當前位置:首頁 » 基礎知識 » 小學數學廣角的知識點
擴展閱讀
蘇東坡冷知識大全集 2024-11-16 14:38:01
奧運會冷知識大全 2024-11-16 14:37:05

小學數學廣角的知識點

發布時間: 2022-08-29 08:11:42

Ⅰ 六年級上冊數學知識點總結大全

讀書不是為了考試,本來考試是一件正確的事情,它是用來檢查我們對學習過的知識是否懂了,懂了多少 多深 分數只是反映了我們對學過知識的掌握程度,下面我給大家分享一些 六年級數學 知識點,希望能夠幫助大家!

六年級上冊數學知識點大全

六年級上冊數學知識 總結 1

一、圓的特徵

1、圓是平面內封閉曲線圍成的平面圖形。

2、圓的特徵:外形美觀,易滾動。

3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。

圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。

半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。

直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。

同圓或等圓內直徑是半徑的2倍:d=2r 或 r=d÷2

4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。

同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。

5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的直線叫做對稱軸。

有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。

有二條對稱軸的圖形:長方形

有三條對稱軸的圖形:等邊三角形

有四條對稱軸的圖形:正方形

有無條對稱軸的圖形:圓,圓環

6、畫圓

(1)圓規兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉一周。

二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。

1、圓的周長總是直徑的三倍多一些。

2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。

即:圓周率π = 周長÷直徑≈3.14

所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd, c=2πr

圓周率π是一個無限不循環小數,3.14是近似值。

3、周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。

4、半圓周長=圓周長一半+直徑= πr+d

三、圓的面積s

1、圓面積公式的推導

如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。

圓的半徑=長方形的寬

圓的周長的一半=長方形的長

長方形面積=長×寬

所以:圓的面積=圓的周長的一半(πr)×圓的半徑(r)

S圓 =πr×r=πr2

2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。

周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。

3、圓面積的變化的規律:半徑擴大多少倍,直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。

4、環形面積 =大圓–小圓=πR2-πr2

扇形面積=πr2×n÷360(n表示扇形圓心角的度數)

5、跑道:每條跑道的周長等於兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。

一個圓的半徑增加a厘米,周長就增加2πa厘米。

一個圓的直徑增加b厘米,周長就增加πb厘米。

6、任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π。

7、常用數據

π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

六年級上冊數學知識總結2

比:兩個數相除也叫兩個數的比

1、比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。

連比如:3:4:5讀作:3比4比5

2、比表示的是兩個數的關系,可以用分數表示,寫成分數的形式,讀作幾比幾。

例:12∶20= =12÷20= =0.6 12∶20讀作:12比20

區分比和比值:比值是一個數,通常用分數表示,也可以是整數、小數。

比是一個式子,表示兩個數的關系,可以寫成比,也可以寫成分數的形式。

3、比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。

4、化簡比:化簡之後結果還是一個比,不是一個數。

(1)、用比的前項和後項同時除以它們的最大公約數。

(2)、兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的 方法 來化簡。也可以求出比值再寫成比的形式。

(3)、兩個小數的比,向右移動小數點的位置,也是先化成整數比。

5、求比值:把比號寫成除號再計算,結果是一個數(或分數),相當於商,不是比。

6、比和除法、分數的區別:

除法:被除數除號(÷) 除數(不能為0) 商不變性質 除法是一種運算

分數:分子 分數線 (—)分母(不能為0) 分數的基本性質 分數是一個數

比:前項比號(∶) 後項(不能為0) 比的基本性質 比表示兩個數的關系

商不變性質:被除數和除數同時乘或除以相同的數(0除外),商不變。

分數的基本性質:分子和分母同時乘或除以相同的數(0除外),分數的大小不變。

分數除法和比的應用

1、已知單位「1」的量用乘法。

2、未知單位「1」的量用除法。

3、分數應用題基本數量關系(把分數看成比)

(1)甲是乙的幾分之幾?

甲=乙×幾分之幾 乙=甲÷幾分之幾 幾分之幾=甲÷乙

(2)甲比乙多(少)幾分之幾?

4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。

5、畫線段圖:

(1)找出單位「1」的量,先畫出單位「1」,標出已知和未知。

(2)分析數量關系。(3)找等量關系。(4)列方程。

兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。

六年級上冊數學知識總結3

分數乘法

(一)分數乘法意義:

1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。

「分數乘整數」指的是第二個因數必須是整數,不能是分數。

2、一個數乘分數的意義就是求一個數的幾分之幾是多少。

「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)

(二)分數乘法計演算法則:

1、分數乘整數的運演算法則是:分子與整數相乘,分母不變。

(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。

2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)

(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。

(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。

(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。

(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。

(三)積與因數的關系:

一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b >1時,c>a。

一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b<1時,c<a(b≠0)。< p="">

一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b =1時,c=a 。

在進行因數與積的大小比較時,要注意因數為0時的特殊情況。

(四)分數乘法混合運算

1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。

2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。

乘法交換律:a×b=b×a 乘法結合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒數的意義:乘積為1的兩個數互為倒數。

1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)

2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為「1」。例如:a×b=1則a、b互為倒數。

3、求倒數的方法:

①求分數的倒數:交換分子、分母的位置。

②求整數的倒數:整數分之1。

③求帶分數的倒數:先化成假分數,再求倒數。

④求小數的倒數:先化成分數再求倒數。

4、1的倒數是它本身,因為1×1=1

0沒有倒數,因為任何數乘0積都是0,且0不能作分母。

5、真分數的倒數是假分數,真分數的倒數大於1,也大於它本身。

假分數的倒數小於或等於1。帶分數的倒數小於1。

(六)分數乘法應用題——用分數乘法解決問題

1、求一個數的幾分之幾是多少?(用乘法)

已知單位「1」的量,求單位「1」的量的幾分之幾是多少,用單位「1」的量與分數相乘。

2、巧找單位「1」的量:在含有分數(分率)的語句中,分率前面的量就是單位「1」對應的量,或者「占」「是」「比」字後面的量是單位「1」。

3、什麼是速度?

速度是單位時間內行駛的路程。

速度=路程÷時間 時間=路程÷速度 路程=速度×時間

單位時間指的是1小時1分鍾1秒等這樣的大小為1的時間單位,每分鍾、每小時、每秒鍾等。

4、求甲比乙多(少)幾分之幾?

多:(甲-乙)÷乙 少:(乙-甲)÷乙

六年級上冊數學知識總結4

百分數(一)

一、百分數的意義:表示一個數是另一個數的百分之幾的數叫做百分數。百分數又叫百分比或百分率,百分數不能帶單位。

注意:百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比。

1、百分數和分數的區別和聯系:

(1)聯系:都可以用來表示兩個量的倍比關系。

(2)區別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。百分數的分子可以是小數,分數的分子只可以是整數。

注意:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數並不是百分數,必須把分母寫成「%」才是百分數,所以「分母是100的分數就是百分數」這句話是錯誤的。「%」的兩個0要小寫,不要與百分數前面的數混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70%、80%,出油率在30%、40%。

2、小數、分數、百分數之間的互化

(1)百分數化小數:小數點向左移動兩位,去掉「%」。

(2)小數化百分數:小數點向右移動兩位,添上「%」。

(3)百分數化分數:先把百分數寫成分母是100的分數,然後再化簡成最簡分數。

(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然後化成百分數。

(5)小數化分數:把小數成分母是10、100、1000等的分數再化簡。

(6)分數化小數:分子除以分母。

二、百分數應用題

1、求常見的百分率,如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾。

2、求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。

求甲比乙多百分之幾:(甲-乙)÷乙

求乙比甲少百分之幾:(甲-乙)÷甲

3、求一個數的百分之幾是多少。一個數(單位「1」)×百分率

4、已知一個數的百分之幾是多少,求這個數。

部分量÷百分率=一個數(單位「1」)

5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十

折扣、成數=幾分之幾、百分之幾、小數

八折=八成=十分之八=百分之八十=0.8

八五折=八成五=十分之八點五=百分之八十五=0.85

五折=五成=十分之五=百分之五十=0.5=半價

6、利率

(1)存入銀行的錢叫做本金。

(2)取款時銀行多支付的錢叫做利息。

(3)利息與本金的比值叫做利率。

利息=本金×利率×時間

稅後利息=利息-利息的應納稅額=利息-利息×5%

註:國債和 教育 儲蓄的利息不納稅

7、百分數應用題型分類

(1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾

(2)求甲比乙多百分之幾——(甲-乙)÷乙×100%

(3)求甲比乙少百分之幾——(乙-甲)÷乙×100%

六年級上冊數學知識總結5

扇形統計圖的意義

1、扇形統計圖的意義:用整個圓的面積表示總數,用圓內各個扇形面積表示各部分數量同總數之間關系,也就是各部分數量占總數的百分比,因此也叫百分比圖。

2、常用統計圖的優點:

(1)條形統計圖直觀顯示每個數量的多少。

(2)折線統計圖不僅直觀顯示數量的增減變化,還可清晰看出各個數量的多少。

(3)扇形統計圖直觀顯示部分和總量的關系。

數學廣角--數與形

2+4+6+8+10+12+14+16+18+20=(110)

規律:從2開始的n個連續偶數的和等於n×(n+1)。

10×(10+1)=10×11=110

位置與方向(二)

1、什麼是數對?

數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即「先列後行」。

數對的作用:確定一個點的位置。經度和緯度就是這個原理。

2、確定物體位置的方法:

(1)、先找觀測點;(2)、再定方向(看方向夾角的度數);(3)、最後確定距離(看比例尺)。

描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。

位置關系的相對性:兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。

相對位置:東--西;南--北;南偏東--北偏西。

六年級上冊數學知識點總結相關 文章 :

★ 六年級上冊數學知識點整理歸納

★ 六年級數學上冊知識點總結

★ 六年級數學期末復習知識點匯總

★ 六年級上冊數學知識點

★ 六年級數學上冊《百分數》知識點總結

★ 六年級上冊數學課本知識點歸納

★ 六年級數學上冊知識點復習

★ 小學六年級數學學習方法和技巧大全

★ 六年級數學上冊知識人教版

★ 小學六年級數學知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅱ 小學數學各年級知識點重點難點整理

不同的年級考點不一樣,知識點難易程度也不一樣。下面是我為大家整理的關於小學數學各年級知識點重點難點整理,希望對您有所幫助。歡迎大家閱讀參考學習!

一年級的知識重點

1數與計算

(1)20以內數的認識,加法和減法。

數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合式題

(2)100以內數的認識。

加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。

兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。

2量與計量

鍾面的認識(整時)。人民幣的認識和簡單計算。

3幾何初步知識

長方體、正方體、圓柱和球的直觀認識。

長方形、正方形、三角形和圓的直觀認識。

4應用題

比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力)

5實踐活動

選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。

二年級的知識重點

1數與計算

(1)兩位數加、減兩位數。兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。

(2)表內乘法和表內除法。乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。

(3)萬以內數的讀法和寫法。數數。百位、千位、萬位。數的讀法、寫法和大小比較。

(4)加法和減法。加法,減法。連加法。加法驗算,用加法驗算減法。

(5)混合運算。先乘除後加減。兩步計算式題。小括弧。

2量與計量

時、分、秒的認識。

米、分米、厘米的認識和簡單計算。

千克(公斤)的認識。

3幾何初步知識

直線和線段的初步認識。角的初步認識。直角。

4應用題

加法和減法一步計算的應用題。乘法和除法一步計算的應用題。比較容易的兩步計算的應用題。

5實踐活動

與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。

三年級的知識重點

1數與計算

(1)一位數的乘、除法。

一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。

(2)兩位數的乘、除法。

一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。

(3)四則混合運算。

兩步計算的式題。小括弧的使用。

(4)分數的初步認識。

分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。

2量與計量

千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。

3幾何初步知識

長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。

4應用題常見的數量關系。

解答兩步計算的應用題。

5實踐活動

聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。

四年級的知識重點

1數與計算

(1)億以內數的讀法和寫法。

計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。

(2)加法和減法。

加法,減法。

接近整十、整百數的加、減法的簡便演算法。

加、減法算式中各部分之間的關系。求未知數x。

(3)乘、除數是三位數的乘、除法。

乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。

乘、除計算的簡單估算。

乘數接近整十、整百的簡便演算法。

乘、除法算式中各部分之間的關系。求未知數x。

(4)四則混合運算。

中括弧。三步計算的式題。

(5)整數及其四則運算的關系和運算定律。

自然數與整數。十進制計數法。讀法和寫法。

四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。

運算定律。簡便運算。

(6)小數的意義、性質,加法和減法。

小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值加法和減法。加法運算定律推廣到小數。

2量與計量

年、月、日。平年、閏年。世紀。24時計時法。

角的度量。

面積單位。

3幾何初步知識

直線的測定。測量距離(工具測、步測、目測)。

射線。直角、銳角、鈍角、平角、_周角。垂線。畫垂線。平行線。畫平行線。

三角形的特徵。

三角形的內角和。

4統計初步知識

簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。

5應用題列綜合算式

解答比較容易的三步計算的應用題。

五年級的知識重點

1計算

小數乘法,小數除法,簡易方程,觀察物體,多邊形的面積,統計與可能性,數學廣角和數學綜合運用等。

在前面學習整數四則運算和小數加、減法的基礎上,繼續培養學生小數的四則運算能力。

2方程

用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的 抽象思維 能力,提高解決問題的能力。

3空間與物體

在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和 經驗 的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置。

4圖形的轉換

探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想 方法 ,促進學生空間觀念的進一步發展。

5統計與概率

教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性。

6平均數

理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。

7實際應用

通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。

六年級的知識重點

1數與計算

(1)分數的乘法和除法,分數乘法的意義,分數乘法,乘法的運算定律推廣到分數,倒數,分數除法的意義,分數除法。

(2)分數四則混合運算,分數四則混合運算。

(3)百分數,百分數的意義和寫法,百分數和分數、小數的互化。

2比和比例

比的意義和性質,比例的意義和基本性質,解比例,成正比例的量和成反比例的量。

3幾何初步知識

圓的認識,圓周率,畫圓,圓的周長和面積,扇形的認識,軸對稱圖形的初步認識,圓柱的認識,圓柱的表面積和體積,圓錐的認識,圓錐的體積,球和球的半徑、直徑的初步認識。

4統計初步知識

統計表,條形統計圖,折線統計圖,扇形統計圖。

5應用題

分數四則應用題(包括工程問題),百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算),比例尺,按比例分配。

6實踐活動

聯系學生所接觸到的社會情況組織活動,例如就家中的卧室,畫一個平面圖。

相關 文章 :

1. 小學六年級數學知識點、難點及學習方法

2. 小學六年級的數學難點解答

3. 六年級數學學習方法和重點難點

4. 小學三年級數學學習內容重點知識匯總

5. 六年級上冊數學知識點整理歸納

Ⅲ 小學二年級上冊數學重點知識整理

現在已經是冬天了,很快就要期末了,同學們復習得怎麼樣了啊?今天我為同學們帶來了關於小學二年級上冊數學的重點知識整理,希望可以幫助有需要的同學,下面就讓我們一起來學習一下吧。

第一單元:長度單位

1、尺子是測量長度的工具。

2、量比較短的物體,可以用「厘米」作單位,厘米可以用「cm」表示。

3、把尺的刻度0對物體的左端,再看物體的右端對著幾,就可以知道物體的長度。

4、量比較長的物體,通常用「米」作單位。米可以用「m」來表示。

5、1米=100厘米 ;1m=100cm;1米裡面有(100)個1厘米。

6、線段是直的,可以量出長度,有兩個端點。

7、掌握畫線的 方法 。

第二單元:100以內的加法和減法

1、筆算(列豎式計算)加法時,相同數位要對齊,從個位加起,個位相加滿十,向十位進1。

2、筆算(列豎式計算)減法時,相同數位要對齊,從個位減起,個位不夠減,從十位退1。

3、列豎式計算時,進位符(小1)和退位符(小圓點)不可省略。

第三單元:角的初步認識

1、一個角有1個頂點,2條邊。

2、從一點起,用尺子向不同的方向畫兩條筆直的線,就畫成一個角。

3、每個三角尺上都有一個直角,每個三角尺上都有兩個銳角。

判斷:用一副三角板可以拼出直角。(×)

4、比直角大的是鈍角,比直角小的是銳角。

5、角的大小和邊長無關,和角的張口大小有關。

判斷:用放大鏡看一個角,角變大了。(×)

第四單元:表內乘法(一)

1、加數相同的加法,可以用乘法表示。

2、7個2

加法算式:2+2+2+2+2+2+2=14

乘法算式:2×7=14讀作2乘7等於14。

或:7×2=14讀作7乘2等於14。

3、乘數×乘數=積

(1)2個4相加 :2×4=8

(2)2個4相乘:4×4=16

(3)2和4相乘:2×4=8

4、1-6的乘法口訣

(1)能夠默寫乘法口訣;

(2)能夠寫出乘法口訣表示的意義,表示幾個幾相加,用圖形表示出來。

(3)能夠根據乘法口訣寫出乘法算式。

(4)根據加法算式,寫出乘法算式

第五單元:觀察物體(一)

1、通過觀察、比較,初步體會從不同位置觀察物體所看到的形狀是不一樣的,並學會根據看到的不同形狀正確判斷觀察者所在的位置。

2、看到的立體圖形的一個面是正方形,這個立體圖形可能是正方體或長方體。

第六單元:表內乘法(二)

1、7-9的乘法口訣

(1)能夠默寫乘法口訣;

(2)能夠寫出乘法口訣表示的意義,表示幾個幾相加,用圖形表示出來。

(3)能夠根據乘法口訣寫出乘法算式。

第七單元:認識時間

1、鍾面上有12個大格,每個大格有5個小格,鍾面上一共有60個小格。

2、時針走一圈是12小時,分鍾走一圈是60分鍾。

3、分針走一圈,時針走1大格

1時=60分,一刻=15分,半小時=30分

4、整時和半時

整時:分鍾指著12,時針指著數字幾就是幾時。

半時:分鍾指著6,時針走過數字幾就是幾時半。

5、時間的計算

時間的加法計算:

求幾時幾分過幾分是幾時幾分,要用加法計算。

計算時,時加時,分加分,滿60要向前一位進1.

時間的減法計算

求幾時幾分到幾時幾分之間的時間有長,要用減法,用終止的時間減去起始的時間。

計算時,時減時,分減分,不夠減要向前一位退1當60.

第八單元:數學廣角——搭配(一)

1、根據問題情境,有條理地列出所有可能性,做到不重不漏。

2、有些問題要考慮排列順序的問題。

題1:用1、2、6三張卡片可以組成(8)個兩位數。

12、16、21、26、61、62、91、92

題2:用1、2、6三個數可以組成(6)個兩位數。

12、16、21、26、61、62

題3:把兩件衣服放到三個不同的箱子有(9)種方法。

分一件衣服放一個箱子和兩件衣服放一個箱子。

題4:有1角、5角和1元3枚硬幣可以組成(7)種幣值。

分1枚、2枚、3枚進行組合。

小學二年級上冊數學重點知識整理相關 文章 :

1. 二年級數學上冊概念知識點整理

2. 二年級上冊數學知識點總結

3. 小學數學各年級知識點重點難點整理

4. 小學二年級數學學習方法歸納總結

5. 二年級數學學習方法及重難知識點總結

6. 二年級上冊數學期末復習試題

7. 二年級上冊數學的復習與學習方法

8. 小學數學法則知識歸納整理分類

9. 小學數學二年級教學方法與期末復習攻略

Ⅳ 小學數學知識點總結(全部)

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

Ⅳ 二年級數學全冊知識點

學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些 二年級數學 的知識點,希望對大家有所幫助。

小學二年級數學知識

認識時間知識點:

1、1時=(60)分

2、鍾面上游(12)個數,這些數把鍾面分成了(12)個相等的大格,每個大格又分成了(5)個相等的小格,鍾面上一共有(60)個小格。

3、鍾面上有(2)根針,短粗一點的針叫(時)針,細長一點的針叫(分)針。分針走1小格是(1)分,走1大格是(5)分,時針走1大格是(1)時。分針從12走到6,走了(30)分;時針從12走到6,走了(6)小時;時針從12開始繞了一圈,又走回了12,走了(12)時。

4、(30)分也可以說成半小時,(15)分也可以說成一刻鍾。如8時30分是8時半,9時15分是9時一刻。

5、(3或9)時整,鍾面上時針和分針成直角。

6、寫出鍾面上的時間,畫分針:教材P101第3題,P105第12題。

數學廣角知識點:

1、在排列和組合中,要按一定的順序進行,才不會選重或選漏。排列與順序有關,如數字的組成,衣褲、早餐搭配,排隊等;組合與順序無關,如給數字求和,握手,調果汁等。

2、3個人中,每兩個人進行一次比賽或握手、照相等,共要進行3次。

3、用3個不是0的數,能組成6個十位與個位不相同的兩位數,如4、5、7能組成45、47、54、57、74、75;如果有一個是0,能組成4個兩位數。如:0、4、7能組成40、47、70、74。

二年級數學《萬以內數的認識》知識點

一、1000以內數的認識

1、10個一百就是一千。

2、讀數時,要從高位讀起。百位上是幾就幾百,十位上幾就幾十,個位上是幾就讀幾中間有一個0,就讀「零」,末尾不管有幾個0,都不讀。

3、寫數時,要從高位寫起,幾個百就在百位寫幾,幾個十就在十位寫幾,幾個一就在個位寫幾,哪一位上一個數也沒有就寫0佔位。

4、數的組成:看每個數位上是幾,就由幾個這樣的計數單位組成。

二、10000以內數的認識

1、10個一千是一萬。

2、萬以內數的讀法和寫法與1000以內的數讀法和寫法相同。

3、最小兩位數是10,的兩位數是99;最小三位數是100,的三位數是999;最小四位數是1000,的四位數是9999;最小的五位數是10000,的五位數是99999。

三、整百、整千數加減法

1、整百、整千加減法的計算方法。

(1)把整百、整千數看成幾個百,幾個千,然後相加減。

(2)先把0前面的數相加減,再在得數末尾添上與整百、整千數相同個數的0。

2、估算

把數看做它的近似數再計算。

二年級數學知識點

長度單位

1、統一長度單位的必要性和長度單位的作用。

2、認識厘米:認識厘米的長度,1厘米大於有多長,用字母cm表示;量比較短的物體,用厘米作單位;用尺子上以厘米為單位量物體的長度。

3、認識米:認識米的長度,1米大於有多長,用字母m表示,量比較長的物體,通常用米作單位;用尺子以米為單位量物體的長度;厘米和米的關系:1米=100厘米。

4、認識線段:線段的特徵:是直的,可以量出長度;會用尺子量線段的長度(限整厘米和米);根據圖形數線段的數量;畫線段:按給定長度畫線段(限整厘米)。

5、解決問題:估測物體的長度,選擇合適長度單位(限厘米和米)。


二年級數學全冊知識點相關 文章 :

★ 二年級數學上冊概念知識點整理

★ 二年級數學上冊重要知識點

★ 二年級數學知識點整理

★ 小學二年級數學知識點整理

★ 二年級數學知識點

★ 二年級數學重點知識點總結

★ 二年級數學上冊知識點歸納

★ 二年級數學知識點歸納整理

★ 二年級數學知識點人教版

★ 二年級部編版數學的知識點

Ⅵ 小學各年級數學知識點總結

貪玩是孩子的天性,大多數孩子缺少自我控制能力,所以需要家長們平時多督促孩子認真完成家庭作業,培養他們良好的作業習慣,寫字姿勢。家長督促他們寫作業,及時檢查他們的作業,發現沒學會的知識要及時給他們講解,每天的作業認真完成是學習的基本保障。下面是我為大家整理的關於小學各年級數學知識點 總結 ,希望對您有所幫助。歡迎大家閱讀參考學習!

一年級的知識點及重難點

(一)數與計算

(1)20以內數的認識。加法和減法。

數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合運算。

(2)100以內數的認識。加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。

兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。

(二)量與計量鍾面的認識(整時)。人民幣的認識和簡單計算。

(三)幾何初步知識

長方體、正方體、圓柱和球的直觀認識。

長方形、正方形、三角形和圓的直觀認識。

(四)應用題

比較容易的加法、減法一步計算的應用題。 多和少的應用題(抓有效信息的能力)

(五)實踐活動

選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。

一年級 數學 學習 方法

1、要培養學生的學習習慣。學習習慣的一方面就是作業的按時完成,作業格式訓練也是學習習慣培養的一個方面。要利用數學練習本讓學生練習寫數和寫算式

2、重視孩子計算能力的培養

口算20以內的加減法是十分重要的基礎知識,孩子必須學好,並能夠達到熟練計算的程度。由於孩子的基礎不同,不同孩子的計算熟練程度和速度也就存在一定差異,要縮小這一差異,僅靠每天一節數學課練習是不客觀的,所以要經常性的練習。一年級要多讓孩子藉助小棒等學具擺一擺、說一說計算思路。

3、依據生活理解數學,讓孩子在游戲中成長

有些數學知識較抽象,容易混淆,我們要注意給孩子創造生活情境,讓孩子在實際體驗中理解知識。如「左右」的認識,分辨左右是孩子本學期學習的一個難點,在生活中強化孩子對左右手的認識,引導孩子藉此來分辨物體間的左右關系。同時還要注意一個參照物的問題,如兩人面對面時,如何判別對面之人的左右邊。

4、重視數學語言發展,讓學生養成積極思維的習慣。 在生活中要多為孩子創設說數學的機會,數學是「思維的 體操 」,如果不積極動腦思考就不可能學好數學。如在學習「10的分與合」時,在復習鋪墊的基礎上,提問:「10可以分成幾和幾呢?」引導學生一邊塗珠算一邊思考,從而自己得出結論。多問幾個「為什麼」比直接告訴學生「是這樣的」要好得多。,學生在相互之間的思維撞擊中學會了知識,獲得了積極的成功體驗。

總之,一年級學生由於特殊的年齡特徵,所以要重視培養學生良好書寫、思維的學習習慣。

二年級的知識點和重難點

(一)數與計算

(1)兩位數加、減兩位數。 ? 兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。

(2)表內乘法和表內除法。 ? 乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。

(3)萬以內數的讀法和寫法。 ? 數數。百位、千位、萬位。數的讀法、寫法和大小比較。

(4)加法和減法。 ?加法,減法。連加法。加法驗算,用加法驗算減法。

(5)混合運算。 ? 先乘除後加減。兩步計算式題。小括弧。

(二)量與計量

時、分、秒的認識。

米、分米、厘米的認識和簡單計算。

千克(公斤)的認識

(三)幾何初步知識

直線和線段的初步認識。 ? 角的初步認識。直角。

(四)應用題

加法和減法一步計算的應用題。 ? 乘法和除法一步計算的應用題。 ?比較容易的兩步計算的應用題。

(五)實踐活動

與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。

二年級數學 學習方法

小學生是以具體形象思維為主,根據二年級學生的特點,應該:

第一:要適度應用學具,例如:在教學乘法的初步認識時,用擺小棒的方法,應按照從一般到特殊的規律,先擺出兩堆不同數目的小棒,再擺出兩份數目相同的,讓學生覺得加法的累贅,再介紹乘法,學生就很容易理解乘法的意義,並且樂意學乘法了。

第二:利用 生活知識 教學。

例如:小紅做了18朵紙花,送給同學們12朵,還剩下多少朵。這是兩位數減兩位數,如果在生活中做一做,學生就明白意思了,所以說,有一些應用題,能從實際生活出發,先用學生的生活 經驗 來解答,再用數學知識來解答,就可以使學生理解題意。

第三:利用社會環境提高數學實際應用能力。例如:在學習統計時,可以帶學生到商城或社會中,利用新學的統計知識,通過觀察、計量、比較,從而收集到有用的信息和知識。

第四:為學生創造機會,使學生去思、去想、去問。比如,二年級教材學習了「角的認識」,對於什麼叫角,角各部分名稱,「角的大小與邊的長短無關」這些內容,學生已經知道了

「還有什麼問題嗎?」學生答道「沒問題」。真的沒問題了嗎?「那我來問個問題」我提出了一個問題:「角的大小為什麼與邊的長短無關呢?」經過討論,大家明白了,角的邊是射線,射線是沒有長短的,所以,角的大小與邊的長短無關。角的大小決定於兩條邊張開的程度。教師從學生的角度示範提問題,久而久之,也就讓學生有了提問題的意識,在引導學生提問題的同時,也培養了學生積極思考問題和解決問題的能力。

三年級知識點和重難點

(一)數與計算

(1)一位數的乘、除法。一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。

(2)兩位數的乘、除法。一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。

(3)四則混合運算。兩步計算的式題。小括弧的使用。

(4)分數的初步認識。分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。

(二)量與計量千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。

(三)幾何初步知識長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。

(四)應用題常見的數量關系。解答兩步計算的應用題。

(五)實踐活動聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。

三年級數學 學習方法

小學三年級學生學習數學的三種數學能力中,影響程度最大的是運用數概念的能力,其次是空間關系的知覺能力,再次是基本能力(概括和推理)。

第一,加強小學三年級學生運用「數概念」的能力培養。

有不少小學數學的教學中,常只重演算法,忽視數概念的掌握和算理的理解。因而只能機械地應用學過的東西,或簡單地模仿做過的例題,不能在變化了情況下遷移;或者只知道一些定義,而不能全面掌握屬於這一概念的東西。

例如,學生能說出什麼是圓的半徑,但在作圖或解題時又常常只能舉出垂直方向上的半徑,不能反轉過來去解決逆向問題,沒有納入到一般的范疇或嵌入數概念體系的認知結構中去。所以在小學數學教學中,不僅要重視演算法和演算過程,尤其要重視數概念的掌握和算理的理解,加強小學生運用數概念的能力培養。三年級數學中,會出現長度單位的認識,什麼千米、毫米、厘米,很多孩子總是無法記清楚,怎麼辦呢?請大家伸出自己的右手,手心面向自己,從小拇指到大拇指,依次為:毫米、厘米、分米、米、千米。兩指之間的距離大小表示進率的大小。你們看,小指、無名指、中指、食指每相臨的兩指間的距離相等,也就表示毫米、厘米、分米、米每相臨兩個單位間的進率相等,都是10。而毫米與分米、厘米與米間的進率為100,毫米與米之間的進率為1000,食指與大拇指之間的距離較大,也是1000。記住單位對應的拇指,這個換算就變得十分簡單而且准確了。

第二,重視和加強發展小學三年級學生「空間關系」的知覺能力。

數和形是不可分開的。因此,學生掌握空間關系的知覺能力也是小學數學能力的重要組成部分。例如三年級下冊如用圓圈圖(韋恩圖)向學生直觀的滲透集合概念。讓他們感知圈內的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。

第三,觀察活動:

所謂觀察是指學生對客觀事物或某種現象的仔細察看,因而是一種有意注意。培養的途徑是:教師提供的「客觀事物或某種現象」特徵有序、背景鮮明,而且要給出一些觀察的思考題。這樣有助於學生明確觀察目標,進而使他們邊觀察,邊思考,邊議論,邊作觀察記錄,以發現數學規律、本質。

「乘法分配律」的教學,根據例證得到三個等式:

(5+3)×2=5×2+3×2

(6+4)×30=6×30+4×30

(25+9)×4=25×4+9×4

教師要求學生結合下面的兩個思考題觀察上面的三個等式都具有什麼相同點(即規律)。①豎里觀察,等式的左邊都有什麼特點?等式右邊又有什麼特徵?②橫里觀察,等式的左邊與右邊有怎樣的關系?

教師再要求學生把記錄的文字:兩個加數的和與一個數相乘,兩個積的和,兩個加數分別與一個數相乘……整理一下就得到了「乘法分配律」。

四年級知識點和重難點

(一)數與計算

(1)億以內數的讀法和寫法。

計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。

(2)加法和減法。

加法,減法。

接近整十、整百數的加、減法的簡便演算法。

加、減法算式中各部分之間的關系。求未知數x。

(3)乘、除數是三位數的乘、除法。

乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。

_乘、除計算的簡單估算。

乘數接近整十、整百的簡便演算法。

乘、除法算式中各部分之間的關系。求未知數x。

(4)四則混合運算。

中括弧。三步計算的式題。

(5)整數及其四則運算的關系和運算定律。

自然數與整數。十進制計數法。讀法和寫法。

四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。

運算定律。簡便運算。

(6)小數的意義、性質,加法和減法。

小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值

加法和減法。加法運算定律推廣到小數。

(註:小數如果分段教學,可以把小數的初步認識安排在前面的適當年級)。

(二)量與計量

年、月、日。平年、閏年。世紀。24時計時法。

角的度量。

面積單位。

(三)幾何初步知識。

直線的測定。測量距離(工具測、步測、目測)。

射線。直角、銳角、鈍角、平角、_周角。垂線。畫垂線。平行線。畫平行線。

三角形的特徵。_三角形的內角和。

(四)統計初步知識

簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。

(五)應用題列綜合算式解答比較容易的三步計算的應用題。

四年級數學 學習方法

四年級的學生思維正處在從直觀思維向抽象 邏輯思維 過渡的階段,因此,通過練習鞏固所學知識只是其中的一個方面,而通過比較、概括、推理、綜合等思維方法的學習運用發展其邏輯思維是這個年齡段學生的一個重要任務,除了注意學生思維方法的掌握,最明顯的表現是培養學生畫概念圖和線段圖,促進其知識系統化和思維能力的發展。)

在數學知識中,數學概念又是數學知識的基礎,數學原理、數學方法也是由數學概念構成。概念的清晰性、穩定性、可辨性以及概念之間的關聯性極大地影響數學知識的質量。概念圖包括節點、連線、層級和命題四個基本要素。根據小學四年級學生思維發展水平,引導學生思考如何更好建構自己的概念圖,掌握這種方法。數學知識就像~張縱橫交錯的網,每個知識點都是一個網點,網點上的一條條知識,連接起了一個個的網點,從而形成一張密密的「知識網」。培養學生自己去「織網」能力應該是新課改對教師的要求之一,而且對於小學四年級的教師來說,在學生思維折的關鍵時期,有意識地通過讓學生畫概念圖的方法來培養思維能力也是行之有效的法之一。

「線段圖」是指由有一定意義的線段、箭頭、數字元號等構成的圖式,它的特點是形象直觀,能夠引起學生的注意和興趣。利用線段圖將題中蘊涵的抽象的數量關系以形象、直觀的方式表達出來,化 抽象思維 為形象思維,符合小學生特別是中高年級學生的認知特點。小學數學各種類型的應用題:如分數應用題、行程問題、工程問題等用線段圖扳書分析數量關系,易化繁為簡,化抽象思維為形象思維。四年級教材中的路程問題(第七冊59—61頁),很容易通過例題中的線段圖理解問題。對於第七冊第64頁的習題5,學生們也能輕松地把情景圖用線段圖表示出來;第八冊「解方程一」(第95頁)的練習2,即使學困生也很容易列出方程,我所教的兩個班的學生能把一些方程用線段圖畫出來,比如97頁的練習l、2,通過這種 思維訓練 ,學生的表徵能力得到提高,實現《標准》提出的「能從具體情境中抽象出數量關系和變化規律,並用符號來表示:理解符號所代表的數量關系和變化規律;會進行符號間的轉換;能選擇適當的程序和方法解決用符號所表達的問題。」

五年級知識點和重難點

小數乘法,小數除法,簡易方程,多邊形的面積,統計與可能性等是本冊教材的重點教學內容。

在數與代數方面,這一冊教材安排了小數乘法、小數除法和簡易方程。小數的乘法和除法在實際生活中和數學學習中都有著廣泛的應用,是小學生應該掌握和形成的基礎知識和基本技能。這部分內容是在前面學習整數四則運算和小數加、減法的基礎上進行教學,繼續培養學生小數的四則運算能力。簡易方程是小學階段集中教學代數初步知識的單元,在這一單元里安排了用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的抽象思維能力,提高解決問題的能力。

在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和經驗的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置;探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想方法,促進學生空間觀念的進一步發展。

在統計與概率方面,本冊教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性;在平均數的基礎上教學中位數,使學生理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。

在用數學解決問題方面,教材一方面結合小數乘法和除法兩個單元,教學用所學的乘除法計算知識解決生活中的簡單問題;另一方面,安排了「數學廣角」的教學內容,通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。培養學生的符號感,及觀察、分析、推理的能力,培養他們探索數學問題的興趣和發現、欣賞數學美的意識。

五年級數學 學習方法

(一)數與代數

1、第一單元「倍數與因數」:結合具體情境,經歷探索數的有關特徵的活動,認識自然數,認識倍數和因數,能在100以內的自然數中找出10以內某個自然數的所有倍數,能找出100以內某個自然數的所有因數,知道質數、合數;經歷 2、3、5的倍數特徵的探索過程,知道2、3、5的倍數的特徵,知道奇數和偶數;能根據解決問題的需要,收集有用的信息,進行歸納、類比與猜測,發展初步的合情推理能力;

2.第三單元「分數」:進一步理解分數的意義,能正確用分數描述圖形或簡單的生活現象;認識真分數、假分數與帶分數,理解分數與除法的關系,會進行分數的大小比較;能找出10以內兩個自然數的公倍數和最小公倍數,能找出兩個自然數的公因數和最大公因數,會正確進行約分和通分;初步了解分數在實際生活中的應用,能運用分數知識解決一些簡單的實際問題。

3.第四單元「分數加減法」:理解異分母分數加減法的算理,並能正確計算;能理解分數加減混合運算的順序,並能正確計算;能把分數化成有限小數,也能把有限小數化成分數;能結合實際情境,解決簡單分數加減法的實際問題。

(二)在學習《空間與圖形》可採用數、形結合的方式,以及類比法等教學

1.第二單元「圖形的面積(一)」:知道比較面積大小方法的多樣性;經歷探索平行四邊形、三角形、梯形面積計算方法的過程,並能運用計算的方法解決生活中一些簡單的問題;在探索圖形面積的計算方法中,獲得探索問題成功的體驗。

2.第五單元「圖形的面積(二)」:在探索活動中,認識組合圖形,並會運用不同的方法計算組合圖形的面積;能正確運用計算組合圖形面積的方法,解決相應的實際問題;能估計不規則圖形的面積大小,並能用不同方法計算面積。

六年級數學

(一)數與計算

(1)分數的乘法和除法。分數乘法的意義。分數乘法。乘法的運算定律推廣到分數。倒數。分數除法的意義。分數除法。

(2)分數四則混合運算。分數四則混合運算。

(3)百分數。百分數的意義和寫法。百分數和分數、小數的互化。

(二)比和比例

比的意義和性質。比例的意義和基本性質。解比例。成正比例的量和成反比例的量。

(三)幾何初步知識

圓的認識。圓周率。畫圓。圓的周長和面積。_扇形的認識。軸對稱圖形的初步認識。圓柱的認識。圓柱的表面積和體積。圓錐的認識。圓錐的體積。球和球的半徑、直徑的初步認識。

(四)統計初步知識

統計表。條形統計圖,折線統計圖,_扇形統計圖。

(五)應用題

分數四則應用題(包括工程問題)。百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算)。比例尺。按比例分配。

(六)實踐活動

聯系學生所接觸到的社會情況組織活動。例如就家中的卧室,畫一個平面圖。

(七)整理和復習

六年級數學學習方法:

進入小學高年級後,科目稍微增加、內容拓寬、知識深化……學生認知結構發生根本變化,許多同學容易忽略老師所講的數學思想、數學方法,而注重題目的解答,其實諸如「化歸」、「數形結合」等思想方法遠遠重要於某道題目的解答。

總結比較,理清思緒

知識點的總結比較。每學完一章都應將本章內容做一個框架圖或在腦中過一遍,整理出它們的關系。對於相似易混淆的知識點應分項歸納比較,有時可用聯想法將其區分開。題目的總結比較。同學們可以建立自己的題庫。

在學習《位置》在用數對確定點的位置,這部分滲透了數形結合的思想,和一一對應的思想。學生可在方格紙上畫畫。

學習分數乘法的意義:1、分數乘整數是求幾個相同加數的和的簡便運算,與整數乘法的意義相同。2、分數乘分數是求一個數的幾分之幾是多少。

例:一小時刷一面牆的1/4,1/5小時刷一面牆的多少?實際上是求1/5的1/4是多少?

這種題型可以利用數形結合的數學思想,畫一畫,折一折。再就是利用:工作效率_工作時間=工作總量

在學習分數除法這一節時,例如:分數、除法和小數之間的關系和區別,以及分數除法應用題無論是 折紙 實驗,還是畫線段圖,都是用圖形語言揭示分數除法計算過程的幾何意義。分數乘除法,比的知識,運用了類比的數學。(相似和變式)

在學習圓這一節時,用逐漸逼近的轉化思想。把一個園等分(偶數份)成的份數越多,拼成的圖像越接近長方形。體現化圓為方,化曲為直的思想,應用轉化思想。在應用中,我們還知道面積相同時,長方形的周長最長,正方形居中,圓周長最短。周長一定時,圓面積最大,正方形居中,長方形面積最小。這題蘊含著一個數學規律,即在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積最大,而長方形的面積則最小。

在學習數學廣角這一章節中,例如,研究古代雞兔同籠的問題,就應用了假設法來教學。這種 思維方式 就是劃歸法。

Ⅶ 數學廣角是什麼意思

「數學廣角」是新教材在向學生滲透數學思想方法方面做出的新的嘗試。教材以學生熟悉而又感興趣的生活場景為依託,重在向學生滲透這些數學思想方法,將學習活動置於模擬情景中,給學生提供操作和活動的機會,初步培養學生有順序地、全面地思考問題的意識,為學生今後學習組合數學和學習概率統計奠定基礎。


1、雞兔同籠

雞兔同籠,是中國古代著名趣題之一,記載於《孫子算經》之中。雞兔同籠問題,是小學奧數的常見題型。許多小學算術應用題都可以轉化成這類問題,或者用解它的典型解法--"假設法"來求解。因此很有必要學會它的解法和思路。通常是假設法比較簡單易懂一點。

2、抽屜原理

桌上有十個蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,我們會發現至少會有一個抽屜裡面至少放兩個蘋果。這一現象就是我們所說的「抽屜原理」。

抽屜原理的一般含義為:「如果每個抽屜代表一個集合,每一個蘋果就可以代表一個元素,假如有n+1個元素放到n個集合中去,其中必定有一個集合里至少有兩個元素。」 抽屜原理有時也被稱為鴿巢原理。它是組合數學中一個重要的原理。

Ⅷ 小學數學中的數學廣角指什麼啊

「數學廣角」是義務教育課程標准實驗教科書從二年級上冊開始新增設的一個單元,是新教材在向學生滲透數學思想方法方面做出的新的嘗試。

Ⅸ 小學二年級數學知識點

第一單元長度單位

1、常用的長度單位:米、厘米。

2、測量較短物體通常用厘米作單位,測量較長物體通常用米作單位。

3、測量物體長度的方法:將物體的左端對準直尺的“0”刻度,看物體的右端對著直尺上的刻度是幾,這個物體的長度就是幾厘米。

4、米和厘米的關系:1米=100厘米 100厘米=1米

5、線段

⑴線段的特點:①線段是直的;②線段有兩個端點;③線段有長有短,是可以量出長度的。

⑵畫線段的方法:先用筆對准尺子的’0”刻度,在它的上面點一個點,再對准要畫到的長度的厘米刻度,在它的上面也點一個點,然後把這兩個點連起來,寫出線段的長度。

⑶測量物體的長度時,當不是從“0”刻度量起時,要用終點的刻度數減去起點的刻度數。

6、填上合適的長度單位。

小明身高1(米)30(厘米)

練習本寬13(厘米)

鉛筆長17(厘米)

黑板長2(米) 圖釘長1(厘米)

一張床長2(米) 一口井深3(米)

學校進行100(米)賽跑

教學樓高25(米) 寶寶身高80(厘米)

跳繩長2(米) 一棵樹高3(米)

一把鑰匙長5(厘米)

一個文具盒長24(厘米)

講台高90(厘米)

門高2(米) 教室長12(米)

筷子長20(厘米)

一棵小樹苗高1(米)

小朋友的頭圍48厘米

爸爸的身高1米75厘米或175厘米

小朋友的身高120厘米或1米20厘米

第二單元100以內的加法和減法

一、兩位數加兩位數

1、兩位數加兩位數不進位加法的計演算法則:把相同數位對齊列豎式,在把相同數位上的數相加。

2、兩位數加兩位數進位加法的計演算法則:①相同數位對齊;②從個位加起;③個位滿十向十位進1。

3、筆算兩位數加兩位數時,相同數位要對齊,從個位加起,個位滿十要向十位進“1”,十位上的數相加時,不要遺漏進上來的“1”。

4、和 = 加數 + 加數

一個加數 = 和 - 另一個加數

二、兩位數減兩位數

1、兩位數減兩位數不退位減的筆算:相同數位對齊列豎式,再把相同數位上的數相減

2、兩位數減兩位數退位減的筆演算法則:①相同數位對齊;②從個位減起;③個位不夠減,從十位退1,在個位上加10再減。

3、筆算兩位數減兩位數時,相同數位要對齊,從個位減起,個位不夠減,從十位退1,個位加10再減,十位計算時要先減去退走的1再算。

4、差=被減數-減數

被減數=減數+差

減數=被減數+差

三、連加、連減和加減混合

1、連加、連減

連加、連減的筆算順序和連加、連減的口算順序一樣,都是從左往右依次計算。

①連加計算可以分步計算,也可以寫成一個豎式計算,計算方法與兩個數相加一樣,都要把相同數位對齊,從個位加起。

②連減運算可以分步計算,也可以寫成一個豎式計算,計算方法與兩個數相減一樣,都要把相同數位對齊,從個位減起。

2、加減混合

加、減混合算式,其運算順序、豎式寫法都與連加、連減相同。

3、加減混合運算寫豎式時可以分步計算,方法與兩個數相加(減)一樣,要把相同數位對齊,從個位算起;也可以用簡便的寫法,列成一個豎式,先完成第一步計算,再用第一步的結果加(減)第二個數。

四、解決問題(應用題)

1、 步驟:①先讀題 ②列橫式,寫結果,千萬別忘記寫單位(單位為:多少或者幾後面的那個字或詞)③作答。

2、求“一個已知數”比“另一個已知數”多多少、少多少?用減法計算。用“比”字兩邊的較大數減去較小數。

3、比一個數多幾、少幾,求這個數的問題。先通過關鍵句分析,“比”字前面是大數還是小數,“比”字後面是大數還是小數,問題裡面要求大數還是小數,求大數用加法,求小數用減法。

4、關於提問題的題目,可以這樣提問:

①…….和……一共…….?

②……比……..多多少/幾……?

③……比……..少多少/幾……?

第三單元角的初步認識

1、角的初步認識

(1)角是由一個頂點和兩條邊組成的;

(2)畫角的方法:從一個點起,用尺子向不同的方向畫兩條直線。

(3)角的大小與邊的長短沒有關系,與角的兩條邊張開的大小有關,角的兩條邊張開得越大,角就越大,角的兩條邊張開得越小,角就越小。

2、直角的初步認識

(1)直角的判斷方法:用三角尺上的直角比一比(頂點對頂點,一邊對一邊,再看另一條邊是否重合)。

(2)畫直角的方法:①先畫一個頂點,再從這個點出發畫一條直線②用三角尺上的直角頂點對齊這個點,一條直角邊對齊這條線③再從這點出發沿著三角尺上的另一條直角邊畫一條線④最後標出直角標志。

(3)比直角小的是銳角,比直角大的是鈍角:銳角<直角<鈍角。

(4)所有的直角都一樣大

(5)每個三角尺上都有1個直角,兩個銳角。紅領巾上有3個角,其中一個是鈍角,兩個是銳角。一個長方形中和正方形中都是有4個直角。

第四、六單元表內乘法(一)(二)

1、乘法的含義

乘法是求幾個相同加數連加的和的簡便演算法。如:計算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.

2、乘法算式的寫法和讀法

⑴連加算式改寫為乘法算式的方法。求幾個相同加數的和,可以用乘法計算。寫乘法算式時,可以用乘法計算。寫乘法算式時,可以先寫相同的加數,然後寫乘號,再寫相同加數的個數,最後寫等號與連加的和;也可以先寫相同加數的個數,然後寫乘號,再寫相同加數,最後寫等號與連加的和。

如:4+4+4=12改寫成乘法算式是4×3=12或3×4=12

4 × 3 = 12 或3 × 4 = 12

⑵乘法算式的讀法。讀乘法算式時,要按照算式順序來讀。如:6×3=18讀作:“6乘3等於18”。

3、乘法算式中各部分的名稱及實際表示的意義

在乘法算式里,乘號前面的數和乘號後面的數都叫做“乘數”;等號後面的得數叫做“積”。

4、乘法算式所表示的意義

求幾個相同加數的和,用乘法計算比較簡單。一道乘法算式表示的就是幾個相同加數連加的和。如:4×5表示5個4相加或4個5相加。

5、加法寫成乘法時,加法的和與乘法的積相同。

6、乘法算式中,兩個乘數交換位置,積不變。

7、算式各部分名稱及計算公式。

乘法:乘數×乘數=積

加法:加數+加數=和

和—加數=加數

減法:被減數—減數=差

被減數=差+減數

減數=被減數—差

8、在9的乘法口訣里,幾乘9或9乘幾,都可看作幾十減幾,其中“幾”是指相同的數。

如:1×9=10—1 9×5=50—5

9、看圖,寫乘加、乘減算式時:

乘加:先把相同的部分用乘法表示,再加上不相同的部分。

乘減:先把每一份都算成相同的,寫成乘法,然後再把多算進去的減去。

計算時,先算乘,再算加減。

如: 加法:3+3+3+3+2=14 乘加:3×4+2=14 乘減:3×5-1=14

10、“幾和幾相加”與“幾個幾相加”有區別

求幾和幾相加,用幾加幾;如:求4和3相加是多少?用加法(4+3=7)

求幾個幾相加,用幾乘幾。

如:求4個3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)

補充:幾和幾相乘,求積?用幾×幾. 如:2和4相乘用2×4=8

2個乘數都是幾,求積?用幾×幾。如:2個8相乘用8×8=64

11、一個乘法算式可以表示兩個意義,如“4×2”既可以表示“4個2相加”,也可以表示“2個4相加”。

“5+5+5”寫成乘法算式是(3×5=15)或(5×3=15),

都可以用口訣(三五十五)來計算,表示(3)個(5)相加

3×5=15讀作:3乘5等於15. 5×3=15讀作:5乘3等於15

第五單元觀察物體

1、從不同的角度觀察同一物體,所看到的物體的形狀一般是不同的;

2、觀察物體時,要抓住物體的特徵來判斷。

3、觀察長方體的某一面,看到的可能是長方形或正方形。觀察正方形的某一面,看到的都是正方形

4、觀察圓柱體,看到的可能是長方形或圓形。觀察球體,看到的都是圓形

第七單元認識時間

1、認識時間

(1)鍾面上有時針和分針,走得快的,較長的是分針;走得慢的,較短的是時針;

(2)鍾面上有12個大格,60個小格,1個大格有5個小格。時針走1大格是1小時,分針走1大格是5分鍾。

(3)時針走1大格分針要走一圈,所以1時=60分;

(4)半小時=30分,一刻鍾=15分鍾

(5)時間的讀與寫:如3:30,可以讀作3時30分,也可以讀作3點半;8時零5分應寫作8:05。

2、運用知識解決問題

(1)要按著時間的先後順序安排事件,時間上不能重復。

(2)問過幾分鍾後是幾時,先要讀出現在是幾時,再推算過幾分鍾後是幾時幾分。

(3)時針和分針能形成直角的時刻是3時和9時。

第八單元 數學廣角--搭配

1、用兩個不同的數字(0除外)組合時可以交換兩個數字的位置;用三個不同的數字組合成兩位數時,可以讓每個數字(0除外)作十位數字,其餘的兩個數字依次和它組合。

2、借用連線或者符號解答問題比較簡單。

3、排列與順序有關,組合與順序無關。

Ⅹ 人教版小學數學五年級上冊知識點有哪些

小學五年級數學上冊復習教學知識點歸納總結
第一單元小數乘法
1、小數乘整數(P2、3):意義——求幾個相同加數的和的簡便運算.
如:1.5×3表示1.5的3倍是多少或3個1.5的和的簡便運算.
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點.
2、小數乘小數(P4、5):意義——就是求這個數的幾分之幾是多少.
如:1.5×0.8就是求1.5的十分之八是多少.
1.5×1.8就是求1.5的1.8倍是多少.
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點.
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位.
3、規律(1)(P9):一個數(0除外)乘大於1的數,積比原來的數大;
一個數(0除外)乘小於1的數,積比原來的數小.
4、求近似數的方法一般有三種:(P10)
⑴四捨五入法;⑵進一法;⑶去尾法
5、計算錢數,保留兩位小數,表示計算到分.保留一位小數,表示計算到角.
6、(P11)小數四則運算順序跟整數是一樣的.
7、運算定律和性質:
加法:加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c)
減法:減法性質:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性質:a÷b÷c=a÷(b×c)
第二單元小數除法
8、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算.
如:0.6÷0.3表示已知兩個因數的積0.6與其中的一個因數0.3,求另一個因數的運算.
9、小數除以整數的計算方法(P16):小數除以整數,按整數除法的方法去除.,商的小數點要和被除數的小數點對齊.整數部分不夠除,商0,點上小數點.如果有餘數,要添0再除.
10、(P21)除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數,使除數變成整數,再按「除數是整數的小數除法」的法則進行計算.
注意:如果被除數的位數不夠,在被除數的末尾用0補足.
11、(P23)在實際應用中,小數除法所得的商也可以根據需要用「四捨五入」法保留一定的小數位數,求出商的近似數.
12、(P24、25)除法中的變化規律:①商不變性質:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變.②除數不變,被除數擴大,商隨著擴大.③被除數不變,除數縮小,商擴大.
13、(P28)循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數.
循環節:一個循環小數的小數部分,依次不斷重復出現的數字.如6.3232……的循環節是32.
14、小數部分的位數是有限的小數,叫做有限小數.小數部分的位數是無限的小數,叫做無限小數.
第三單元觀察物體
15、從不同的角度觀察物體,看到的形狀可能是不同的;觀察長方體或正方體時,從固定位置最多能看到三個面.
第四單元簡易方程
16、(P45)在含有字母的式子里,字母中間的乘號可以記作「•」,也可以省略不寫.
加號、減號除號以及數與數之間的乘號不能省略.
17、a×a可以寫作a•a或a ,a 讀作a的平方. 2a表示a+a
18、方程:含有未知數的等式稱為方程.
使方程左右兩邊相等的未知數的值,叫做方程的解.
求方程的解的過程叫做解方程.
19、解方程原理:天平平衡.
等式左右兩邊同時加、減、乘、除相同的數(0除外),等式依然成立.
20、10個數量關系式:加法:和=加數+加數 一個加數=和-兩一個加數
減法:差=被減數-減數 被減數=差+減數 減數=被減數-差
乘法:積=因數×因數 一個因數=積÷另一個因數
除法:商=被除數÷除數 被除數=商×除數 除數=被除數÷商
21、所有的方程都是等式,但等式不一定都是等式.
22、方程的檢驗過程:方程左邊=……
23、方程的解是一個數;
解方程式一個計算過程.=方程右邊
所以,X=…是方程的解.
第五單元多邊形的面積
23、公式:長方形:周長=(長+寬)×2——【長=周長÷2-寬;寬=周長÷2-長】 字母公式:C=(a+b)×2
面積=長×寬 字母公式:S=ab
正方形:周長=邊長×4 字母公式:C=4a
面積=邊長×邊長 字母公式:S=a
平行四邊形的面積=底×高 字母公式: S=ah
三角形的面積=底×高÷2 ——【底=面積×2÷高;高=面積×2÷底】
字母公式: S=ah÷2
梯形的面積=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
【上底=面積×2÷高-下底,下底=面積×2÷高-上底;
高=面積×2÷(上底+下底)】
24、平行四邊形面積公式推導:剪拼、平移
25、三角形面積公式推導:旋轉
平行四邊形可以轉化成一個長方形;
兩個完全一樣的三角形可以拼成一個平行四邊形,
長方形的長相當於平行四邊形的底;
平行四邊形的底相當於三角形的底;
長方形的寬相當於平行四邊形的高;
平行四邊形的高相當於三角形的高;
長方形的面積等於平行四邊形的面積,
平行四邊形的面積等於三角形面積的2倍,
因為長方形面積=長×寬,所以平行四邊形面積=底×高.
因為平行四邊形面積=底×高,所以三角形面積=底×高÷2
26、梯形面積公式推導:旋轉
27、三角形、梯形的第二種推導方法老師已講,自己看書
兩個完全一樣的梯形可以拼成一個平行四邊形, 知道就行.
平行四邊形的底相當於梯形的上下底之和;
平行四邊形的高相當於梯形的高;
平行四邊形面積等於梯形面積的2倍,
因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2
28、等底等高的平行四邊形面積相等;等底等高的三角形面積相等;
等底等高的平行四邊形面積是三角形面積的2倍.
29、長方形框架拉成平行四邊形,周長不變,面積變小.
30、組合圖形:轉化成已學的簡單圖形,通過加、減進行計算.
第六單元統計與可能性
31、平均數=總數量÷總份數
32、中位數的優點是不受偏大或偏小數據的影響,用它代表全體數據的一般水平更合適.
第七單元數學廣角
33、數不僅可以用來表示數量和順序,還可以用來編碼.
34、郵政編碼:由6位組成,前2位表示省(直轄市、自治區)
0 5 4 0 0 1
前3位表示郵區
前4位表示縣(市)
最後2位表示投遞局

35、身份證碼: 18位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台縣 出生日期 順序碼 校驗碼
倒數第二位的數字用來表示性別,單數表示男,雙數表示女.