當前位置:首頁 » 基礎知識 » 九上數學菱形知識點簡單歸納
擴展閱讀
小學英語知識精華 2025-01-16 05:36:45

九上數學菱形知識點簡單歸納

發布時間: 2022-08-30 11:58:19

A. 九年級上學期數學知識

九年級上學期數學期末復習計劃

本次期末考試一共考查九上全書和九下一二章的內容,這些內容是:證明(二)、證明(三)、一元二次方程,視圖與投影,反比例函數,頻數與頻率,三角函數,二次函數。
我的復習計劃大致分三輪:
第一輪:將各章內容分類劃分,細化各章知識點,採取學生先自主復習,作出復習手抄報,讓學生總結各章重點及難點,以及本章中的重點例題和練習題,再利用上課時間對學生的總結全面細化,彌補其不足之處,提高復習效率,達到學生看見題目能夠自己分析出考查哪章節知識點的目的。主要將各章內容分成以下幾部分:
第一部分:三角函數;
第二部分:二次函數,反比例函數,一元二次方程;
第三部分:頻數與頻率
第四部分:證明(二),證明(三),視圖與投影
其中一、二部分為重點,三四部分在習題中同時展開復習,大致需要一個星期時間。
第二輪:通過這次考試的題型有針對性地復習,利用教研活動各校所出模擬試題,整理分類,分為以下專題展開:
一、填空選擇專題,全面考察各章細小知識點;
二、幾何及三角函數專題;
三、二次函數及動點專題。
由於這些類型的題目是學生感到有難度,且在考試中最易丟分的題目,因此特別針對這些內容作專題訓練,以強化學生的問題分析能力。大致四天左右時間。
第三輪:綜合檢測,選取三至四份質量比較高的綜合試題,對學生進行實戰練習,全面考查復習成果,講評中注意精講,盡量讓學生自己解決問題。

B. 初中數學幾何知識點總結

初中數學幾何知識點總結

數學幾何的空間思維能力是培養出來的,因此相關的知識點需要牢記,下面初中數學幾何知識點總結是我想跟大家分享的,歡迎大家瀏覽。

初中數學幾何知識點總結1

三角形的知識點

1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2、三角形的分類

3、三角形的三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

6、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

7、高線、中線、角平分線的意義和做法

8、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

9、三角形內角和定理:三角形三個內角的和等於180°

推論1直角三角形的兩個銳角互余

推論2三角形的一個外角等於和它不相鄰的兩個內角和

推論3三角形的一個外角大於任何一個和它不相鄰的內角;三角形的內角和是外角和的一半

10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

11、三角形外角的性質

(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

(2)三角形的一個外角等於與它不相鄰的兩個內角和;

(3)三角形的一個外角大於與它不相鄰的任一內角;

(4)三角形的外角和是360°。

四邊形(含多邊形)知識點、概念總結

一、平行四邊形的定義、性質及判定

1、兩組對邊平行的四邊形是平行四邊形。

2、性質:

(1)平行四邊形的對邊相等且平行

(2)平行四邊形的對角相等,鄰角互補

(3)平行四邊形的對角線互相平分

3、判定:

(1)兩組對邊分別平行的四邊形是平行四邊形

(2)兩組對邊分別相等的四邊形是平行四邊形

(3)一組對邊平行且相等的四邊形是平行四邊形

(4)兩組對角分別相等的四邊形是平行四邊形

(5)對角線互相平分的四邊形是平行四邊形

4、對稱性:平行四邊形是中心對稱圖形

二、矩形的定義、性質及判定

1、定義:有一個角是直角的平行四邊形叫做矩形

2、性質:矩形的四個角都是直角,矩形的對角線相等

3、判定:

(1)有一個角是直角的平行四邊形叫做矩形

(2)有三個角是直角的四邊形是矩形

(3)兩條對角線相等的平行四邊形是矩形

4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

三、菱形的定義、性質及判定

1、定義:有一組鄰邊相等的平行四邊形叫做菱形

(1)菱形的四條邊都相等

(2)菱形的對角線互相垂直,並且每一條對角線平分一組對角

(3)菱形被兩條對角線分成四個全等的直角三角形

(4)菱形的面積等於兩條對角線長的積的一半

2、s菱=爭6(n、6分別為對角線長)

3、判定:

(1)有一組鄰邊相等的平行四邊形叫做菱形

(2)四條邊都相等的四邊形是菱形

(3)對角線互相垂直的平行四邊形是菱形

4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

四、正方形定義、性質及判定

1、定義:有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形

2、性質:

(1)正方形四個角都是直角,四條邊都相等

(2)正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

(3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形

(4)正方形的對角線與邊的夾角是45°

(5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形

3、判定:

(1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等

(2)先判定一個四邊形是菱形,再判定出有一個角是直角

4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

五、梯形的定義、等腰梯形的性質及判定

1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直於底的梯形是直角梯形

2、等腰梯形的性質:等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

4、對稱性:等腰梯形是軸對稱圖形

六、三角形的中位線平行於三角形的第三邊並等於第三邊的一半;梯形的中位線平行於梯形的兩底並等於兩底和的一半。

七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。

八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。

九、多邊形

1、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

2、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

6、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

8、公式與性質

多邊形內角和公式:n邊形的內角和等於(n-2)·180°

9、多邊形外角和定理:

(1)n邊形外角和等於n·180°-(n-2)·180°=360°

(2)邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等於n·180°

10、多邊形對角線的條數:

(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形

(2)n邊形共有n(n-3)/2條對角線

圓知識點、概念總結

1、不在同一直線上的三點確定一個圓。

2、垂徑定理:垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

推論1①(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

推論2圓的兩條平行弦所夾的弧相等

3、圓是以圓心為對稱中心的中心對稱圖形

4、圓是定點的距離等於定長的點的集合

5、圓的內部可以看作是圓心的距離小於半徑的點的集合

6、圓的外部可以看作是圓心的距離大於半徑的點的集合

7、同圓或等圓的半徑相等

8、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等。

11、定理:圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

12、①直線L和⊙O相交d

②直線L和⊙O相切d=r

③直線L和⊙O相離d>r

13、切線的判定定理:經過半徑的外端並且垂直於這條半徑的直線是圓的切線

14、切線的性質定理:圓的切線垂直於經過切點的半徑

15、推論1經過圓心且垂直於切線的直線必經過切點

16、推論2經過切點且垂直於切線的直線必經過圓心

17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

18、圓的外切四邊形的兩組對邊的和相等,外角等於內對角

19、如果兩個圓相切,那麼切點一定在連心線上

20、①兩圓外離d>R+r

②兩圓外切d=R+r

③兩圓相交R-rr)

④兩圓內切d=R-r(R>r)⑤兩圓內含dr)

21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

22、定理:把圓分成n(n≥3):

(1)依次連結各分點所得的多邊形是這個圓的內接正n邊形

(2)經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

23、定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

24、正n邊形的每個內角都等於(n-2)×180°/n

25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

27、正三角形面積√3a/4a表示邊長

28、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

29、弧長計算公式:L=n兀R/180

30、扇形面積公式:S扇形=n兀R^2/360=LR/2

31、內公切線長=d-(R-r)外公切線長=d-(R+r)

32、定理:一條弧所對的圓周角等於它所對的圓心角的一半

33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

35、弧長公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r

初中數學幾何知識點總結2

直角三角形的知識點

基本簡介:

等腰直角三角形的邊角之間的關系:

(1)三角形三內角和等於180°;

(2)三角形的一個外角等於和它不相鄰的兩個內角之和;

(3)三角形的一外角大於任何一個和它不相鄰的內角;

(4)三角形兩邊之和大於第三邊,兩邊之差小於第三邊;

(5)在同一個三角形內,大邊對大角,大角對大邊。

等腰直角三角形中的四條特殊的線段:角平分線,中線,高,中位線。

(1)三角形的角平分線的交點叫做三角形的內心,它是三角形內切圓的圓心,它到各邊的距離相等。

(三角形的外接圓圓心,即外心,是三角形三邊的垂直平分線的交點,它到三個頂點的距離相等)。

(2)三角形的.三條中線的交點叫三角形的重心,它到每個頂點的距離等於它到對邊中點的距離的2倍。

(3)三角形的三條高的交點叫做三角形的垂心。

(4)三角形的中位線平行於第三邊且等於第三邊的二分之一。

(5)三角形的一條內角平分線與兩條外角平分線交於一點,該點即為三角形的旁心。

注意:

①任意三角形的內心、重心都在三角形的內部。

②鈍角三角形垂心、外心在三角形外部。

③直角三角形垂心、外心在三角形的邊上。(直角三角形的垂心為直角頂點,外心為斜邊中點。)

④銳角三角形垂心、外心在三角形內部。

⑤任意三角形的旁心一定在三角形的外部。

直角三角形的`相關線段:

1、中線:頂點與對邊中點的連線,平分三角形。

2、角平分線:平分三角形一內角的線段。

3、高線:三角形中一頂點向對邊作的垂線。

等腰梯形的知識點

定義

一組對邊平行(不相等),另一組對邊不平行但相等的四邊形叫做等腰梯形。顧名思義,等腰梯形是兩腰相等的梯形,它是梯形的一種特殊情況。

判定

1、以下判定可作為定理使用:

(1)一組對邊相等且不平行,另一組對邊平行的四邊形是等腰梯形。

(2)同一底上的兩個角相等的梯形是等腰梯形。

(3)對角線相等的`梯形是等腰梯形。

(4)兩腰相等的梯形是等腰梯形。

以下判定不作為定理使用:

(1)對角線相等且能形成兩個等腰三角形的四邊形是等腰梯形。

(2)對角互補的梯形是等腰梯形。

面積公式

對於等腰梯形,其面積計算方法與普通梯形一致。用a、b、h分別表示梯形的上底、下底、高,S表示梯形的面積,則S=(a+b)×h÷2。

通俗的說,梯形的面積=(上底+下底)×高÷2。

特殊情況

1、若等腰梯形對角線互相垂直,則面積為1/2乘以兩對角線長度的乘積。

2、在已知中位線情況下,等腰梯形的面積等於中位線的長度乘以高。

稜柱的知識點

稜柱的定義

有兩個面互相平行,其餘各面都是四邊形,並且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的多面體叫做稜柱。兩個互相平行的平面叫做稜柱的底面,其餘各面叫做稜柱的'側面。兩個側面的公共邊叫做稜柱的側棱。側面與底的公共頂點叫做稜柱的頂點,不在同一個面上的兩個頂點的連線叫做稜柱的對角線,兩個底面的距離叫做稜柱的高。

稜柱的性質

①稜柱的各個側面都是平行四邊形,所有的側棱都相等,直稜柱的各個側面都是矩形,正稜柱的各個側面都是全等的矩形;

②與底面平行的截面是與底面對應邊互相平行的全等多邊形;

③過稜柱不相鄰的兩條側棱的截面都是平行四邊形。

稜台的定義

用一個平行於棱錐底面的平面去截棱錐,底面與截面之間的部分叫做稜台,原棱錐的底面和截面分別叫做稜台的下底面和上底面。

棱錐的定義

如果一個多面體的一個面是多邊形,其餘各個面是有一個公共頂點的三角形,那麼這個多面體叫棱錐。在棱錐中有公共頂點的各三角形叫做棱錐的側面,棱錐中這個多邊形叫做棱錐的底面,棱錐中相鄰兩個側面的交線叫做棱錐的側棱,棱錐中各側棱的公共頂點叫棱錐的頂點。棱錐頂點到底面的距離叫棱錐的高,過棱錐不相鄰的兩條側棱的截面叫棱錐的對角面。

按照棱錐底面多邊形的邊數可將棱錐分為:三棱錐

;

C. 初三上學期數學知識點總結

對於很多初三學生來說成績不好的原因主要是因為數學成績不好,那麼對於初三學生來說想要學好數學那麼平時一定要注重數學知識點的總結和歸納,下面我為大家提供初三上學期數學知識點總結,希望大家能夠從中得到幫助。

初三數學知識點-二次根式

1、二次根式

式子)0(³aa叫做二次根式,二次根式必須滿足:含有二次根號「」;被開方數a

必須是非負數。

2、最簡二次根式

若二次根式滿足:被開方數的因數是整數,因式是整式;被開方數中不含能開得盡方的因數或因式,這樣的二次根式叫做最簡二次根式。

化二次根式為最簡二次根式的方法和步驟:

(1)如果被開方數是分數(包括小數)或分式,先利用商的算數平方根的性質把它寫成分式的形式,然後利用分母有理化進行化簡。

(2)如果被開方數是整數或整式,先將他們分解因數或因式,然後把能開得盡方的因數或因式開出來。

3、同類二次根式

幾個二次根式化成最簡二次根式以後,如果被開方數相同,這幾個二次根式叫做同類二次根式。

推薦閱讀: 初三數學知識點總結

初三數學知識點-平行四邊形的性質

①平行四邊形的對邊相等;

②平行四邊形的對角相等;

③平行四邊形的對角線互相平分.

初三數學知識點-矩形的性質

①矩形具有平行四邊形的一切性質;

②矩形的四個角都是直角;

③矩形的對角線相等.

正方形的判定與性質

1.判定方法:

(1)鄰邊相等的矩形;

(2)鄰邊垂直的菱形;

(3)對角線垂直的矩形;

(4)對角線相等的菱形;

2.性質:

(1)邊:四邊相等,對邊平行;

(2)角:四個角都相等都是直角,鄰角互補;

(3)對角線互相平分、垂直、相等,且每長對角線平分一組內角。

初三數學知識點-二次根式

1、二次根式

式子叫做二次根式,二次根式必須滿足:含有二次根號「」;被開方數a必須是非負數。

2、最簡二次根式

若二次根式滿足:被開方數的因數是整數,因式是整式;被開方數中不含能開得盡方的因數或因式,這樣的二次根式叫做最簡二次根式。

化二次根式為最簡二次根式的方法和步驟:

(1)如果被開方數是分數(包括小數)或分式,先利用商的算數平方根的性質把它寫成分式的形式,然後利用分母有理化進行化簡。

(2)如果被開方數是整數或整式,先將他們分解因數或因式,然後把能開得盡方的因數或因式開出來。

3、同類二次根式

幾個二次根式化成最簡二次根式以後,如果被開方數相同,這幾個二次根式叫做同類二次根式。

以上內容就是我為大家提供的初三上學期知識點,希望各位初三學生能夠認真學習數學,逐漸提高成績,最後在中考的時候取得優異的成績。

D. 初三中考數學幾何知識點歸納

對初三學生來說,他們很快就要迎來中考了,而中考是人生道路上第一個轉折點。對每個初三學生來說,他們都希望自己能夠在中考中取得好成績,從而考上好高中。這次我給大家整理了初三中考數學幾何知識點歸納,供大家閱讀參考。

目錄

初三中考數學幾何知識點歸納

學好數學的幾條建議

數學八種思維方法

初三中考數學幾何知識點歸納

1.過兩點有且只有一條直線

2.兩點之間線段最短

3.同角或等角的補角相等

4.同角或等角的餘角相等

5.過一點有且只有一條直線和已知直線垂直

6.直線外一點與直線上各點連接的所有線段中,垂線段最短

7.平行公理經過直線外一點,有且只有一條直線與這條直線平行

8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9.同位角相等,兩直線平行

10.內錯角相等,兩直線平行

11.同旁內角互補,兩直線平行

12.兩直線平行,同位角相等

13.兩直線平行,內錯角相等

14.兩直線平行,同旁內角互補

15.定理三角形兩邊的和大於第三邊

16.推論三角形兩邊的差小於第三邊

17.三角形內角和定理三角形三個內角的和等於180°

18.推論1直角三角形的兩個銳角互余

19.推論2三角形的一個外角等於和它不相鄰的兩個內角的和

20.推論3三角形的一個外角大於任何一個和它不相鄰的內角

21.全等三角形的對應邊、對應角相等

22.邊角邊公理有兩邊和它們的夾角對應相等的兩個三角形全等

23.角邊角公理有兩角和它們的夾邊對應相等的兩個三角形全等

24.推論有兩角和其中一角的對邊對應相等的兩個三角形全等

25邊邊邊公理有三邊對應相等的兩個三角形全等

26斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個直角三角形全等

27.定理1:在角的平分線上的點到這個角的兩邊的距離相等

28.定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上

29.角的平分線是到角的兩邊距離相等的所有點的集合

30.等腰三角形的性質定理等腰三角形的兩個底角相等

31.推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊

32.等腰三角形的頂角平分線、底邊上的中線和高互相重合

33.推論3:等邊三角形的各角都相等,並且每一個角都等於60°34等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35.推論1:三個角都相等的三角形是等邊三角形

36.推論2:有一個角等於60°的等腰三角形是等邊三角形

37.在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

38.直角三角形斜邊上的中線等於斜邊上的一半

39.定理線段垂直平分線上的點和這條線段兩個端點的距離相等

40.逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41.線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42.定理1:關於某條直線對稱的兩個圖形是全等形

43.定理2:如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44.定理3:兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

45.逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

46.勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a b=c

47.勾股定理的逆定理如果三角形的三邊長a、b、c有關系a b=c,那麼這個三角形是直角三角形

48.定理四邊形的內角和等於360°

49.四邊形的外角和等於360°

50.多邊形內角和定理n邊形的內角的和等於(n-2)×180°

51.推論任意多邊的外角和等於360°

52.平行四邊形性質定理1平行四邊形的對角相等

53.平行四邊形性質定理2平行四邊形的對邊相等

54.推論夾在兩條平行線間的平行線段相等

55.平行四邊形性質定理3平行四邊形的對角線互相平分56.平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

57.平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

58.平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

59.平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

60.矩形性質定理1矩形的四個角都是直角

61.矩形性質定理2矩形的對角線相等

62.矩形判定定理1有三個角是直角的四邊形是矩形

63.矩形判定定理2對角線相等的平行四邊形是矩形

64.菱形性質定理1菱形的四條邊都相等

65.菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角

66.菱形面積=對角線乘積的一半,即S=(a×b)÷2

67.菱形判定定理1:四邊都相等的四邊形是菱形

68.菱形判定定理2:對角線互相垂直的平行四邊形是菱形

69.正方形性質定理1:正方形的四個角都是直角,四條邊都相等

70.正方形性質定理2:正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

71.定理1關於中心對稱的兩個圖形是全等的

72.定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

73.逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱

74.等腰梯形性質定理等腰梯形在同一底上的兩個角相等

75.等腰梯形的兩條對角線相等

76.等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形

77.對角線相等的梯形是等腰梯形

78.平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等

79.推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰

80.推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81.三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半

82.梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半L=(a b)÷2S=L×h

83.(1)比例的基本性質如果a:b=c:d,那麼ad=bc, 如果ad=bc,那麼a:b=c:d

84.(2)合比性質如果a/b=c/d,那麼(a±b)/b=(c±d)/d

85.(3)等比性質如果a/b=c/d=…=m/n(b d … n≠0),那麼(a c … m)/(b d … n)=a/b

86.平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例

87.推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

88.定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊

89.平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

90.定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

91.相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)

92.直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93.判定定理2:兩邊對應成比例且夾角相等,兩三角形相似(SAS)

94.判定定理3:三邊對應成比例,兩三角形相似(SSS)

95.定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似

96.性質定理1:相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比

97.性質定理2:相似三角形周長的比等於相似比

98.性質定理3:相似三角形面積的比等於相似比的平方

99.任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值

100.任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值

101.圓是定點的距離等於定長的點的集合

102.圓的內部可以看作是圓心的距離小於半徑的點的集合

103.圓的外部可以看作是圓心的距離大於半徑的點的集合

104.同圓或等圓的半徑相等

105.到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

<<<

學好數學的幾條建議

1、要有學習數學的興趣。「興趣是最好的老師」。做任何事情,只要有興趣,就會積極、主動去做,就會想方設法把它做好。但培養數學興趣的關鍵是必須先掌握好數學基礎知識和基本技能。有的同學老想做難題,看到別人上數奧班,自己也要去。如果這些同學連課內的基礎知識都掌握不好,在裡面學習只能濫竽充數,對學習並沒有幫助,反而使自己失去學習數學的信心。我建議同學們可以看一些數學名人小 故事 、趣味數學等知識來增強學習的自信心。

2、要有端正的 學習態度 。首先,要明確學習是為了自己,而不是為了老師和父母。因此,上課要專心、積極思考並勇於發言。其次,回家後要認真完成作業,及時地把當天學習的知識進行復習,再把明天要學的內容做一下預習,這樣,學起來會輕松,理解得更加深刻些。

3、要有「持之以恆」的精神。要使學習成績提高,不能著急,要一步一步地進行,不要指望一夜之間什麼都學會了。即使進步慢一點,只要堅持不懈,也一定能在數學的學習道路上獲得成功!還要有「不恥下問」的精神,不要怕丟面子。其實無論知識難易,只要學會了,弄懂了,那才是最大的面子!

4、要注重學習的技巧和 方法 。不要死記硬背一些公式、定律,而是要靠分析、理解,做到靈活運用,舉一反三。特別要重視課堂上學習新知識和分析練習的時候,不能思想開小差,管自己做與學習無關的事情。注意力一定要高度集中,並積極思考,遇到不懂題目時要及時做好記錄,課後和同學進行探討,做好查漏補缺。

5、要有善於觀察、閱讀的好習慣。只要我們做數學的有心人,細心觀察、思考,我們就會發現生活中到處都有數學。除此之外,同學們還可以從多方面、多種 渠道 來學習數學。如:從電視、網路、《小學生數學報》、《數學小靈通》等報刊雜志上學習數學,不斷擴展知識面。

6、要有自己的觀點。現在,大部分同學遇到一些較難或不清楚的問題時,就不加思考,輕易放棄了,有的乾脆聽從老師、父母、書本的意見。即使是老師、長輩、書籍等權威,也不是沒有一點兒失誤的,我們要重視權威的意見,但絕不等於不加思考的認同。

7、要學會概括和積累。及時 總結 解題規律,特別是積累一些經典和特殊的題目。這樣既可以學得輕松,又可以提高學習的效率和質量。

8、要重視其他學科的學習。因為各個學科之間是有著密切的聯系,它對學習數學有促進的作用。如:學好語文對數學題目的理解有很大的幫助等等。

<<<

數學八種思維方法

1、代數思想這是基本的數學思想之一 ,小學階段的設未知數x,初中階段的一系列的用字母代表數,這都是代數思想,也是代數這門學科最基礎的根!

2、數形結合是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的 名言 ,是對數形結合的作用進行了高度的概括。初高中階段有很多題都涉及到數形結合,比如說解題通過作幾何圖形標上數據,藉助於函數圖象等等都是數形給的體現。

3、轉化思想在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。

4、對應思想方法對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。

5、假設思想方法假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。

6、比較思想方法比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。

7、符號化思想方法用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。

8、極限思想方法事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。

<<<


初三中考數學幾何知識點歸納相關 文章 :

★ 初三中考數學知識點歸納總結

★ 初三數學函數幾何知識點總結

★ 初三數學知識點考點歸納總結

★ 人教版初三數學知識點歸納整理

★ 初三數學知識點總結歸納

★ 初三數學知識點歸納人教版

★ 初三數學知識點歸納總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

E. 初三上冊數學知識點總結

讀書,始讀,未知有疑;其次,則漸漸有疑;中則節節是疑。過了這一番,疑漸漸釋,以至融會貫通,都無所疑,方始是學。下面給大家分享一些初三上冊數學知識點,希望對大家有所幫助。

初三上冊數學知識點1

特殊平行四邊形

1、菱形的性質與判定

①菱形的定義:

一組鄰邊相等的平行四邊形叫做菱形。

②菱形的性質:

具有平行四邊形的性質,且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。

菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。

③菱形的判別 方法 :

一組鄰邊相等的平行四邊形是菱形。

對角線互相垂直的平行四邊形是菱形。

四條邊都相等的四邊形是菱形。

2、矩形的性質與判定

①矩形的定義:

有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。

②矩形的性質:

具有平行四邊形的性質,且對角線相等,四個角都是直角。(矩形是軸對稱圖形,有兩條對稱軸)

③矩形的判定:

有一個內角是直角的平行四邊形叫矩形(根據定義)。

對角線相等的平行四邊形是矩形。

四個角都相等的四邊形是矩形。

④推論:直角三角形斜邊上的中線等於斜邊的一半。

3、正方形的性質與判定

①正方形的定義:

一組鄰邊相等的矩形叫做正方形。

②正方形的性質:

正方形具有平行四邊形、矩形、菱形的一切性質。(正方形是軸對稱圖形,有兩條對稱軸)

③正方形常用的判定:

有一個內角是直角的菱形是正方形;

鄰邊相等的矩形是正方形;

對角線相等的菱形是正方形;

對角線互相垂直的矩形是正方形。

④正方形、矩形、菱形和平行邊形四者之間的關系

⑤梯形定義:

一組對邊平行且另一組對邊不平行的四邊形叫做梯形。

兩條腰相等的梯形叫做等腰梯形。

一條腰和底垂直的梯形叫做直角梯形。

⑥等腰梯形的性質:

等腰梯形同一底上的兩個內角相等,對角線相等。

同一底上的兩個內角相等的梯形是等腰梯形。

三角形的中位線平行於第三邊,並且等於第三邊的一半。

夾在兩條平行線間的平行線段相等。

在直角三角形中,斜邊上的中線等於斜邊的一半

初三上冊數學知識點2

一元二次方程

1、認識一元二次方程

只含有一個未知數的整式方程,且都可以化為ax2+bx+c=0

(a、b、c為常數,a≠0)的形式,這樣的方程叫一元二次方程。

把ax2+bx+c=0(a、b、c為常數,a≠0)稱為一元二次方程的一般形式,a為二次項系數;b為一次項系數;c為常數項。

2、用配方法求解一元二次方程

①配方法 <即將其變為(x+m)2=0的形式>

配方法解一元二次方程的基本步驟:

把方程化成一元二次方程的一般形式;

將二次項系數化成1;

把常數項移到方程的右邊;

兩邊加上一次項系數的一半的平方;

把方程轉化成的形式;

兩邊開方求其根。

3、用公式法求解一元二次方程

②公式法 (注意在找abc時須先把方程化為一般形式)

4、用因式分解法求解一元二次方程

③分解因式法

把方程的一邊變成0,另一邊變成兩個一次因式的乘積來求解。(主要包括「提公因式」和「十字相乘」)

5、一元二次方程的根與系數的關系

①根與系數的關系:

當b2-4ac>0時,方程有兩個不等的實數根;

當b2-4ac=0時,方程有兩個相等的實數根;

當b2-4ac<0時,方程無實數根。

②如果一元二次方程 ax2+bx+c=0 的兩根分別為x1、x2,則有:

③一元二次方程的根與系數的關系的作用:

已知方程的一根,求另一根;

不解方程,求二次方程的根x1、x2的對稱式的值,特別注意以下公式:

已知方程的兩根x1、x2,可以構造一元二次方程:

x2-(x1+x2)x+x1x2=0

已知兩數x1、x2的和與積,求此兩數的問題,可以轉化為求一元二次方程x2-(x1+x2)x+x1x2=0的根

6、應用一元二次方程

①在利用方程來解應用題時,主要分為兩個步驟:

設未知數(在設未知數時,大多數情況只要設問題為x;但也有時也須根據已知條件及等量關系等諸多方面考慮);

尋找等量關系(一般地,題目中會含有一表述等量關系的 句子 ,只須找到此句話即可根據其列出方程)。

②處理問題的過程可以進一步概括為

初三上冊數學知識點3

圖形的相似

1、成比例線段

①線段的比

如果選用同一個長度單位量得兩條線段AB, CD的長度分別是m、n,那麼就說這兩條線段的比AB:CD=m:n,或寫成

四條線段a、b、c、d中,如果a與b的比等於c與d的比,即

那麼這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.

②注意點:

a:b=k,說明a是b的k倍

由於線段 a、b的長度都是正數,所以k是正數

比與所選線段的長度單位無關,求出時兩條線段的長度單位要一致

除了a=b之外,a:b≠b:a

比例的基本性質:若

則ad=bc; 若ad=bc, 則

2、平行線分線段成比例

平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.如圖2, l1 // l2 // l3 ,則

3. 黃金分割

如圖1,點C把線段AB分成兩條線段AC和BC,如果

那麼稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.

黃金分割點是最優美、最令人賞心悅目的點.

4.相似多邊形

① 含義:

一般地,形狀相同的圖形稱為相似圖形.

對應角相等、對應邊成比例的兩個多邊形叫做相似多邊形.相似多邊形對應邊的比叫做相似比.

②注意點:

在相似多邊形中,最為簡單的就是相似三角形.

對應角相等、對應邊成比例的三角形叫做相似三角形.相似三角形對應邊的比叫做相似比.

全等三角形是相似三角的特例,這時相似比等於1.

注意:證兩個相似三角形,與證兩個全等三角形一樣,應把表示對應頂點的字母寫在對應的位置上.

相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比.

相似三角形周長的比等於相似比.

相似三角形面積的比等於相似比的平方.

相似多邊形的周長等於相似比;面積比等於相似比的平方.

5、探索三角形相似的條件

①相似三角形的判定方法:

②平行於三角形一邊的直線與其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。

③相似三角形的判定定理的證明

④利用相似三角形測高

⑤相似三角形的性質

⑥圖形的位似

初三上冊數學知識點 總結 相關 文章 :

★ 九年級數學上冊重要知識點總結

★ 初三數學知識點考點歸納總結

★ 九年級上冊數學知識點歸納整理

★ 初三數學知識點歸納總結

★ 初三數學知識點總結

★ 初三上冊數學知識點盤點與數學學習方法

★ 初三數學重要公式知識大全

★ 初三九年級上冊數學知識點

★ 初中數學必備知識點總結初三數學上冊一二章知識點

★ 人教版九年級數學知識點歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

F. 初中數學菱形的面積公式

面積計算是數學常考的知識點,我整理了一些幾何圖形的面積計算公式,大家一起來看看吧。

菱形的面積

設一個菱形的面積為S,邊長為a,高為b,兩對角線分別為c和d,一個最小的內角為∠θ,則有:

1、S=ab(菱形和其他平行四邊形的面積等於底乘以高);

2、S=cd÷2(菱形和其他對角線互相垂直的四邊形的面積等於兩對角線乘積的一半);

3、S=a^2·sinθ。

在同一平面內,有一組鄰邊相等的平行四邊形是菱形,四邊都相等的四邊形是菱形,菱形的對角線互相垂直平分且平分每一組對角,菱形是軸對稱圖形,對稱軸有2條,即兩條對角線所在直線,菱形是中心對稱圖形。

幾何圖形面積公式

1、長方形的周長=(長+寬)×2

2、正方形的周長=邊長×4C=4a

3、長方形的面積=長×寬S=ab

4、正方形的面積=邊長×邊長S=a×a

5、三角形的面積=底×高÷2S=ah÷2

6、平行四邊形的面積=底×高S=ah

7、梯形的面積=(上底+下底)×高÷2S=(a+b)h÷2

8、直徑=半徑×2d=2r半徑=直徑÷2r=d÷2

9、圓的周長=圓周率×直徑=圓周率×半徑×2c=πd=2πr

10、圓的面積=圓周率×半徑×半徑Ѕ=πr

以上就是一些菱形的面積計算的相關信息,供大家參考。

G. 初中數學知識點歸納 不要太長

公式分類 公式表達式

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理

判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py

直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l

弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h

H. 求數學平行四邊形、正方形、長方形、菱形的知識點

平行四邊形定義: 在同一平面內兩組對邊分別平行的四邊形叫做平行四邊形
判斷定理 1.兩組對邊分別相等的四邊形是平行四邊形
2.一組對邊平行 一組對角相等是平行四邊形
3.一組對邊平行且相等的四邊形是平行四邊形
4.兩組對角分別相等的四邊形是平行四邊形
5.兩組對邊分別平行的四邊形是平行四邊形
矩形 有一個角是直角的平行四邊形叫做矩形
性質
1.矩形的四個角都是直角,對邊相等
2.矩形的對角線相等
4.矩形既是軸對稱圖形,也是中心對稱圖形(對稱軸是任何一組對邊中點的連線)。
5.對邊平行且相等
6.對角線互相平分 ( 距形具備平行四邊形的一切性質。)
判斷定理
1.有一個角是直角的平行四邊形是矩形
2.對角線相等的平行四邊形是矩形
3.有三個角是直角的四邊形是矩形
菱形 一組鄰邊相等的平行四邊形叫做菱形
性質 對角線互相垂直且平分;
四條邊都相等;
對角相等,鄰角互補;
每條對角線平分一組對角, 菱形具備平行四邊形的一切性質。
判斷 一組鄰邊相等的平行四邊形是菱形 四邊相等的四邊形是菱形
對角線互相垂直且平分的四邊形是菱形.
正方形: 平行四邊形 菱形 矩形 所具有的性質 他都有
如果判斷出這個圖形既是菱形,又是矩形,那麼他是正方形
梯形 梯形是指一組對邊平行而另一組對邊不平行的四邊形。
判斷定理.一組對邊平行,另一組對邊不平行的四邊形是梯形
等腰梯形的性質
1.等腰梯形的兩條腰相等 2.等腰梯形在同一底上的兩個底角相等 3.等腰梯形的兩條對角線相等 4.等腰梯形是軸對稱圖形,對稱軸是上下底中點的連線所在直線 5.等腰梯形(這個非等腰梯形同理)的中位線(兩腰中點相連的線叫做中位線)等於上下底和的二分之一 6.有一個角為90°的梯形是直角梯形 注意:在有些情況下,梯形的上下底以長短區分,而不是按位置確定的,把較短的底叫做上底,較長的底叫做下底。

I. 人教版初三數學知識點歸納

初三數學知識點歸納人教版有哪些?初中數學學習是對學生邏輯計算能力的培養,學好初三數學的關鍵就在於要適時適量地進行 總結 歸類,下面是我整理的初三數學知識點,歡迎大家閱讀學習!

初三數學知識點總結

一、 直線、相交線、平行線

1.線段、射線、直線三者的區別與聯系

從圖形、表示法、界限、端點個數、基本性質等方面加以分析。

2.線段的中點及表示

3.直線、線段的基本性質(用線段的基本性質論證三角形兩邊之和大於第三邊)

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為餘角、互為補角及表示 方法

7.角的平分線及其表示

8.垂線及基本性質(利用它證明直角三角形中斜邊大於直角邊)

9.對頂角及性質

10.平行線及判定與性質(互逆)(二者的區別與聯系)

11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、 三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②線的交點-三角形的心③性質

① 高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法-反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結法、截余法

⑹證面積關系:將面積表示出來

三、 四邊形

分類表:

1.一般性質(角)

⑴內角和:360

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的`四邊形各邊中點得矩形。

⑶外角和:360

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

⑶判定步驟:四邊形平行四邊形矩形正方形

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常平移一腰、平移對角線、作高、連結頂點和對腰中點並延長與底邊相交轉化為三角形。

6.作圖:任意等分線段。

初三數學知識點歸納大全

第四章直線形

★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。

☆內容提要☆

一、直線、相交線、平行線

1.線段、射線、直線三者的區別與聯系

從「圖形」、「表示法」、「界限」、「端點個數」、「基本性質」等方面加以分析。

2.線段的中點及表示

3.直線、線段的基本性質(用「線段的基本性質」論證「三角形兩邊之和大於第三邊」)

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為餘角、互為補角及表示方法

7.角的平分線及其表示

8.垂線及基本性質(利用它證明「直角三角形中斜邊大於直角邊」)

9.對頂角及性質

10.平行線及判定與性質(互逆)(二者的區別與聯系)

11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②__線的交點―三角形的×心③性質

①高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法―反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結法、截余法

⑹證面積關系:將面積表示出來

三、四邊形

分類表:

1.一般性質(角)

⑴內角和:360°

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。

⑶外角和:360°

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

⑶判定步驟:四邊形→平行四邊形→矩形→正方形

┗→菱形――↑

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常「平移一腰」、「平移對角線」、「作高」、「連結頂點和對腰中點並延長與底邊相交」轉化為三角形。

6.作圖:任意等分線段。

初中數學知識點總結歸納

代數部分:有理數、無理數、實數整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(一次函數、二次函數、反比例函數)

幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

1、實數的分類

有理數:整數(包括:正整數、0、負整數)和分數(包括:有限小數和無限環循小數)都是有理數。如:-3,,0.231,0.737373...

無理數:無限不環循小數叫做無理數如:π,-,0.1010010001...(兩個1之間依次多1個0)。

實數:有理數和無理數統稱為實數。

2、無理數

在理解無理數時,要抓住"無限不循環"這一時之,它包含兩層意思:一是無限小數;二是不循環.二者缺一不可.歸納起來有四類:

(1)開方開不盡的數,如等;

(2)有特定意義的數,如圓周率π,或化簡後含有π的數,如+8等;

(3)有特定結構的數,如0.1010010001...等;

(4)某些三角函數,如sin60o等。

注意:判斷一個實數的屬性(如有理數、無理數),應遵循:一化簡,二辨析,三判斷.要注意:"神似"或"形似"都不能作為判斷的標准.

3、非負數:正實數與零的統稱。(表為:x≥0)

常見的非負數有:

性質:若干個非負數的和為0,則每個非負擔數均為0。

4、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。

解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,並能靈活運用。

①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸("三要素")。

②任何一個有理數都可以用數軸上的一個點來表示。

③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。

作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

5、相反數

實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關於原點對稱,如果a與b互為相反數,則有a+b=0,a=-b,反之亦成立。

即:(1)實數的相反數是。

初三數學知識點歸納人教版相關 文章 :

★ 人教版九年級數學知識點歸納

★ 人教版初三數學知識點復習資料備戰中考

★ 初中數學知識點總結

★ 人教版必修3數學演算法初步知識點歸納

★ 人教版八年級數學上冊知識點總結

★ 人教版初一數學下冊知識點復習總結備戰中考

★ 人教版九年級歷史下冊知識點歸納

★ 人教版高三年級數學知識點總結

★ 人教版高三年級數學必考知識點

★ 人教版數學三年級下冊知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

J. 菱形的性質。

菱形的性質

1、對角線互相垂直且平分,並且每條對角線平分一組對角。

2、菱形既是軸對稱圖形,對稱軸是兩條對角線所在直線,也是中心對稱圖形。

3、菱形是特殊的平行四邊形,它具備平行四邊形的一切性質。

4、四條邊都相等。

5、對角相等,鄰角互補。

6、在60°的菱形中,短對角線等於邊長,長對角線是短對角線的根號三倍。

初二數學菱形的幾何知識點歸納

1、判定

①有一組鄰邊相等的平行四邊形是菱形;

②四條邊都相等的四邊形是菱形;

③對角線互相垂直的平行四邊形是菱形

④有一條對角線平分一組對角的平行四邊形是菱形

⑤對角線互相垂直且平分的四邊形是菱形

2、面積

①對角線乘積的一半(只要是對角線互相垂直的四邊形都可用);

②設菱形的邊長為a,一個夾角為x°,則面積公式是:S=a^2·sinx

3、周長

菱形周長=邊長×4 用「a」表示菱形的邊長,「C」表示菱形的周長,

則C=4a

菱形是特殊的平行四邊形,而菱形中又有特殊的一類就是正方形。