1. 六年級下冊數學重要知識點
人教版 六年級下冊數學知識總結
單元一 負數
1.為了表示兩種相反的量,這里出現了一種新的數:-16.-500.像-16 ,-500,-3/8,-0.4,...這樣的數叫做 {負數}.-3/8讀作負八分之三。
2.而以前所學的16,2000,3/8,6.3,...這樣的數叫做{正數}。正數前面也可以加「+」號,例如:+16,+3/8。+6.3等(也可以省去「+」號)+6.3讀作正六點三。
3.0既不是正數,也不是負數。
4.所有正數都在0的左邊,也就是負數比0小,而正數都比0大,負數都比正數小。
單元二 圓柱與圓錐
1.圓柱的兩個圓面叫做底面;周圍的面叫做側面;兩個底面之間的距離叫做高。
2.圓柱的表面積=圓柱的側面積+兩個底面的面積
3.圓柱的側面積=底圓周長x高 vXs h
4.v圓錐=1/3v圓柱=1/3sh
單元三 比例
1.像 ( 操場上的國旗2.4:1.6=3/2 教室里的國旗:60:40=3/2 所以2.4:1.6=60:40 也可以寫成2.4/1.6=60/40 )這樣表示兩個數的比相等的式子叫做比例。
2組成比例的四個數,叫做比例的項。兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項。
3.在比例里,兩個外項的積等於兩個內項的積,這叫做比例的基本性質。
4.根據比例的基本性質,如果一直比例中的任何第三項,就可以求出這個比例中的另外一個未知項。求比例中的未知項,叫做解比例.
5.因為杯子的底面積一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應增加,水的高度降低,體積也相應減少,而且水的體積和高度的比值一定,我們就說體積和高度成{正比例關系},體積和高度叫做成{正比例的量}。
6.如果用字母x和y表示兩種相關聯的量,用k表示它們的比值(一定),正比例關系可以用 y/x=k(一定)。
7.生活中的正比例:水的質量和體積成正比例;如果長方形的寬一定,長方形的面積和長成正比例。
8..因為水的體積一定,所以水的高度隨著底面積的變化而變化。底面積增加,,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成{反比例關系},高度和底面積叫做成反比例的量。
9.如果用字母x和y表示兩種相關聯的量,用k表示它們的乘積(一定),反比例關系可以用 x X y=k(一定)。
10.一幅圖的圖上距離和實際距離的北,叫做這幅圖的{比例尺}。
11.根據:圖上距離/實際距離=比例尺「可以列出方程。
12.因為每噸水的價錢一定,所以水費和用水的噸數成正比例。也就是說,兩家的水費和用水噸數的比值相等。
13.因為書的總數一定,所以包數和每包的本書成反比例,也就是說,每包的本書和包數的乘積相等。
2. 六年級數學的知識點梳理
學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。
人教版小學六年級數學下冊知識點
負數
1.在熟悉的生活情境中初步認識負數,能正確的讀、寫正數和負數,知道0既不是正數也不是負數。
2.初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的密切聯系。
3.能藉助數軸初步學會比較正數、0和負數之間的大小。
4.像-16、-500、-3/8、-0.4…這樣的數叫做負數。
-3/8讀作負八分之三。
16,200,3/8,6.3…這樣的數叫做正數。正數前面可以加「+」號,也可以省去「+」號。
+6.3讀作正六點三。
0既不是正數,也不是負數。
5.16℃讀作十六攝氏度,表示零上16℃;-16℃讀作負十六攝氏度,表示零下16℃
6.如果2000表示存入2000元,那麼-500表示支出了500元。向東走3m記作+3,向西4m記作-4。
7.在數軸上,從左到右的順序就是數從小到大的順序。
0是正數和負數的分界點,所有的負數都在0的左邊,也就是負數都比0小,而正數都比0大,負數都比正數小。
負號後面的數越大,這個數就越小。如:-8<-6。
小學6年級 畢業 考試數學重難知識點
行程問題
基本概念:
行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.
基本公式:
路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:
確定運動過程中的位置和方向。
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追及問題:追及時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間
逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速
逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2
水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。
主要方法:畫線段圖法
基本題型:
已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。
小學六年級 數學學習方法
學生需要在課堂上做好筆記,用來記錄老師講課重點、補充難題、聽課心得等內容,方便日後復習與記憶。而小學數學筆記的記錄,很多孩子無法准確掌握,需要下點工夫,找到適合自己的方法。
一、為什麼要記筆記?
筆記可以方便日後有重點、不失真地復習。
奧數課堂通常包含大量的信息,涵蓋定義、公式、解題技巧等各個方面。大多數同學難以一堂課完全掌握全部內容。尤其我們的課堂還經常包含一些經典的難題、補充題,單憑一次性的記憶無法提供充分的反芻的素材。
二、記筆記要避免的誤區
然而,很多同學出於不自信或者對家長的敷衍,為了筆記而筆記——筆記完成就「大功告成」、束之高閣。殊不知:記在自己腦袋裡面的知識才是自己的知識,有筆記而無復習正是做筆記的錯誤。
三、記筆記的形式
你們的 筆記本 內容多嗎?平時書包裝滿的時候,你能夠方便的找到筆記本嗎?單獨閱讀筆記的時候,你覺得豐富嗎?如果這三個問題你都回答「否」,那麼請考慮一下將全部的筆記搬到講義上去。
筆記一定要方便日後查閱。書寫過程中,字跡不要求美觀,但是至少直觀。
關於某一題的延伸記錄在題目旁邊,關於一講的梳理可以放到章節前,補充的題目可以放到章節後,個人心得可以放在頁眉頁腳。如果有補充隨材還可以粘貼或者插入到講義當中。
簡而言之,筆記在形式上的要求就是:用最小的篇幅記錄最多的內容,同時分出清晰地層次。
四、記筆記的基本方法
記入筆記的內容一定要經過篩選。每一名學生都有自己獨特的筆記需求,相應的它也會有自己的篩選方法。拋開具體的科目、知識點,這里有一些參考標准。
1、內容本身不存在疑問。
我們經常發現部分同學在記錄解題方法時抄寫錯誤、或者照搬板書布局,最終他自己都無法清晰地讀出正確的解題過程。這樣的錯誤不僅會形成無用的筆記,還可能引導思維走入歧途。
2、重點記錄自己不熟悉的內容。
為了照顧大多數、防止遺漏,老師在 總結 的時候通常會往多了講,以至於同樣的幾何模型,五年級上學期提到一次、下學期再復習一次、到了六年級還會梳理兩次。如果學生不加甄別、反復記錄,費時費力不討好,還容易滋生厭惡。——如果你實在很熟悉,留下一個記號。
3、珍惜自己的心得。
黑板上或講義上的內容都是老師的知識,不論多麼優秀的老師,他無法直接將自己的思路完整的拷貝進入學生的大腦。所以知識的傳承需要學生的記錄、復習、練習等等。而真正掌握知識點的最重要表現就是產生自己的認識與歸納。
4、記錄經典題目。
不論小學、中學還是大學,很多時候學習終究脫離不了題目。如果在某一個角落、一本書當中真的有那麼一道題、一段話讓你受益匪淺,那麼勇敢的記錄下來。不要將筆記內容局限在老師所供、講義所言——它應當幫助記錄所有對你重要的內容。
除了這些內容上的篩選,熟練的同學還應該考慮下筆記當中布局與記號。比如,過去老師常使用「△」「.」或者「Ⅱ」來標記相對重要的內容,☆表示最重要的知識點,「→」標記自己的心得,「?」表示自己的疑問等等。這些符號,與紅色、黑色墨跡搭配能夠形成層次鮮明的內容體系,方便自己的不同的場合下復習想復習的內容。
六年級數學的知識點梳理相關 文章 :
★ 六年級數學知識點梳理
★ 六年級數學期末復習知識點匯總
★ 六年級數學知識點歸納
★ 六年級數學總復習知識點整理(完整版)
★ 六年級上冊數學知識點整理歸納
★ 六年級數學的重難點知識總結
★ 六年級數學上冊知識點總結
★ 六年級數學上冊知識點復習
★ 小學六年級數學知識點總結
★ 六年級下冊數學知識點歸納
3. 六年級數學知識點歸納
學習從來無捷徑。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。
小學六年級上冊數學《位置與方向(二)》知識點
1.根據方向和距離可以確定物體在平面圖上的位置。
2.在平面圖上標出物體位置的方法:
先用量角器確定方向,再以選定的單位長度為基準用直尺確定圖上距離,最後找出物體的具體位置,並標上名稱。
3.描述路線圖時,要先按行走路線確定每一個參照點,然後以每一個參照點建立方向標,描述到下一個目標所行走的方向和路程,即每一步都要說清是從哪兒走,向什麼方向走了多遠到哪兒。
4.繪制路線圖的方法:
(1)確定方向標和單位長度。
(2)確定起點的位置。
(3)根據描述,從起點出發,找好方向和距離,一段一段地畫。除第一段(以起點為參照點)外,其餘每一段都要以前一段的終點為參照點。
(4)以誰為參照點,就以誰為中心畫出「十」字方向標,然後判斷下一地點的方向和距離。
小學六年級上冊數學《分數乘法》知識點
(一)分數乘法意義:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
「分數乘整數」指的是第二個因數必須是整數,不能是分數。
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。
「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)
(二)分數乘法計演算法則:
1、分數乘整數的計算方法:用分子乘整數的積作分子,分母不變。能約分的可以先約分,再計算。
(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)
(2)約分是用整數和下面的分母約掉公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。
2、分數乘分數的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母。(分子乘分子,分母乘分母)
(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的方法是:分子、分母同時除以它們的公因數。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。
(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。
(三)積與因數的關系:
一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b>1時,c>a。
一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b<1時,c
一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b=1時,c=a。
在進行因數與積的大小比較時,要注意因數為0時的特殊情況。
人教版小學六年級數學下冊知識點
比例
1.理解比例的意義和基本性質,會解比例。
2.理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。
3.認識正比例關系的圖像,能根據給出的有正比例關系的數據在有坐標系的方格紙上畫出圖像,會根據其中一個量在圖像中找出或估計出另一個量的值。
4.了解比例尺,會求平面圖的比例尺以及根據比例尺求圖上距離或實際距離。
5.認識放大與縮小現象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。
6.滲透函數思想,使學生受到辯證唯物主義觀點的啟蒙 教育 。
7.比例的意義:表示兩個比相等的式子叫做比例。如:2:1=6:
8.組成比例的四個數,叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內項。
9.比例的性質:在比例里,兩個外項的積等於兩個兩個內向的積。這叫做比例的基本性質。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10.解比例:根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例中的另外一個未知項。
求比例中的未知項,叫做解比例。
例如:3:x=4:8,內項乘內項,外項乘外項,則:4x=3×8,解得x=6。
六年級數學知識點歸納相關 文章 :
★ 六年級上冊數學知識點整理歸納
★ 六年級數學總復習知識點整理(完整版)
★ 小學六年級數學學習方法和技巧大全
★ 小學六年級數學知識點總結
★ 六年級數學上冊知識點復習
★ 六年級數學上冊知識點總結
★ 六年級數學圓的知識點總結
★ 六年級數學小知識總結
★ 一至六年級數學知識點復習資料整合
4. 六年級下冊數學知識點歸納
知識是人生旅途中的資糧。從而,只要我們有了更多的知識,哪怕是最可怕,最艱難的任何事,我們多有了力量去克服,有了知識我們就有了向前走的勇氣,勇往直前。下面我給大家分享一些六年級下冊數學知識點,希望能夠幫助大家,歡迎閱讀!
六年級下冊數學知識點1
第一單元 負數
1、負數的由來:
為了表示相反意義的兩個量(如盈利虧損、收入支出……),光有學過的0 1 3.4 2/5……是遠遠不夠的。所以出現了負數,以盈利為正、虧損為負;以收入為正、支出為負
2、負數:小於0的數叫負數(不包括0),數軸上0左邊的數叫做負數。
若一個數小於0,則稱它是一個負數。
負數有無數個,其中有(負整數,負分數和負小數)
負數的寫法:
數字前面加負號「-」號,不可以省略
例如:-2,-5.33,-45,-2/5
正數:
大於0的數叫正數(不包括0),數軸上0右邊的數叫做正數
若一個數大於0,則稱它是一個正數。正數有無數個,其中有(正整數,正分數和正小數)
正數的寫法:數字前面可以加正號「+」號,也可以省略不寫。
例如:+2,5.33,+45,2/5
4、0 既不是正數,也不是負數,它是正、負數的分界限
6、比較兩數的大小:
①利用數軸:
負數<0<正數 或 左邊<右邊
②利用正負數含義:正數之間比較大小,數字大的就大,數字小的就小。負數之間比較大小,數字大的反而小,數字小的反而大
六年級下冊數學知識點2
第二單元 百分數二
(一)、折扣和成數
1、折扣:用於商品,現價是原價的百分之幾,叫做折扣。通稱「打折」。
幾折就是十分之幾,也就是百分之幾十。
解決打折的問題,關鍵是先將打的折數轉化為百分數或分數,然後按照求比一個數多(少)百分之幾(幾分之幾)的數的解題 方法 進行解答。
商品現在打八折:現在的售價是原價的80﹪
商品現在打六折五:現在的售價是原價的65﹪
2、成數:
幾成就是十分之幾,也就是百分之幾十。
解決成數的問題,關鍵是先將成數轉化為百分數或分數,然後按照求比一個數多(少)百分之幾(幾分之幾)的數的解題方法進行解答。
這次衣服的進價增加一成:這次衣服的進價比原來的進價增加10﹪
今年小麥的收成是去年的八成五:今年小麥的收成是去年的85﹪
(二)、稅率和利率
1、稅率
(1)納稅:納稅是根據國家稅法的有關規定,按照一定的比率把集體或個人收入的一部分繳納給國家。
(2)納稅的意義:稅收是國家財政收入的主要來源之一。國家用收來的稅款發展經濟、科技、 教育 、 文化 和國防安全等事業。
(3)應納稅額:繳納的稅款叫做應納稅額。
(4)稅率:應納稅額與各種收入的比率叫做稅率。
(5)應納稅額的計算方法:
應納稅額=總收入×稅率
收入額=應納稅額÷稅率
2、利率
(1)存款分為活期、整存整取和零存整取等方法。
(2)儲蓄的意義:人們常常把暫時不用的錢存入銀行或信用社,儲蓄起來,這樣不僅可以支援國家建設,也使得個人用錢更加安全和有計劃,還可以增加一些收入。
(3)本金:存入銀行的錢叫做本金。
(4)利息:取款時銀行多支付的錢叫做利息。
(5)利率:利息與本金的比值叫做利率。
(6)利息的計算公式:
利息=本金×利率×時間
利率=利息÷時間÷本金×100%
(7)注意:如要上利息稅(國債和教育儲藏的利息不納稅),則:
稅後利息=利息-利息的應納稅額=利息-利息×利息稅率=利息×(1-利息稅率)
稅後利息=本金×利率×時間×(1-利息稅率)
購物策略:
估計費用:根據實際的問題,選擇合理的估算策略,進行估算。
購物策略:根據實際需要,對常見的幾種優惠策略加以分析和比較,並能夠最終選擇最為優惠的方案
學後 反思 :做事情運用策略的好處
六年級下冊數學知識點3
第三單元 圓柱和圓錐
一、圓柱
1、圓柱的形成:圓柱是以長方形的一邊為軸旋轉而得的。
圓柱也可以由長方形捲曲而得到。
兩種方式:
1.以長方形的長為底面周長,寬為高;
2.以長方形的寬為底面周長,長為高。
其中,第一種方式得到的圓柱體體積較大。
2、圓柱的高是兩個底面之間的距離,一個圓柱有無數條高,他們的數值是相等的
3、圓柱的特徵:
(1)底面的特徵:圓柱的底面是完全相等的兩個圓。
(2)側面的特徵:圓柱的側面是一個曲面。
(3)高的特徵 :圓柱有無數條高
4、圓柱的切割:
①橫切:切面是圓,表面積增加2倍底面積,即S 增 =2πr?
②豎切(過直徑):切面是長方形(如果h=2R,切面為正方形),該長方形的長是圓柱的高,寬是圓柱的底面直徑,表面積增加兩個長方形的面積,即S增=4rh
5、圓柱的側面展開圖:
①沿著高展開,展開圖形是長方形,如果h=2πr,則展開圖形為正方形
②不沿著高展開,展開圖形是平行四邊形或不規則圖形
③無論怎麼展開都得不到梯形
6、圓柱的相關計算公式:
底面積 :S底=πr?
底面周長:C底=πd=2πr
側面積 :S側=2πrh
表面積 :S表=2S底+S側=2πr?+2πrh
體積 :V柱=πr?h
考試常見題型:
①已知圓柱的底面積和高,求圓柱的側面積,表面積,體積,底面周長
②已知圓柱的底面周長和高,求圓柱的側面積,表面積,體積,底面積
③已知圓柱的底面周長和體積,求圓柱的側面積,表面積,高,底面積
④已知圓柱的底面面積和高,求圓柱的側面積,表面積,體積
⑤已知圓柱的側面積和高,求圓柱的底面半徑,表面積,體積,底面積
以上幾種常見題型的解題方法,通常是求出圓柱的底面半徑和高,再根據圓柱的相關計算公式進行計算
無蓋水桶的表面積=側面積+一個底面積油桶的表面積=側面積+兩個底面積
煙囪通風管的表面積=側面積
只求側面積:燈罩、排水管、漆柱、通風管、壓路機、衛生紙中軸、薯片盒包裝
側面積+一個底面積:玻璃杯、水桶、筆筒、帽子、 游泳 池
側面積+兩個底面積:油桶、米桶、罐桶類
二、圓錐
1、圓錐的形成:圓錐是以直角三角形的一直角邊為軸旋轉而得到的。圓錐也可以由扇形捲曲而得到。
2、圓錐的高是兩個頂點與底面之間的距離,與圓柱不同,圓錐只有一條高
3、圓錐的特徵:
(1)底面的特徵:圓錐的底面一個圓。
(2)側面的特徵:圓錐的側面是一個曲面。
(3)高的特徵:圓錐有一條高。
4、圓錐的切割:
①橫切:切面是圓
②豎切(過頂點和直徑直徑):切面是等腰三角形,該等腰三角形的高是圓錐的高,底是圓錐的底面直徑,面積增加兩個等腰三角形的面積,
即S增=2rh
5、圓錐的相關計算公式:
底面積:S底=πr?
底面周長:C底=πd=2πr
體積:V錐=1/3πr?h
考試常見題型:
①已知圓錐的底面積和高,求體積,底面周長
②已知圓錐的底面周長和高,求圓錐的體積,底面積
③已知圓錐的底面周長和體積,求圓錐的高,底面積
以上幾種常見題型的解題方法,通常是求出圓錐的底面半徑和高,再根據圓柱的相關計算公式進行計算
三、圓柱和圓錐的關系
1、圓柱與圓錐等底等高,圓柱的體積是圓錐的3倍。
2、圓柱與圓錐等底等體積,圓錐的高是圓柱的3倍。
3、圓柱與圓錐等高等體積,圓錐的底面積(注意:是底面積而不是底面半徑)是圓柱的3倍。
4、圓柱與圓錐等底等高 ,體積相差2/3Sh
題型 總結
①直接利用公式:分析清楚求的的是表面積,側面積、底面積、體積
分析清楚半徑變化導致底面周長、側面積、底面積、體積的變化
分析清楚兩個圓柱(或兩個圓錐)半徑、底面積、底面周長、側面積、表面積、體積之比
②圓柱與圓錐關系的轉換:包括削成最大體積的問題(正方體,長方體與圓柱圓錐之間)
③橫截面的問題
④浸水體積問題:(水面上升部分的體積就是浸入水中物品的體積,等於盛水容積的底面積乘以上升的高度)容積是圓柱或長方體,正方體
⑤等體積轉換問題:一個圓柱融化後做成圓錐,或圓柱中的溶液倒入圓錐,都是體積不變的 問題,注意不要乘以1/3
六年級下冊數學知識點4
第四單元 比例
1、比的意義(1)兩個數相除又叫做兩個數的比
(2)「:」是比號,讀作「比」。比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
(3)同除法比較,比的前項相當於被除數,後項相當於除數,比值相當於商。
(4)比值通常用分數表示,也可以用小數表示,有時也可能是整數。
(5)比的後項不能是零。
(6)根據分數與除法的關系,可知比的前項相當於分子,後項相當於分母,比值相當於分數值。
2、比的基本性質:比的前項和後項同時乘或者除以相同的數(0除外),比值不變,這叫做比的基本性質。
3、求比值和化簡比:
求比值的方法:用比的前項除以後項,它的結果是一個數值可以是整數,也可以是小數或分數。
根據比的基本性質可以把比化成最簡單的整數比。它的結果必須是一個最簡比,即前、後項是互質的數。
4、按比例分配:
在農業生產和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。
方法:首先求出各部分佔總量的幾分之幾,然後求出總數的幾分之幾是多少。
5、比例的意義:表示兩個比相等的式子叫做比例。
組成比例的四個數,叫做比例的項。
兩端的兩項叫做外項,中間的兩項叫做內項。
6、比例的基本性質:在比例里,兩個外項的積等於兩個兩個內項的積。這叫做比例的基本性質。
7、比和比例的區別
(1)比表示兩個量相除的關系,它有兩項(即前、後項);比例表示兩個比相等的式子,它有四項(即兩個內項和兩個外項)。
(2)比有基本性質,它是化簡比的依據;比例也有基本性質,它是解比例的依據。
8、成正比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。
用字母表示x/y=k(一定)
9、成反比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。
用字母表示x×y=k(一定)
10、判斷兩種量成正比例還是成反比例的方法:
關鍵是看這兩個相關聯的量中相對就的兩個數的商一定還是積一定,如果商一定,就成正比例;如果積一定,就成反比例。
11、比例尺:一幅圖的圖上距離和實際距離的比,叫做這幅圖的比例尺。
12、比例尺的分類
(1)數值比例尺和線段比例尺 (2)縮小比例尺和放大比例尺
13、圖上距離:
圖上距離/實際距離=比例尺
實際距離×比例尺=圖上距離
圖上距離÷比例尺=實際距離
14、應用比例尺畫圖的步驟:
(1)寫出圖的名稱、
(2)確定比例尺;
(3)根據比例尺求出圖上距離;
(4)畫圖(畫出單位長度)
(5)標出實際距離,寫清地點名稱
(6)標出比例尺
15、圖形的放大與縮小:形狀相同,大小不同。
16、用比例解決問題:
根據問題中的不變數找出兩種相關聯的量,並正確判斷這兩種相關聯的量成什麼比例關系,並根據正、反比例關系式列出相應的方程並求解。
17、常見的數量關系式:(成正比例或成反比例)
單價×數量=總價
單產量×數量=總產量
速度×時間=路程
工效×工作時間=工作總量
18、
已知圖上距離和實際距離可以求比例尺。
已知比例尺和圖上距離可以求實際距離。
已知比例尺和實際距離可以求圖上距離。
計算時圖距和實距單位必須統一。
19、播種的總公頃數一定,每天播種的公頃數和要用的天數是不是成反比例?
答:每天播種的公頃數×天數=播種的總公頃數
已知播種的總公頃數一定,就是每天播種的公頃數和要用的天數的積是一定的,所以每天播種的公頃數和要用的天數成反比例。
六年級下冊數學知識點5
第五單元 數學廣角-鴿巢問題
1、鴿巣原理是一個重要而又基本的組合原理, 在解決數學問題時有非常重要的作用
②利用公式進行解題:
物體個數÷鴿巣個數=商……余數
至少個數=商+1
2、摸2個同色球計算方法。
①要保證摸出兩個同色的球,摸出的球的數量至少要比顏色數多1。
物體數=顏色數×(至少數-1)+1
②極端思想: 用最不利的摸法先摸出兩個不同顏色的球,再無論摸出一個什麼顏色的球,都能保證一定有兩個球是同色的。
③公式:
兩種顏色:2+1=3(個)
三種顏色:3+1=4(個)
四種顏色:4+1=5(個)
六年級下冊數學知識點歸納相關 文章 :
★ 六年級數學期末復習知識點匯總
★ 人教版六年級數學(下冊)期末知識要點
★ 六年級數學下冊必背知識點總結
★ 六年級上冊數學知識點整理歸納
★ 六年級數學幾何的初步知識知識點總結
★ 小學六年級數學知識點總結
★ 小升初考試必備數學一到六年級的知識點
★ 小升初一至六年級數學知識點整理
★ 小學六年級數學學習方法和技巧大全
★ 小學六年級數學知識點盤點
5. 六年級數學的知識點總結
每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。
人教版小學六年級數學下冊知識點
圓柱和圓錐
1.認識圓柱和圓錐,掌握它們的基本特徵。認識圓柱的底面、側面和高。認識圓錐的底面和高。
2.探索並掌握圓柱的側面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關的簡單實際問題。
3.通過觀察、設計和製作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯系,發展學生的空間觀念。
4.圓柱的兩個圓面叫做底面,周圍的面叫做側面,底面是平面,側面是曲面。
5.圓柱的側面沿高展開後是長方形,長方形的長等於圓柱底面的周長,長方形的寬等於圓柱的高,當底面周長和高相等時,側面沿高展開後是一個正方形。
6.圓柱的表面積=圓柱的側面積+底面積×2即S表=S側+S底×2或2πr×h+2×π。
7.圓柱的側面積=底面周長×高即S側=Ch或2πr×。
8.圓柱的體積=圓柱的底面積×高,即V=sh或πr2×。
進一法:實際中,使用的材料都要比計算的結果多一些,因此,要保留數的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。
9.圓錐只有一個底面,底面是個圓。圓錐的側面是個曲面。
10.從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離)
11.把圓錐的側面展開得到一個扇形。
12.圓錐的體積等於與它等底等高的圓柱體積的三分之一,即V錐=1/3Sh或πr2×h÷。
13.常見的圓柱圓錐解決問題:
①壓路機壓過路面面積(求側面積);
②壓路機壓過路面長度(求底面周長);
③水桶鐵皮(求側面積和一個底面積);
④廚師帽(求側面積和一個底面積);通風管(求側面積)。
小學6年級 畢業 考試數學重難知識點
比和比例
比:
兩個數相除又叫兩個數的比。比號前面的數叫比的前項,比號後面的數叫比的後項。
比值:
比的前項除以後項的商,叫做比值。
比的性質:
比的前項和後項同時乘以或除以相同的數(零除外),比值不變。
比例:
表示兩個比相等的式子叫做比例。a:b=c:d或
比例的性質:
小學六年級 數學學習方法
小學數學學習必須關注孩子創新意識的培養和創新能力的發展。從某種意義上講,養成創造性學習的習慣,比獲得了多少知識更重要。這需要從以下幾方面做起:
1.培養學生善於質疑的習慣。
在參與、經歷數學知識發現、形成的探究活動中,善於發現,提出有針對性、有價值的數學問題,質疑問難,是創造性學習習慣培養的一個重要方面。在數學學習過程中,要逐步培養學生自主探究、積極思考、主動質疑的學習習慣,讓他們想問、敢問、好問、會問。
質疑習慣的培養,也可從模仿開始,老師要注意質疑的「言傳身教」,教給學生可以在哪兒找疑點。一般來說,質疑可以發生在新舊知識的銜接處、學習過程的困惑處、法則規律的結論處、教學內容的重難點及關鍵點處,概念的形成過程中、解題思路的分析過程中、動手操作的實踐中;還要讓學生學會變換角度,提出問題。
2.培養學生手腦結合,注重實踐的習慣。
心理學研究告訴我們,小學生的思維正處在具體形象思維向 抽象思維 、 邏輯思維 發展的過渡階段,特別是低年級 兒童 ,他們的思維仍以具體形象思維為主要形式,他們的抽象思維需要在感性材料的支持下才能進行,因此小學數學 教育 必須重視培養學生動手、動腦、動口的良好習慣,使學生通過看一看、摸一摸、拼一拼、擺一擺、講一講來獲取新知。
例如在學習「角的初步認識」時,角的大小與兩邊的長短有沒有聯系?這個問題就可以通過操作自製的活動角,邊操作、邊觀察、邊討論,從而得出正確的結論。開展類似的教學活動,就能使學生養成手腦結合,勤於實踐的學習習慣。
3.培養學生的良好思維習慣。
培養學生多角度思考和解決問題的習慣,培養他們思維的多向性和靈活性。通過「你能想出不同的方法嗎?」「你還能想到什麼?」「你有獨特的見解嗎?」你能從另一個角度看問題嗎?「等言語,啟發和誘導,鼓勵學生敢想、敢說,不怕出錯、敢於發表不同的見解,培養學生的 創新思維 習慣。
兩個外項積等於兩個內項積(交叉相乘),ad=bc。
正比例:
若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。
反比例:
若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。
比例尺:
圖上距離與實際距離的比叫做比例尺。
按比例分配:
把幾個數按一定比例分成幾份,叫按比例分配。
六年級數學的知識點 總結 相關 文章 :
★ 六年級數學期末復習知識點匯總
★ 小學六年級數學知識點總結
★ 六年級數學上冊知識點總結
★ 六年級數學圓的知識點總結
★ 六年級數學知識點歸納
★ 六年級數學的重難點知識總結
★ 六年級數學知識點總結
★ 六年級上冊數學知識點整理歸納
★ 六年級上冊數學知識點總結
★ 六年級數學知識點梳理
6. 六年級數學知識樹
數學的知識框架,就是你們這一年的數學書里主要分為幾個模塊,這是主幹(根據內容決定),比如說你們的目錄(有主目錄,次目錄)就是一種框架,可以做參考
比如:六年級有2本書,你可以先寫第一本書,書里有12345678個章節(我也不知道有幾個章節,那幾個有聯系,這是打個比方,作為模板),每個章節講得都是不同的內容,1章一般是總論,而23章中講得聯系比較大,45章節有聯系,67也有聯系,你就把他們之間的聯系找出來,歸納一類,而後,歸納這個章節的知識點,從主要概括到最後具體的內容解釋,這樣就完成了
例子:
六年級數學
/ \
/ \
上冊 下冊
/ ! \
分別是 -- 23 45 67章的概要
知識點-- / ! \
(這是豎著畫的,因為是是知識樹嘛!我們現在習慣話橫著的,就是總的在左邊,然後從上到下豎著分,都一樣,習慣而已)
可以依次向下分,我就是舉個例子,具體怎麼樣,你可以參考你們的課本目錄,而且照我的說法你的工作量會很大,這個你也可以簡略寫,不用分的那麼細 ,因為我們做知識框架的目的就是為了方便記憶,使看的容易一些,讓那個繁瑣的知識點聯系起來,有條理一些罷了,所以,這也是因人而異的
希望對你有所幫助!!
7. 小學數學六年級下冊知識點
下面是我的復習資料。
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)小學奧數公式
和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
和倍問題的公式
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
差倍問題的公式
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
植樹問題的公式
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題的公式
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題的公式
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題的公式
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題的公式
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題的公式
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
參考資料:網路知道
(一)數的讀法和寫法 1.
整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。 3.
小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。 4.
小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。 5.
分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。 6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。 8.
百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。 1.
准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000
改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。 2.
近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。 3.
四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略
345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。 4. 大小比較 1.
比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2.
比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。 (三)數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。 2.
分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。 3.
一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。 4.
小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。 5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。 6.
分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。 7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除 1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。 2.
求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數 。
3.
求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質;
兩個合數的公約數只有1時,這兩個合數互質。 (五) 約分和通分 約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
小數
1 小數的意義 把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。 2小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。 帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、
5.26 都是帶小數。 有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54
」 。 純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有
一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
分數
1 分數的意義 把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。 2 分數的分類 真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。 帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。 3 約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。 分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數 1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率
或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
8. 蘇教版六年級下冊數學第一單元百分數的公式
小學數學全部公式
1、每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2、1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3、速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4、單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5、工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6、加數+加數=和
和-一個加數=另一個加數
7、被減數-減數=差
被減數-差=減數
差+減數=被減數
8、因數×因數=積
積÷一個因數=另一個因數
9、被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1正方形
C周長S面積a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2正方體
V:體積a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3長方形
C周長S面積a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4長方體
V:體積s:面積a:長b:寬h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5三角形
s面積a底h高
面積=底×高÷2
s=ah÷2
三角形高=面積×2÷底
三角形底=面積×2÷高
6平行四邊形
s面積a底h高
面積=底×高
s=ah
7梯形
s面積a上底b下底h高
面積=(上底+下底)×高÷2
s=(a+b)×h÷2
8圓形
S面積C周長∏d=直徑r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9圓柱體
v:體積h:高s;底面積r:底面半徑c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10圓錐體
v:體積h:高s;底面積r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或小數+差=大數)
植樹問題
1非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
運算定律共有五個:加法交換律、加法結合律、乘法交換律、乘法結合律、乘法分配律,要求在理解的基礎上掌握,並能靈活運用。
運算性質指:一個數加上兩個數的差;一個數減去兩個數的和;一個數減去兩個數的差;一個數乘以兩個數的商;一個數除以兩個數的積;一個數除以兩個數的商;幾個數的和除以一個數等。這部分內容只是用於簡便運算。
運演算法則包括:整數四則運演算法則、小數四則運演算法則、分數四則運演算法則,要求在理解的基礎上掌握法則,並能運用法則熟練地進行計算。
公式在小學數學的運用中,重點是兩方面:
1。運算定律或性質用字母公式表示
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
乘法交換律:ab=ba
乘法結合律:(ab)c=a(bc)
乘法分配律:a(b+c)=ab+ac
2。幾何形體的周長、面積、體積計算公式
長方形周長:C=2(a+b)
正方形周長:C=4a
圓的周長:C=2πr,或(πd)
長方形面積:S=ab
正方形面積:S=a2
平行四邊形面積:S=ah
圓形面積:S=πr2
長方體體積:V=abc表面積S=2(ab+ac+bc)
正方體體積:V=a3表面積S=6a2
圓柱體體積:V=πr2h表面積S=2πrh+2πr2
要使學生正確理解和掌握基礎知識,教師要認真學習大綱,認真鑽研教材,正確理解大綱所要求學生掌握基礎知識的深度和廣度,並要注重在使學生理解與掌握知識的同時,培養學生的能力,能力發展了,也就更促進對知識的理解和掌握,它們之間是互相促進,密不可分的。
行程通常可以分為這樣幾類:
相遇問題:速度和×相遇時間=相遇路程;
追及問題:速度差×追及時間=路程差;
流水問題:關鍵是抓住水速對追及和相遇的時間不產生影響;
順水速度=船速+水速逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2
水速=(順水速度-逆水速度)÷2
(也就是順水速度、逆水速度、船速、水速4個量中只要有2個就可求另外2個)
環形行程:抓住往返過程中不便的關系
比例應用:運用比例知識解決復雜的行程問題經常考,而且要考都不簡單。
復雜行程:包括多次相遇、火車過橋,二維行程等。
定義定理公式
三角形的面積=底×高÷2。公式S=a×h÷2
正方形的面積=邊長×邊長公式S=a×a
長方形的面積=長×寬公式S=a×b
平行四邊形的面積=底×高公式S=a×h
梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高公式:V=abh
長方體(或正方體)的體積=底面積×高公式:V=abh
正方體的體積=棱長×棱長×棱長公式:V=aaa
圓的周長=直徑×π公式:L=πd=2πr
圓的面積=半徑×半徑×π公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
單位換算
(1)1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克=1000克=1公斤=2市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
數量關系計算公式方面
1.單價×數量=總價
2.單產量×數量=總產量
3.速度×時間=路程
4.工效×時間=工作總量
9. 小學六年級數學下冊數的運算的知識歸類
1
每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3
速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6
加數+加數=和
和-一個加數=另一個加數
7
被減數-減數=差
被減數-差=減數
差+減數=被減數
8
因數×因數=積
積÷一個因數=另一個因數
9
被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1
正方形
C周長
S面積
a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2
正方體
V:體積
a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3
長方形
C周長
S面積
a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4
長方體
V:體積
s:面積
a:長
b:寬
h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5
三角形
s面積
a底
h高
面積=底×高÷2
s=ah÷2
三角形高=面積
×2÷底
三角形底=面積
×2÷高
6
平行四邊形
s面積
a底
h高
面積=底×高
s=ah
7
梯形
s面積
a上底
b下底
h高
面積=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
圓形
S面積
C周長
∏
d=直徑
r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9
圓柱體
v:體積
h:高
s;底面積
r:底面半徑
c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10
圓錐體
v:體積
h:高
s;底面積
r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者
和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或
小數+差=大數)
植樹問題
1
非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2
封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
這是小學1-6年級的,
10. 小學蘇教版數學6年級應該背的運算定律和簡單技巧!有哪些!!
一、小學六年級應該掌握(會背)的運算定律有:
1、加法交換律:
a+b=b+a
2、加法結合律
a+b+c=a+(b+c)
3、乘法交換律
ab=ba
4、乘法結合律
(ab)c=a(bc)
5、乘法分配律
a(b+c)=ab+ac
二、小學六年級應掌握的簡單技巧
1、減法的性質
a-b-c=a-(b+c)
2、商不變的性質
在除法里,被除數和除數同時乘或除以一個不為0的數,商不變。
3、分數的基本性質
分數的分子和分母同時乘或除以一個不為0的數,分數的大小不變。
4、小數的基本性質
在小數的末尾添上或去掉0,小數的大小不變
5、比的基本性質
比的前項和後項同時乘或除以一個不為0的數,比值不變。