)化簡後方程中只含有一個未知數;

3)經整理後方程中未知數的次數是1.

3、解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。

4、等式的性質: 1)等式兩邊同時加(或減)同一個數(或式子),結果仍相等;

2)等式兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。

注意:運用性質時,一定要注意等號兩邊都要同時變;運用性質2時,一定要注意0這個數.

3.2 、3.3解一元一次方程

在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復使用. 因此在解方程時還要注意以下幾點:

①去分母:在方程兩邊都乘以各分母的最小公倍數,不要漏乘不含分母的項;分子是一個整體,去分母後應加上括弧;去分母與分母化整是兩個概念,不能混淆;

②去括弧:遵從先去小括弧,再去中括弧,最後去大括弧;不要漏乘括弧的項;不要弄錯符號;

③移項:把含有未知數的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號) 移項要變號;

④合並同類項:不要丟項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;

⑤系數化為1::字母及其指數不變系數化成1,在方程兩邊都除以未知數的系數a,得到方程的解。不要分子、分母搞顛倒。

3.4 實際問題與一元一次方程

一.概念梳理

⑴列一元一次方程解決實際問題的一般步驟是:①審題,特別注意關鍵的字和詞的意義,弄清相關數量關系;②設出未知數(注意單位);③根據相等關系列出方程;④解這個方程;⑤檢驗並寫出答案(包括單位名稱)。

⑵一些固定模型中的等量關系及典型例題參照一元一次方程應用題專練學案。

二、思想 方法 (本單元常用到的數學思想方法小結)

⑴建模思想:通過對實際問題中的數量關系的分析,抽象成數學模型,建立一元一次方程的思想.

⑵方程思想:用方程解決實際問題的思想就是方程思想.

⑶化歸思想:解一元一次方程的過程,實質上就是利用去分母、去括弧、移項、合並同類項、未知數的系數化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最後逐步把方程轉化為x=a的形式. 體現了化「未知」為「已知」的化歸思想.

⑷數形結合思想:在列方程解決問題時,藉助於線段示意圖和圖表等來分析數量關系,使問題中的數量關系很直觀地展示出來,體現了數形結合的優越性.

⑸分類思想:在解含字母系數的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關方案設計的實際問題的過程中往往也要注意分類思想在過程中的運用.

三、數學思想方法的學習

1. 解一元一次方程時,要明確每一步過程都作什麼變形,應該注意什麼問題.

2. 尋找實際問題的數量關系時,要善於藉助直觀分析法,如表格法,直線分析法和圖示分析法等.

3. 列方程解應用題的檢驗包括兩個方面:⑴檢驗求得的結果是不是方程的解;

⑵是要判斷方程的解是否符合題目中的實際意義.

四、應用(常見等量關系)

行程問題:s=v×t

工程問題:工作總量=工作效率×時間

盈虧問題:利潤=售價-成本

利率=利潤÷成本×100%

售價=標價×折扣數×10%

儲蓄利潤問題:利息=本金×利率×時間

本息和=本金+利息


第四章 幾何圖形初步

4.1 幾何圖形

1、幾何圖形:從形形色色的物體外形中得到的圖形叫做幾何圖形。

2、立體圖形:這些幾何圖形的各部分不都在同一個平面內。

3、平面圖形:這些幾何圖形的各部分都在同一個平面內。

4、雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯系的。

立體圖形中某些部分是平面圖形。

5、三視圖:從左面看,從正面看,從上面看

6、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形。這樣的平面圖形稱為相應立體圖形的展開圖。

7、⑴幾何體簡稱體;包圍著體的是面;面 面相 交形成線;線線相交形成點;

⑵點無大小,線、面有曲直;

⑶幾何圖形都是由點、線、面、體組成的;

⑷點動成線,線動成面,面動成體;

⑸點:是組成幾何圖形的基本元素。

4.2 直線、射線、線段

1、直線公理:經過兩點有一條直線,並且只有一條直線。即:兩點確定一條直線。

2、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。

3、把一條線段分成相等的兩條線段的點,叫做這條線段的中點。

4、線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。

5、連接兩點間的線段的長度,叫做這兩點的距離。

6、直線的表示方法:如圖的直線可記作直線AB或記作直線m.

(1)用幾何語言描述右面的圖形,我們可以說:

點P在直線AB外,點A、B都在直線AB上.

(2)如圖,點O既在直線m上,又在直線n上,我們稱直線

m、n 相交,交點為O.

7、在直線上取點O,把直線分成兩個部分,去掉一邊的一個部分,保留點0和另一部分就得到一條射線,如圖就是一條射線,記作射線OM或記作射線a.葫蘆島英霸 教育 聯盟http://www.yingbajiaoyu.com/ 18342389605

注意:射線有一個端點,向一方無限延伸.

8、在直線上取兩個點A、B,把直線分成三個部分,去掉兩邊的部分,保留點A、B和中間的一部分就得到一條線段.如圖就是一條線段,記作線段AB或記作線段a.

注意:線段有兩個端點.

4.3 角

1. 角的定義:有公共端點的兩條射線組成的圖形叫角。這個公共端點是角的頂點,兩條射線為角的兩邊。如圖,角的頂點是O,兩邊分別是射線OA、OB.

2、角有以下的表示方法:

① 用三個大寫字母及符號「∠」表示.三個大寫字母分別是頂點和兩邊上的任意點,頂點的字母必須寫在中間.如上圖的角,可以記作∠AOB或∠BOA.

② 用一個大寫字母表示.這個字母就是頂點.如上圖的角可記作∠O.當有兩個或兩個以上的角是同一個頂點時,不能用一個大寫字母表示.

③ 用一個數字或一個希臘字母表示.在角的內部靠近角的頂點

處畫一弧線,寫上希臘字母或數字.如圖的兩個角,分別記作∠、∠1

2、以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進制的。

1度=60分 1分=60秒 1周角=360度 1平角=180度

3、角的平分線:一般地,從一個角的頂點出發,把這個角分成兩個相等的角的射線,叫做這個角的平分線。

4、如果兩個角的和等於90度(直角),就說這兩個叫互為餘角,即其中每一個角是另一個角的餘角;

如果兩個角的和等於180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。

5、同角(等角)的補角相等;同角(等角)的餘角相等。

6、方位角:一般以正南正北為基準,描述物體運動的方向。


初一數學上冊知識點歸納相關 文章 :

1. 初一數學上冊人教版知識點歸納

2. 初一數學知識點總結

3. 初一年級上冊數學的21個熱門知識點

4. 初一上冊數學知識點手抄報

5. 初一上冊數學第一單元知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅶ 七年級數學上冊知識點總結

七年級數學上冊知識點總結(通用8篇)
總結在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,它可以促使我們思考,為此要我們寫一份總結。那麼如何把總結寫出新花樣呢?下面是小編為大家整理的七年級數學上冊知識點總結(通用8篇),歡迎大家分享。

七年級數學上冊知識點總結 篇1
數軸
1、數軸的概念
規定了原點,正方向,單位長度的直線叫做數軸。
注意:(1)數軸是一條向兩端無限延伸的直線;(2)原點、正方向、單位長度是數軸的三要素,三者缺一不
可;(3)同一數軸上的單位長度要統一;(4)數軸的三要素都是根據實際需要規定的。
2、數軸上的點與有理數的關系
(1)所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
(2)所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)
3、利用數軸表示兩數大小
(1)在數軸上數的大小比較,右邊的數總比左邊的數大;
(2)正數都大於0,負數都小於0,正數大於負數;
(3)兩個負數比較,距離原點遠的數比距離原點近的數小。
4、數軸上特殊的(小)數
(1)最小的自然數是0,無的自然數;
(2)最小的正整數是1,無的正整數;
(3)的負整數是-1,無最小的負整數
5、a可以表示什麼數
(1)a>0表示a是正數;反之,a是正數,則a>0;
(2)a
(3)a=0表示a是0;反之,a是0,,則a=0
七年級數學上冊知識點總結 篇2
第一章 有理數
(一)正負數
1、正數:大於0的數。
2、負數:小於0的數。
3、0即不是正數也不是負數。
4、正數大於0,負數小於0,正數大於負數。
(二)有理數
1、有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整數之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)
2、整數:正整數、0、負整數,統稱整數。
3、分數:正分數、負分數。
(三)數軸
1、數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2、數軸的三要素:原點、正方向、單位長度。
3、相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
4、絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數比較大小,絕對值大的反而小。
(四)有理數的加減法
1、先定符號,再算絕對值。
2、加法運演算法則:同號相加,取相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
3、加法交換律:a+b= b+ a 兩個數相加,交換加數的位置,和不變。
4、加法結合律:(a+b)+ c = a +(b+ c )三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
5、 ab = a +(b) 減去一個數,等於加這個數的相反數。
(五)有理數乘法(先定積的符號,再定積的大小)
1、同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
2、乘積是1的兩個數互為倒數。
3、乘法交換律:ab= ba
4、乘法結合律:(ab)c = a (b c)
5、乘法分配律:a(b +c)= a b+ ac
(六)有理數除法
1、先將除法化成乘法,然後定符號,最後求結果。
2、除以一個不等於0的數,等於乘這個數的倒數。
3、兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。
(七)乘方
1、求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)
2、負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。
(八)有理數的加減乘除混合運演算法則
1、先乘方,再乘除,最後加減。
2、同級運算,從左到右進行。
3、如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
(九)科學記數法、近似數、有效數字。
第二章 整式
(一)整式
1、整式:單項式和多項式的統稱叫整式。
2、單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。
3、系數:一個單項式中,數字因數叫做這個單項式的系數。
4、次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
5、多項式:幾個單項式的和叫做多項式。
6、項:組成多項式的每個單項式叫做多項式的項。
7、常數項:不含字母的項叫做常數項。
8、多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。
9、同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。
10、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
(二)整式加減
整式加減運算時,如果遇到括弧先去括弧,再合並同類項。
1、去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。
如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
2、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變
第三章 一元一次方程
分析實際問題中的數量關系,利用其中的相等關系列出方程,是用數學解決實際問題的一種方法。
(一)方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫方程。
(二)一元一次方程:
1、一元一次方程:方程里只含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程。
2、解:求出的方程中未知數的值叫做方程的解。
(二)等式的性質
1、等式兩邊加(或減)同一個數(或式子),結果仍相等。
如果a= b,那麼a± c= b± c
2、等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
如果a= b,那麼a c= b c;
如果a= b,(c0),那麼a ?Mc = b ?M c。
(三)解方程的步驟
解一元一次方程的步驟:去分母、去括弧、移項、合並同類項,未知數系數化為1。
1、去分母:把系數化成整數。
2、去括弧
3、移項:把等式一邊的某項變號後移到另一邊。
4、合並同類項
5、系數化為1
第四章 圖形認識初步
一、圖形認識初步
1、幾何圖形:把從實物中抽象出來的各種圖形的統稱。
2、平面圖形:有些幾何圖形的各部分都在同一平面內,這樣的圖形是平面圖形。
3、立體圖形:有些幾何圖形的各部分不都在同一平面內,這樣的圖形是立體圖形。
4、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。
5、點,線,面,體
1圖形是由點,線,面構成的。
2線與線相交得點,面與面相交得線。
3點動成線,線動成面,面動成體。
二、直線、線段、射線
1、線段:線段有兩個端點。
2、射線:將線段向一個方向無限延長就形成了射線。射線只有一個端點。
3、直線:將線段的兩端無限延長就形成了直線。直線沒有端點。
4、兩點確定一條直線:經過兩點有一條直線,並且只有一條直線。
5、相交:兩條直線有一個公共點時,稱這兩條直線相交。
6、兩條直線相交有一個公共點,這個公共點叫交點。
7、中點:M點把線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。
8、線段的性質:兩點的所有連線中,線段最短。(兩點之間,線段最短)
9、距離:連接兩點間的線段的長度,叫做這兩點的距離。
三、角
1、角:有公共端點的兩條射線組成的圖形叫做角。
2、角的度量單位:度、分、秒。
3、角的度量與表示:
1角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
2一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60進制。
4、角的比較:
1角也可以看成是由一條射線繞著他的端點旋轉而成的。
2平角和周角:一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。平角等於180度。周角等於360度。直角等於90度。
3平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
4工具:量角器、三角尺、經緯儀。
5、餘角和補角
1餘角:兩個角的和等於90度,這兩個角互為餘角。即其中每一個是另一個角的餘角。
2補角:兩個角的和等於180度,這兩個角互為補角。即其中一個是另一個角的補角。
3補角的性質:等角的補角相等。
4餘角的性質:等角的餘角相等。
七年級數學上冊知識點總結 篇3
1、用加、減、乘(乘方)、除等運算符號把數或表示數的字母連接而成的式子,叫做代數式。(注:單獨一個數字或字母也是代數式)
2、代數式的寫法:數學與字母相乘時,「×」號省略,數字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數字與數字相乘時,「×」號不能省略;式中出現除法時,一般寫成分數形式。式中出現帶分數時,一般寫成假分數形式。
3、分段問題書寫代數式時要分段考慮,有單位時要考慮是否要();如:電費、水費、計程車、商店優惠。
4、單項式:由數字和字母乘積組成的式子。單獨一個數或一個字母也是單項式、因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,若1分母中不含有字母,2式子中含有加、減運算關系,也不是單項式、
單項式的系數:是指單項式中的數字因數;(不要漏負號和分母)
單項數的次數:是指單項式中所有字母的指數的和、(注意指數1)
5、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式、每個單項式稱項,(其中不含字母的項叫常數項)多項式的次數是指多項式里次數最高項的次數(選代表);多項式的項是指在多項式中每一個單項式、特別注意多項式的項包括它前面的性質符號、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

Ⅷ 初一上冊數學知識點歸納整理

數學的學習在於練習,勤加練習能幫助我們打開思維的邏輯,下面是我給大家帶來的初一上冊數學知識點歸納整理,希望能夠幫助到大家!

初一上冊數學知識點歸納整理

第一章有理數

(一)正負數

1.正數:大於0的數。

2.負數:小於0的數。

3.0即不是正數也不是負數。

4.正數大於0,負數小於0,正數大於負數。

(二)有理數

1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

2.整數:正整數、0、負整數,統稱整數。

3.分數:正分數、負分數。

(三)數軸

1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2.數軸的三要素:原點、正方向、單位長度。

3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(四)有理數的加減法

1.先定符號,再算絕對值。

2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。

4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

5.a-b=a+(-b)減去一個數,等於加這個數的相反數。

(五)有理數乘法(先定積的符號,再定積的大小)

1.同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

2.乘積是1的兩個數互為倒數。

3.乘法交換律:ab=ba

4.乘法結合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理數除法

1.先將除法化成乘法,然後定符號,最後求結果。

2.除以一個不等於0的數,等於乘這個數的倒數。

3.兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。

(七)乘方

1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)

2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。

3.同底數冪相乘,底不變,指數相加。

4.同底數冪相除,底不變,指數相減。

(八)有理數的加減乘除混合運演算法則

1.先乘方,再乘除,最後加減。

2.同級運算,從左到右進行。

3.如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

(九)科學記數法、近似數、有效數字。

第二章整式(一)整式

1.整式:單項式和多項式的統稱叫整式。

2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。

3.系數;一個單項式中,數字因數叫做這個單項式的系數。

4。次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。

5.多項式:幾個單項式的和叫做多項式。

6.項:組成多項式的每個單項式叫做多項式的項。

7.常數項:不含字母的項叫做常數項。

8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。

9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。

10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

(二)整式加減整式加減運算時,如果遇到括弧先去括弧,再合並同類項。

1.去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

2.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變

整理了知識點,我們來看看相關的練習題吧。根據做題的情況分析有哪些知識點是自己還沒有掌握的。

1,從數軸上看,0是()

A,最小整數B,最大的負數C,最小的有理數D最小的非負數

2,一個數的相反數小於它本身,這個數是()

A,非負數B,正數C,0D,負數

3,冬季某天我國三個城市的最高氣溫分別是-10℃,1℃,-7℃,把它們從高到低排列正確的是()

A,-10℃,-7℃,1℃B,-7℃,-10℃,1℃C,1℃,-7℃,-10℃D,1℃,-10℃,-7℃

4,下列說法正確的有()

A,正數和負數統稱為有理數B,有理數是指整數、分數、正有理數、負有理數和0五類C,一個有理數不是整數就是分數D,整數包括正整數和負整數

5,若a、b為有理數,a>0,b<0,且|a|<|b|,那麼下列說法不正確的是()

A,若將數a、b在數軸上表示出來,則a在原點右側,b在原點左側。

B,因正數大於一切負數,所以a>b。

C,若將數a、b在數軸上表示出來,則數a與原點的距離比較b與原點的距離小。

D,在數軸上,表示a,|a|,b的點從左到右依次為a,b,|a|

6,在下列代數式:(1/2)ab,(a+b)/2,ab2+b+1,(3/x)+(2/y),x3+x2-3中,多項式有()A.2個B.3個C.4個D5個

7,多項式-23m2-n2是()A.二次二項式B.三次二項式C.四次二項式D五次二項式

8,下列說法正確的是()

A.3x2―2x+5的項是3x2,2x,5

B.(3/x)-(3/y)與2x2―2xy-5都是多項式

C.多項式-2x2+4xy的次數是3

D一個多項式的次數是6,則這個多項式中只有一項的次數是6

9,下列說法正確的是()

A.整式abc沒有系數

B.(x/2)+(y/3)+(z/4)不是整式

C.-2不是整式

D.整式2x+1是一次二項式

10,下列代數式中,不是整式的是()

A、-3x2 B、(5a-4b)/7 C、(3a+2)/5x D、-2005

參考答案

1——5 DBCCD

6——10 BABDC

Ⅸ 七年級上冊數學知識點總結歸納

期末考試就要到了,這篇文章我給大家總結歸納了初一上冊數學的必考重點,供同學們參考復習,希望大家期末可以取得好成績。

數軸的知識點

1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2.數軸的三要素:原點、正方向、單位長度。

3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

平行線

1.在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3.如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4.判定兩條直線平行的方法:

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

有理數

1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

2.整數:正整數、0、負整數,統稱整數。

3.分數:正分數、負分數。

4.有理數的加減法:

(1)先定符號,再算絕對值。

(2)加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

(3)加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。

(4)加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

(5)a-b=a+(-b)減去一個數,等於加這個數的相反數。

5.有理數的加減乘除混合運演算法則

(1)先乘方,再乘除,最後加減。

(2)同級運算,從左到右依次進行。

(3)如有括弧,先做括弧內的運算,按小括弧,中括弧,大括弧依次進行。

6.有理數的乘法:

(1)兩數相乘,同號得正,異號得負,並把絕對值相乘。

(2)任何數與0相乘,積為0.例:0×1=0

(3)乘積為一的兩個有理數互為倒數,0沒有倒數。

(4)幾個不等於0的數相乘,積的符號由負因數的個數決定。當負因數有奇數個數時,積為負數;當負因數有偶數個數時,積為正數。並把其絕對值相乘。

Ⅹ 初一上冊數學知識點總結歸納

初一數學是初中數學的基礎,這篇文章我給大家總結歸納了初一上冊數學課本的重要知識點,供同學們參考。

有理數

(1)定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

(2)數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。

(3)相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

(4)絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(5)有理數的加減法

同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。

(6)有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0.例:0×1=0

(7)有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除

以任何一個不為0的數,都得0。

(8)有理數的乘方

求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當aⁿ看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

一元一次方程

(1)方程:先設字母表示未知數,然後根據相等關系,寫出含有未知數的等式叫做方程。

(2)一元一次方程

一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

(3)等式的性質

①等式兩邊同時加上(或減去)同一個整式,等式仍然成立。

若a=b

那麼a+c=b+c

②等式兩邊同時乘或除以同一個不為0的整式,等式仍然成立。

若a=b

那麼有a·c=b·c或a÷c=b÷c(c≠0)

③等式具有傳遞性。

若a1=a2,a2=a3,a3=a4,……an=an,那麼a1=a2=a3=a4=……=an

(3)解方程式的步驟

解一元一次方程的步驟:去分母、去括弧、移項、合並同類項、未知數系數化為1。

①去分母:把系數化成整數。

②去括弧

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項

⑤系數化為1。

角的知識點

1.角:角是由兩條有公共端點的射線組成的幾何對象。

2.角的度量單位:度、分、秒

3.頂點:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點

4.角的比較:

(1)角可以看成是由一條射線繞著他的端點旋轉而成的。

(2)平角和周角:一條射線繞著他的端點旋轉,當始邊和終邊成一條直線時,所成的角叫平角。當它又和始邊重合的時候,所成的角角周角。平角等於108度,周角等於360度,直角等於90度。

(3)平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

5.餘角和補角:

(1)餘角:如果兩個角的和是90度,那麼稱這兩個角「互為餘角」,簡稱「互余」。

性質:等角的餘角相等。

(2)補角:如果兩個角的和是180度,那麼稱這兩個角「互為補角」,簡稱「互補」。

性質:等角的補角相等。