㈠ 初三中考數學幾何知識點歸納
對初三學生來說,他們很快就要迎來中考了,而中考是人生道路上第一個轉折點。對每個初三學生來說,他們都希望自己能夠在中考中取得好成績,從而考上好高中。這次我給大家整理了初三中考數學幾何知識點歸納,供大家閱讀參考。
目錄
初三中考數學幾何知識點歸納
學好數學的幾條建議
數學八種思維方法
初三中考數學幾何知識點歸納
1.過兩點有且只有一條直線
2.兩點之間線段最短
3.同角或等角的補角相等
4.同角或等角的餘角相等
5.過一點有且只有一條直線和已知直線垂直
6.直線外一點與直線上各點連接的所有線段中,垂線段最短
7.平行公理經過直線外一點,有且只有一條直線與這條直線平行
8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9.同位角相等,兩直線平行
10.內錯角相等,兩直線平行
11.同旁內角互補,兩直線平行
12.兩直線平行,同位角相等
13.兩直線平行,內錯角相等
14.兩直線平行,同旁內角互補
15.定理三角形兩邊的和大於第三邊
16.推論三角形兩邊的差小於第三邊
17.三角形內角和定理三角形三個內角的和等於180°
18.推論1直角三角形的兩個銳角互余
19.推論2三角形的一個外角等於和它不相鄰的兩個內角的和
20.推論3三角形的一個外角大於任何一個和它不相鄰的內角
21.全等三角形的對應邊、對應角相等
22.邊角邊公理有兩邊和它們的夾角對應相等的兩個三角形全等
23.角邊角公理有兩角和它們的夾邊對應相等的兩個三角形全等
24.推論有兩角和其中一角的對邊對應相等的兩個三角形全等
25邊邊邊公理有三邊對應相等的兩個三角形全等
26斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個直角三角形全等
27.定理1:在角的平分線上的點到這個角的兩邊的距離相等
28.定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
29.角的平分線是到角的兩邊距離相等的所有點的集合
30.等腰三角形的性質定理等腰三角形的兩個底角相等
31.推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊
32.等腰三角形的頂角平分線、底邊上的中線和高互相重合
33.推論3:等邊三角形的各角都相等,並且每一個角都等於60°34等腰三角形的判定定理如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35.推論1:三個角都相等的三角形是等邊三角形
36.推論2:有一個角等於60°的等腰三角形是等邊三角形
37.在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38.直角三角形斜邊上的中線等於斜邊上的一半
39.定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40.逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41.線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42.定理1:關於某條直線對稱的兩個圖形是全等形
43.定理2:如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44.定理3:兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45.逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46.勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a b=c
47.勾股定理的逆定理如果三角形的三邊長a、b、c有關系a b=c,那麼這個三角形是直角三角形
48.定理四邊形的內角和等於360°
49.四邊形的外角和等於360°
50.多邊形內角和定理n邊形的內角的和等於(n-2)×180°
51.推論任意多邊的外角和等於360°
52.平行四邊形性質定理1平行四邊形的對角相等
53.平行四邊形性質定理2平行四邊形的對邊相等
54.推論夾在兩條平行線間的平行線段相等
55.平行四邊形性質定理3平行四邊形的對角線互相平分56.平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57.平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58.平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59.平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60.矩形性質定理1矩形的四個角都是直角
61.矩形性質定理2矩形的對角線相等
62.矩形判定定理1有三個角是直角的四邊形是矩形
63.矩形判定定理2對角線相等的平行四邊形是矩形
64.菱形性質定理1菱形的四條邊都相等
65.菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角
66.菱形面積=對角線乘積的一半,即S=(a×b)÷2
67.菱形判定定理1:四邊都相等的四邊形是菱形
68.菱形判定定理2:對角線互相垂直的平行四邊形是菱形
69.正方形性質定理1:正方形的四個角都是直角,四條邊都相等
70.正方形性質定理2:正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71.定理1關於中心對稱的兩個圖形是全等的
72.定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73.逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74.等腰梯形性質定理等腰梯形在同一底上的兩個角相等
75.等腰梯形的兩條對角線相等
76.等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
77.對角線相等的梯形是等腰梯形
78.平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79.推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰
80.推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81.三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半
82.梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半L=(a b)÷2S=L×h
83.(1)比例的基本性質如果a:b=c:d,那麼ad=bc, 如果ad=bc,那麼a:b=c:d
84.(2)合比性質如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85.(3)等比性質如果a/b=c/d=…=m/n(b d … n≠0),那麼(a c … m)/(b d … n)=a/b
86.平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例
87.推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88.定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89.平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90.定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91.相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)
92.直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93.判定定理2:兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94.判定定理3:三邊對應成比例,兩三角形相似(SSS)
95.定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96.性質定理1:相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97.性質定理2:相似三角形周長的比等於相似比
98.性質定理3:相似三角形面積的比等於相似比的平方
99.任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100.任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101.圓是定點的距離等於定長的點的集合
102.圓的內部可以看作是圓心的距離小於半徑的點的集合
103.圓的外部可以看作是圓心的距離大於半徑的點的集合
104.同圓或等圓的半徑相等
105.到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
<<<
學好數學的幾條建議
1、要有學習數學的興趣。「興趣是最好的老師」。做任何事情,只要有興趣,就會積極、主動去做,就會想方設法把它做好。但培養數學興趣的關鍵是必須先掌握好數學基礎知識和基本技能。有的同學老想做難題,看到別人上數奧班,自己也要去。如果這些同學連課內的基礎知識都掌握不好,在裡面學習只能濫竽充數,對學習並沒有幫助,反而使自己失去學習數學的信心。我建議同學們可以看一些數學名人小 故事 、趣味數學等知識來增強學習的自信心。
2、要有端正的 學習態度 。首先,要明確學習是為了自己,而不是為了老師和父母。因此,上課要專心、積極思考並勇於發言。其次,回家後要認真完成作業,及時地把當天學習的知識進行復習,再把明天要學的內容做一下預習,這樣,學起來會輕松,理解得更加深刻些。
3、要有「持之以恆」的精神。要使學習成績提高,不能著急,要一步一步地進行,不要指望一夜之間什麼都學會了。即使進步慢一點,只要堅持不懈,也一定能在數學的學習道路上獲得成功!還要有「不恥下問」的精神,不要怕丟面子。其實無論知識難易,只要學會了,弄懂了,那才是最大的面子!
4、要注重學習的技巧和 方法 。不要死記硬背一些公式、定律,而是要靠分析、理解,做到靈活運用,舉一反三。特別要重視課堂上學習新知識和分析練習的時候,不能思想開小差,管自己做與學習無關的事情。注意力一定要高度集中,並積極思考,遇到不懂題目時要及時做好記錄,課後和同學進行探討,做好查漏補缺。
5、要有善於觀察、閱讀的好習慣。只要我們做數學的有心人,細心觀察、思考,我們就會發現生活中到處都有數學。除此之外,同學們還可以從多方面、多種 渠道 來學習數學。如:從電視、網路、《小學生數學報》、《數學小靈通》等報刊雜志上學習數學,不斷擴展知識面。
6、要有自己的觀點。現在,大部分同學遇到一些較難或不清楚的問題時,就不加思考,輕易放棄了,有的乾脆聽從老師、父母、書本的意見。即使是老師、長輩、書籍等權威,也不是沒有一點兒失誤的,我們要重視權威的意見,但絕不等於不加思考的認同。
7、要學會概括和積累。及時 總結 解題規律,特別是積累一些經典和特殊的題目。這樣既可以學得輕松,又可以提高學習的效率和質量。
8、要重視其他學科的學習。因為各個學科之間是有著密切的聯系,它對學習數學有促進的作用。如:學好語文對數學題目的理解有很大的幫助等等。
<<<
數學八種思維方法
1、代數思想這是基本的數學思想之一 ,小學階段的設未知數x,初中階段的一系列的用字母代表數,這都是代數思想,也是代數這門學科最基礎的根!
2、數形結合是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的 名言 ,是對數形結合的作用進行了高度的概括。初高中階段有很多題都涉及到數形結合,比如說解題通過作幾何圖形標上數據,藉助於函數圖象等等都是數形給的體現。
3、轉化思想在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
4、對應思想方法對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
5、假設思想方法假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
6、比較思想方法比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
7、符號化思想方法用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
8、極限思想方法事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。
<<<
初三中考數學幾何知識點歸納相關 文章 :
★ 初三中考數學知識點歸納總結
★ 初三數學函數幾何知識點總結
★ 初三數學知識點考點歸納總結
★ 人教版初三數學知識點歸納整理
★ 初三數學知識點總結歸納
★ 初三數學知識點歸納人教版
★ 初三數學知識點歸納總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();㈡ 初三數學二次函數知識點總結
同學們都知道初中數學中函數占據一個了很重要的比值,很多題目解題都需要運用到二次函數。下面我為大家整理了初三數學二次函數知識點總結,希望對大家有所幫助。
二次函數的定義與定義表達式
一般地,自變數x和因變數y之間存在如下關系:y=ax²+bx+c(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大),則稱y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
二次函數的三種表達式
一般式:y=ax²+bx+c(a,b,c為常數,a≠0);
頂點式:y=a(x-h)²+k[拋物線的頂點P(h,k)];
交點式:y=a(x-x₁)(x-x₂)[僅限於與x軸有交點A(x₁,0)和B(x₂,0)的拋物線]。
註:在3種形式的互相轉化中,有如下關系:
h=-b/2a;
k=(4ac-b²)/4a;
x₁,x₂=(-b±√b²-4ac)/2a。
拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)。
2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b²)/4a)。
當-b/2a=0時,P在y軸上;當Δ=b²-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交於(0,c)。
6.拋物線與x軸交點個數:
Δ=b²-4ac>0時,拋物線與x軸有2個交點。
Δ=b²-4ac=0時,拋物線與x軸有1個交點。
Δ=b²-4ac<0時,拋物線與x軸沒有交點。
X的取值是虛數(x=-b±√b²-4ac的值的相反數,乘上虛數i,整個式子除以2a)。
用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:y=ax²+bx+c(a≠0)。
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)²+k(a≠0)。
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x₁)(x-x₂)(a≠0)。
拋物線y=ax^2+bx+c的圖象
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的兩根.這兩點間的距離AB=|x1-x2|。
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0。
㈢ 初中數學函數重要知識點歸納
在初中數學的學習中,幾何和函數是學習的兩大難點,我歸納了一些 函數知識點 ,僅供參考。
初中數學函數知識點
用待定系數法確定函數解析式的一般步驟
(1)根據已知條件寫出含有待定系數的函數關系式;
(2)將x、y的幾對值或圖像上的幾個點的坐標代入上述函數關系式中得到以待定系數為未知數的方程
(3)解方程得出未知系數的值;
(4)將求出的待定系數代回所求的函數關系式中得出所求函數的解析式。
函數的表示方法
列表法:一目瞭然,使用起來方便,但列出的對應值是有限的,不易看出自變數與函數之間的對應規律。
解析式法:簡單明了,能夠准確地反映整個變化過程中自變數與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變數之間的函數關系。
怎麼學好初中數學函數首先就是熟悉坐標系
在除以學習過坐標軸以後,我們在初二階段開始學習坐標系,坐標系是所有函數的容器,在所有的函數裡面需要坐標系來體現的。
理解函數概念
理解自變數和應變數的概念進而理解函數的概念,函數的概念理解了,理解了函數的概念才可以進行函數題的計算。
總結規律性
初中數學函數,包括正比例函數、一次函數、反比例函數和二次函數。既然它們都屬於函數,那麼一定就有著共同點,包括它們的移動、性質、解題方法等,所以說懂得了這一類函數的概念和規律之後,對於所有的函數類型題目都是有幫助的。
㈣ 初三數學二次函數重要知識點整理
數學的二次函數是非常重要的,下面我就大家整理一下初三數學二次函數重要知識點整理,僅供參考。
二次函數的三種表達式
一般式:y=ax^2;+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2;+k [拋物線的頂點P(h,k)]
交點式:y=a(x-x1)(x-x2) [僅限於與x軸有交點A(x1,0)和 B(x2,0)的拋物線]
註:在3種形式的互相轉化中,有如下關系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
二次函數頂點坐標公式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k
[拋物線的頂點P(h,k)]
對於 二次函數 y=ax^2+bx+c
其頂點坐標為 (-b/2a,(4ac-b^2)/4a)
交點式:y=a(x-x?)(x-x ?) [僅限於與x軸有交點A(x? ,0)和 B(x?,0)的拋物線]
其中x1,2= -b±√b^2-4ac
註:在3種形式的互相轉化中,有如下關系:
______
h=-b/2a= (x?+x?)/2 k=(4ac-b^2)/4a 與x軸交點:x?,x?=(-b±√b^2-4ac)/2a
二次函數頂點坐標公式推導
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k
[拋物線的頂點P(h,k)]
對於二次函數y=ax^2+bx+c
其頂點坐標為 (-b/2a,(4ac-b^2)/4a)
二次函數重要考點整理
考點: 函數 以及函數的定義域、函數值等有關概念,函數的表示法,常值函數
考核要求:(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;(2)知道常值函數;(3)知道函數的表示方法,知道符號的意義.
考點:用待定系數法求二次函數的解析式
考核要求:(1)掌握求函數解析式的方法;(2)在求函數解析式中熟練運用待定系數法.
注意求函數解析式的步驟:一設、二代、三列、四還原.
考點:畫二次函數的圖像
考核要求:(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像;(2)理解二次函數的圖像,體會數形結合思想;(3)會畫二次函數的大致圖像.
考點:二次函數的圖像及其基本性質
考核要求:(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質.
注意:(1)解題時要數形結合;(2)二次函數的平移要化成頂點式.
以上就是我為大家整理的初三數學二次函數重要知識點整理。
㈤ 初中數學函數知識點總結
初中數學函數知識點總結
初中數學函數是常考的難點,那麼初中數學函數知識點又應該怎麼總結呢?下面初中數學函數知識點總結是我為大家帶來的,希望對大家有所幫助。
初中數學函數知識點總結 篇1
一、函數
(1)定義:設在某變化過程中有兩個變數x、y,對於x的每一個值,y都有唯一的值與之對應,那麼就說x是自變數,y是因變數,此時,也稱y是x的函數。
(2)本質:一一對應關系或多一對應關系。
有序實數對 平面直角坐標繫上的點
(3)表示方法:解析法、列表法、圖象法。
(4)自變數取值范圍:
對於實際問題,自變數取值必須使實際問題有意義;
對於純數學問題,自變數取值必須保證函數關系式有意義:
①分式中,分母≠0;
②二次根式中,被開方數≥0;
③整式中,自變數取全體實數;
④混合運算式中,自變數取各解集的公共部份。
二、正比例函數與反比例函數
兩函數的異同點
二、一次函數(圖象為直線)
(1)定義式:y=kx+b(k、b為常數,k≠0);自變數取全體實數。
(2)性質:
①k>0,過第一、三象限,y隨x的增大而增大;
k<0,過第二、四象限,y隨x的'增大而減小。
②b=0,圖象過(0,0);
b>0,圖象與y軸的交點(0,b)在x軸上方;
b<0,圖象與y軸的交點(0,b)在x軸下方。
三、二次函數(圖象為拋物線)
(1)自變數取全體實數
一般式:y=ax2+bx+c (a、b、c為常數,a≠0),其中(0,c)為拋物線與y軸的交點;
頂點式:y=a(x—h)2+k(a、h、k為常數,a≠0),其中(h,k)為拋物線頂點;
h=- ,k= 零點式:y=a(x—x1)(x—x2)(a、x1、x2為常數,a≠0) 其中(x1,0)、(x2,0)為拋物線與x軸的交點。x1、x2 = (b 2 -4ac ≥0 )
(2)性質:
①對稱軸:x=- 或x=h;
②頂點:(- , )或(h,k);
③最值:當x=- 時,y有最大(小)值,為 或當x=h時,y有最大(小)值,為k;
初中數學函數知識點總結 篇2
誘導公式的本質
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函數值與的三角函數值之間的關系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數值之間的關系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數值之間的關系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
;㈥ 初中數學二次函數公式及知識點整理
二次函數是一個非常難的部分,下面我就大家整理一下初中數學二次函數公式及知識點整理,僅供參考。
定義與定義表達式
一般地,自變數x和因變數y之間存在如下關系:y=ax2+bx+c(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大),則稱y為x的二次函數。
拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)。
2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b²)/4a)。當-b/2a=0時,P在y軸上;當Δ=b²-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。拋物線與y軸交於(0,c)。
6.拋物線與x軸交點個數:
Δ=b²-4ac>0時,拋物線與x軸有2個交點。
Δ=b²-4ac=0時,拋物線與x軸有1個交點。
Δ=b²-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b²-4ac的值的相反數,乘上虛數i,整個式子除以2a)
二次函數頂點坐標公式推導
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k
[拋物線的頂點P(h,k)]
對於二次函數y=ax^2+bx+c
其頂點坐標為 (-b/2a,(4ac-b^2)/4a)
推導:
y=ax^2+bx+c y=a(x^2+bx/a+c/a) y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2) y=a(x+b/2a)^2+c-b^2/4a y=a(x+b/2a)^2+(4ac-b^2)/4a
對稱軸x=-b/2a
頂點坐標(-b/2a,(4ac-b^2)/4a)
數學二次函數考點及要求
考點:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數
考核要求:(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;(2)知道常值函數;(3)知道函數的表示方法,知道符號的意義.
考點:用待定系數法求二次函數的解析式
考核要求:(1)掌握求函數解析式的方法;(2)在求函數解析式中熟練運用待定系數法.
注意求函數解析式的步驟:一設、二代、三列、四還原.
考點:畫二次函數的圖像
考核要求:(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像;(2)理解二次函數的圖像,體會數形結合思想;(3)會畫二次函數的大致圖像.
考點: 二次函數 的圖像及其基本性質
考核要求:(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質.
注意:(1)解題時要數形結合;(2)二次函數的平移要化成頂點式.
以上就是我為大家整理的初中數學二次函數公式及知識點整理。
㈦ 初中數學函數知識點總結 如何學好函數
函數是初中數學的重要內容,學習函數首先要理解,函數是發生在集合之間的一種對應關系。然後,要理解發生在A、B之間的函數關系有且不止一個。最後,要重點理解函數的三要素。函數的對應法則通常用解析式表示,但大量的函數關系是無法用解析式表示的,可以用圖像、表格及其他形式表示。
函數知識點
概念
自變數(函數):一個與它量有關聯的變數,這一量中的任何一值都能在它量中找到對應的固定值。
因變數(函數):隨著自變數的變化而變化,且自變數取唯一值時,因變數(函數)有且只有唯一值與其相對應。
函數值:在y是x的函數中,x確定一個值,y就隨之確定一個值,當x取a時,y就隨之確定為b,b就叫做a的函數值。
幾何含義
函數與不等式和方程存在聯系(初等函數)。令函數值等於零,從幾何角度看,對應的自變數的值就是圖像與X軸的交點的橫坐標;從代數角度看,對應的自變數是方程的解。另外,把函數的表達式(無表達式的函數除外)中的「=」換成「<」或「>」,再把「Y」換成其它代數式,函數就變成了不等式,可以求自變數的范圍。
表示方法
解析式法
用含有數學關系的等式來表示兩個變數之間的函數關系的方法叫做解析式法。這種方法的優點是能簡明、准確、清楚地表示出函數與自變數之間的數量關系;缺點是求對應值時往往要經過較復雜的運算,而且在實際問題中有的函數關系不一定能用表達式表示出來。
圖像法
把一個函數的自變數x與對應的因變數y的值分別作為點的橫坐標和縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。這種表示函數關系的方法叫做圖象法。這種方法的優點是通過函數圖象可以直觀、形象地把函數關系表示出來;缺點是從圖象觀察得到的數量關系是近似的。
函數學習方法
注重類比思想
不同的事物往往具有一些相同或相似的屬性,人們正是利用相似事物具有的這種屬性,通過對一事物的認識來認識與它相似的另一事物,這種認識事物的思維方法就是類比法。初中學習的正比例函數、一次函數、反比例函數、二次函數在概念的得來、圖象性質的研究、及基本解題方法上都有著本質上的相似。因此採用類比的方法不但省時、省力,還有助於學生的理解和應用。是一種既經濟又實效的教學方法。
注重數形結合思想
數形結合的思想方法是初中數學中一種重要的思想方法。數學是研究現實世界數量關系和空間形式的科學。而數形結合就是通過數與形之間的對應和轉化來解決數學問題。它包含以形助數和以數解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數的嚴謹與形的直觀之長。
函數的三種表示方法:解析法、列表法、圖象法本身就體現著函數的「數形結合」。函數圖象就是將變化抽象的函數「拍照」下來研究的有效工具,函數教學離不開函數圖象的研究。
注重實際應用問題
學習函數的主要目的之一就是在復雜的實際生活中建立有效的函數模型,利用函數的知識解決問題。這也是新課標所倡導的學習,因此新教材大力倡導函數與實際的應用。
㈧ 初三函數的解題思路
1.配方法:將函數解析式化成含有自變數的平方式與常數的和,然後根據變數的取值范圍確定函數的最值.形如 的函數值域均可用此法,要特別注意自變數的范圍.
2分離常數法:將函數解析式化成含有一個常數和含有 的表達式,利用自變數取值范圍確定表達式取值范圍。形如 的函數的值域,均可以使用此法,此外這種函數的值域也可以利用反函數法,利用反函數的定義域進行值域的求解。
3.判別式法:把函數轉化成關於的二次方程 ,通過方程有實根模型解題法,判別式 ,從而求得原函數的值域。形如 的函數的值域常用此法解決。
注意事項:①函數定義域為R;②分子、分母沒有公因式。
4.不等式法:利用基本不等式取等號確定函數的最值,常用不等式有:
① 當且僅當a = b時,「=」號成立;
② 當且僅當a = b時,「=」號成立;
③ 當且僅當a = b = c時,「=」號成立;
④ ,當且僅當a = b = c時,「=」號成立.
注意事項:①基本不等式求最值時一定要注意應用的條件是「一正二定三等」.
②熟悉一個重要的不等式鏈:
5.換元法:運用代數或者三角代換,將所給函數化成值域容易確定的另一函數,從而求得原函數的值域。形如 的函數等常用此法解決.
注意事項:換元法使用時一定要注意新變元的取值范圍.
6.數形結合法:當一個函數 圖象較容易作出時,通過圖像可以求出其值域和最值;或利用函數所表示的幾何意義,藉助幾何方法求出函數的值域。例如距離、斜率等.
7.函數的單調性法:確定函數在定義域(或某個定義域的子集)上的單調性以求出函數的值域.例如形如 的函數, 的函數等.
注意事項:1 函數單調性問題必須先在討論定義域條件下進行。
2函數的單調性的判斷方法有定義法,導數判斷法等方法。
二 函數最值求解例析
例1 求下列函數的值域:
解:(1)方法一(分離常數法)由 知 ,
所以函數值域為
方法二(反函數法)由 ,得 ,所以 即
所以函數值域為
(2)方法一(換元法)設 ,得 ,
方法二(函數單調性法)
註:函數 的單調性也可以用導數法進行判斷( ).
(3)方法一(判別式法)
。
,
所以函數值域為 。
方法二(不等式法)
。
(4)方法一(基本不等式法)
由 得
即 或 ,所以函數的值域為
方法二(判別式法)
由 得 。
方程有實根,
解得 或 ,所以函數的值域為
方法三(函數單調性法)由 得
所以當 和 時, 所以函數在 和 上是減少的,
當 和 時, 所以函數在 和 上是增加的,
所以
所以函數的值域為
註:函數 圖象及性質
(1)函數 圖象:
(2)函數 性質:
①值域: ;
②單調遞增區間: , ;
單調遞減區間: , .
例2對 ,記 ,函數 的最小值是( )
A C D
解法一(圖像法):
函數 的圖像如圖所示,由圖像可得,其最小值為 。[來源:Z,xx,k.Com]
解法二(零點分區間討論法):
當x<﹣1時,|x+1|=﹣x﹣1,|x﹣2|=2﹣x, 2﹣x>﹣x﹣1;
當﹣1≤x< 時,|x+1|=x+1,|x﹣2|=2﹣x, x+1<2﹣x;
當 <x<2時,|x+1|=x+1,|x﹣2|=2﹣x,x+1>2﹣x;
當x≥2時,|x+1|=x+1,|x﹣2|=x﹣2, x+1>x﹣2;
故 ,故函數最小值為 .
例3 設函數 ,求 在區間 上的最大值 和最小值 。
解:(函數單調性法)
由於 ,所以 ,
由 得: ;由 得: ,
所以函數 在區間 上是減少的;在區間 上是增加的。又由於
所以: ,
三 訓練
1 下列函數中,值域是(0,+∞)的是()
A、 B、
C、y=x2+x+1 D、
2 函數 的值域是()
A、(﹣∞,﹣1) B、(﹣∞,0)∪(0,+∞)
C、(﹣1,+∞) D、(﹣∞,﹣1)∪(0,+∞)
3 函數 的值域是
4 函數 的值域為