1. 七年級下冊數學知識點總結
第五章 平等線與相交線
1、同角或等角的餘角相等,同角或等角的補角相等。
2、對頂角相等
3、判斷兩直線平行的條件:
1)同位角相等,兩直線平行。 (2)內錯角相等,兩直線平行。 3)同旁內角互補,兩直線平行。 (4)如果兩條直線都和第三條直線平行,那麼這兩面三刀條直線也互相平行。
4、平行線的特徵:
(1)同位角相等,兩直線平行。 (2)內錯角相等,兩直線平行。 (3)同旁內角互補,兩直線平行。
5、命題:
⑴命題的概念:
判斷一件事情的語句,叫做命題。
⑵命題的組成
每個命題都是題設、結論兩部分組成。題設是已知事項;結論是由已知事項推出的事項。命題常寫成「如
果……,那麼……」的形式。具有這種形式的命題中,用「如果」開始的部分是題設,用「那麼」開始的部分是結論。
6、平移
平移是指在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移,平移不改變物體的形狀和大小。
(1) 把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
(2) 新圖形中的每一點,都是由原圖形中的某一點移動後得到的,這兩個點是對應點。連接各組對應點的線段平行且相等。
第六章 平面直角坐標系
1、含有兩個數的詞來表示一個確定個位置,其中兩個數各自表示不同的意義,我們把這種有順序的兩個數組成的數對,叫做有序數對,記作(a,b)
2、數軸上的點可以用一個數來表示,這個數叫做這個點的坐標。
3、在平面內畫兩條互相垂直,並且有公共原點的數軸。這樣我們就說在平面上建立了平面直角坐標系,簡稱直角坐標系。平面直角坐標系有兩個坐標軸,其中橫軸為X軸,取向右方向為正方向;縱軸為Y軸,取向上為正方向。坐標系所在平面叫做坐標平面,兩坐標軸的公共原點叫做平面直角坐標系的原點。X軸和Y軸把坐標平面分成四個象限,右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數軸為界,橫軸、縱軸上的點及原點不屬於任何象限。一般情況下,x軸和y軸取相同的單位長度。
3、特殊位置的點的坐標的特點:
(1).x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2).第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3).在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行於縱軸;如果兩點的縱坐標相同,則兩點的連線平行於橫軸。
4.點到軸及原點的距離
點到x軸的距離為|y|; 點到y軸的距離為|x|;點到原點的距離為x的平方加y的平方再開根號;
在平面直角坐標系中對稱點的特點:
1.關於x成軸對稱的點的坐標,橫坐標相同,縱坐標互為相反數。
2.關於y成軸對稱的點的坐標,縱坐標相同,橫坐標互為相反數。
3關於原點成中心對稱的點的坐標,橫坐標與橫坐標互為相反數,縱坐標與縱坐標互為相反數。
各象限內和坐標軸上的點和坐標的規律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x軸正方向:(+,0)x軸負方向:(-,0)y軸正方向:(0,+)y軸負方向:(0,-)
x軸上的點縱坐標為0,y軸橫坐標為0。
第七章 三角形
1、三角形任意兩邊之和大於第三邊,確形任意兩邊之差小於第三邊。
2、三角形三個內角的和等於180度。
3、直角三角形的兩個銳角互余
4、三角形的三條角平分線交於一點,三條中線交於一點;三角形的三條高所在的直線交於一點。
5、直角三角形全等的條件:
斜邊和一條直角邊對應相等的兩個直角三角形全等,簡寫成「斜邊、直角邊」或「HL」。
(只要有任意兩條邊相等,這兩個直角三角形就全等)。
6、三角形全等的條件:
(1)三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」。
(2)兩角和它們的夾邊對應相等的兩個三角形全等,簡寫為「角邊角」或「ASA」。
(3)兩角和其中一角的對邊對應相等的兩個三角形全等,簡寫為「角角邊」或「AAS」。
(4)兩邊和它們的夾角對應相等的兩個三角形全等,簡寫為「邊角邊」或「SAS」。
27、等腰三角形的特徵:
(1) 有兩條邊相等的三角形叫做等腰三角形;
(2) 等腰三角形是軸對稱圖形;
(3) 等腰三角形頂角的平分線、底邊上的中線、底邊上的重合(也稱「三線合一」),它們所在的直線都是等腰三角形的對稱軸。
(4)等腰三角形的兩個底角相等。
(5)等腰三角形的底角只能是銳角
2. 七下數學知識點是什麼
七下數學知識點有:
1、在同一平面內兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。
5、數軸定義:規定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可。
4、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
5、數軸定義:規定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可。
3. 七年級數學下冊知識點整理
每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些 七年級數學 知識點的學習資料,希望對大家有所幫助。
七年級數學知識點歸納
變數之間的關系
一理論理解
1、若Y隨X的變化而變化,則X是自變數Y是因變數。
自變數是主動發生變化的量,因變數是隨著自變數的變化而發生變化的量,數值保持不變的量叫做常量。
3、若等腰三角形頂角是y,底角是x,那麼y與x的關系式為y=180-2x.
2、能確定變數之間的關系式:相關公式①路程=速度×時間②長方形周長=2×(長+寬)③梯形面積=(上底+下底)×高÷2④本息和=本金+利率×本金×時間。⑤總價=單價×總量。⑥平均速度=總路程÷總時間
二、列表法:採用數表相結合的形式,運用表格可以表示兩個變數之間的關系。列表時要選取能代表自變數的一些數據,並按從小到大的順序列出,再分別求出因變數的對應值。列表法的特點是直觀,可以直接從表中找出自變數與因變數的對應值,但缺點是具有局限性,只能表示因變數的一部分。
三.關系式法:關系式是利用數學式子來表示變數之間關系的等式,利用關系式,可以根據任何一個自變數的值求出相應的因變數的值,也可以已知因變數的值求出相應的自變數的值。
四、圖像注意:a.認真理解圖象的含義,注意選擇一個能反映題意的圖象;b.從橫軸和縱軸的實際意義理解圖象上特殊點的含義(坐標),特別是圖像的起點、拐點、交點
八、事物變化趨勢的描述:對事物變化趨勢的描述一般有兩種:
1.隨著自變數x的逐漸增加(大),因變數y逐漸增加(大)(或者用函數語言描述也可:因變數y隨著自變數x的增加(大)而增加(大));
2.隨著自變數x的逐漸增加(大),因變數y逐漸減小(或者用函數語言描述也可:因變數y隨著自變數x的增加(大)而減小).
注意:如果在整個過程中事物的變化趨勢不一樣,可以採用分段描述.例如在什麼范圍內隨著自變數x的逐漸增加(大),因變數y逐漸增加(大)等等.
九、估計(或者估算)對事物的估計(或者估算)有三種:
1.利用事物的變化規律進行估計(或者估算).例如:自變數x每增加一定量,因變數y的變化情況;平均每次(年)的變化情況(平均每次的變化量=(尾數-首數)/次數或相差年數)等等;
2.利用圖象:首先根據若干個對應組值,作出相應的圖象,再在圖象上找到對應的點對應的因變數y的值;
3.利用關系式:首先求出關系式,然後直接代入求值即可.
初一數學下冊知識點 總結
一元一次方程的解
定義:使一元一次方程左右兩邊相等的未知數的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右兩邊相等。
13、解一元一次方程:
1.解一元一次方程的一般步驟
去分母、去括弧、移項、合並同類項、系數化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉化。
2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括弧,且括弧外的項在乘括弧內各項後能消去分母,就先去括弧。
3.在解類似於「ax+bx=c」的方程時,將方程左邊,按合並同類項的方法並為一項即(a+b)x=c。
使方程逐漸轉化為ax=b的最簡形式體現化歸思想。
將ax=b系數化為1時,要准確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數時;二要准確判斷符號,a、b同號x為正,a、b異號x為負。
14、一元一次方程的應用
1.一元一次方程解應用題的類型
(1)探索規律型問題;
(2)數字問題;
(3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價×100%);
(4)工程問題(①工作量=人均效率×人數×時間;②如果一件工作分幾個階段完成,那麼各階段的工作量的和=工作總量);
(5)行程問題(路程=速度×時間);
(6)等值變換問題;
(7)和,差,倍,分問題;
(8)分配問題;
(9)比賽積分問題;
(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度).
2.利用方程解決實際問題的基本思路:
首先審題找出題中的未知量和所有的已知量,直接設要求的未知量或間接設一關鍵的未知量為x,然後用含x的式子表示相關的量,找出之間的相等關系列方程、求解、作答,即設、列、解、答。
列一元一次方程解應用題的五個步驟
(1)審:仔細審題,確定已知量和未知量,找出它們之間的等量關系.
(2)設:設未知數(x),根據實際情況,可設直接未知數(問什麼設什麼),也可設間接未知數.
(3)列:根據等量關系列出方程.
(4)解:解方程,求得未知數的值.
(5)答:檢驗未知數的值是否正確,是否符合題意,完整地寫出答句.
初一數學方法技巧
我們怎樣預習呢?
曰:「先 說說 學習的目標:
(1)知道知識產生的背景,弄清知識形成的過程。
(2)或早或晚的知道知識的地位和作用:
(3)總結出認識問題的規律(或說出認識問題使用了以前的什麼規律)。
再說具體的做法:(1)對概念的理解。數學具有高度的抽象性。通常要藉助具體的東西加以理解。有時藉助字面的含義:有時藉助其他學科知識。有時藉助圖形……理解概念的境界是意會。一定要在理解概念上下一番苦功夫後再做題。
(2)對公式定理的預習,公式定理是使用最多的「規律」的總結。如:完全平方公式,勾股定理等。往往公式的推導定理的證明蘊含著豐富的數學方法及相當有用的解題規律。如三角形內角平分線定理的證明。我們應當先自己推導公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。
(3)對於例題及習題的處理見上面的(2)及下面的第五條。
七年級數學下冊知識點相關 文章 :
★ 初一數學下冊知識點歸納總結
★ 初一數學下冊知識點
★ 初一數學下冊基本知識點總結
★ 七年級下冊數學復習提綱
★ 初一下期數學知識點總結
★ 初中數學七年級下冊知識點提綱
★ 2021七年級下冊數學復習提綱
★ 七年級下數學知識點總結
★ 七年級數學下冊知識點及練習題
★ 人教版初一數學下冊知識點
4. 七年級數學下冊知識點總結
數學要考的知識點有哪些呢?接下來是我為大家帶來的關於 七年級數學 下冊知識點 總結 ,希望會給大家帶來幫助。
七年級數學下冊知識點總結(一)
一、單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字“1”。
12、單項式的次數僅與字母有關,與單項式的系數無關。
二、多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式沒有系數的概念,但有次數的概念。
7、多項式中次數最高的項的次數,叫做這個多項式的次數。
三、整式
1、單項式和多項式統稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。
四、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。
2、幾個整式相加減,關鍵是正確地運用去括弧法則,然後准確合並同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
4、代數式求值的一般步驟:
(1)代數式化簡。
(2)代入計算
(3)對於某些特殊的代數式,可採用“整體代入”進行計算。
五、同底數冪的乘法
1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an的結果叫做冪。
2、底數相同的冪叫做同底數冪。
3、同底數冪乘法的運演算法則:同底數冪相乘,底數不變,指數相加。即:am﹒an=am+n。
4、此法則也可以逆用,即:am+n = am﹒an。
5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。
六、冪的乘方
1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。
2、冪的乘方運演算法則:冪的乘方,底數不變,指數相乘。(am)n =amn。
3、此法則也可以逆用,即:amn =(am)n=(an)m。
七、積的乘方
1、積的乘方是指底數是乘積形式的乘方。
2、積的乘方運演算法則:積的乘方,等於把積中的每個因式分別乘方,然後把所得的冪相乘。即(ab)n=anbn。
3、此法則也可以逆用,即:anbn=(ab)n。
八、三種“冪的運演算法則”異同點
1、共同點:
(1)法則中的底數不變,只對指數做運算。
(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。
(3)對於含有3個或3個以上的運算,法則仍然成立。
2、不同點:
(1)同底數冪相乘是指數相加。
(2)冪的乘方是指數相乘。
(3)積的乘方是每個因式分別乘方,再將結果相乘。
九、同底數冪的除法
1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n(a≠0)。
2、此法則也可以逆用,即:am-n = am÷an(a≠0)。
十、零指數冪
1、零指數冪的意義:任何不等於0的數的0次冪都等於1,即:a0=1(a≠0)。
十一、負指數冪
1、任何不等於零的數的―p次冪,等於這個數的p次冪的倒數,即:
註:在同底數冪的除法、零指數冪、負指數冪中底數不為0。
十二、整式的乘法
(一)單項式與單項式相乘
1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其餘字母連同它的指數不變,作為積的因式。
2、系數相乘時,注意符號。
3、相同字母的冪相乘時,底數不變,指數相加。
4、對於只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。
5、單項式乘以單項式的結果仍是單項式。
6、單項式的乘法法則對於三個或三個以上的單項式相乘同樣適用。
(二)單項式與多項式相乘
1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。
2、運算時注意積的符號,多項式的每一項都包括它前面的符號。
3、積是一個多項式,其項數與多項式的項數相同。
4、混合運算中,注意運算順序,結果有同類項時要合並同類項,從而得到最簡結果。
(三)多項式與多項式相乘
1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合並同類項之前,積的項數等於兩個多項式項數的積。
3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用“同號得正,異號得負”。
4、運算結果中有同類項的要合並同類項。
5、對於含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。
十三、平方差公式
1、(a+b)(a-b)=a2-b2,即:兩數和與這兩數差的積,等於它們的平方之差。
2、平方差公式中的a、b可以是單項式,也可以是多項式。
3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
4、平方差公式還能簡化兩數之積的運算,解這類題,首先看兩個數能否轉化成
(a+b)•(a-b)的形式,然後看a2與b2是否容易計算。
十四、完全平方公式
七年級數學下冊知識點總結(二)
第二章平行線與相交線
一、平行線與相交線
平行線:在同一平面內,不相交的兩條直線叫做平行線。
若兩條直線只有一個公共點,我們稱這兩條直線為相交線。
二、餘角與補角
1、如果兩個角的和是直角,那麼稱這兩個角互為餘角,簡稱為互余,稱其中一個角是另一個角的餘角。
2、如果兩個角的和是平角,那麼稱這兩個角互為補角,簡稱為互補,稱其中一個角是另一個角的補角。
3、互余和互補是指兩角和為直角或兩角和為平角,它們只與角的度數有關,與角的位置無關。
4、餘角和補角的性質:同角或等角的餘角相等,同角或等角的補角相等。
5、餘角和補角的性質用數學語言可表示為:
6、餘角和補角的性質是證明兩角相等的一個重要 方法 。
三、對頂角
1、兩條直線相交成四個角,其中不相鄰的兩個角是對頂角。
2、一個角的兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。
3、對頂角的性質:對頂角相等。
4、對頂角的性質在今後的推理說明中應用非常廣泛,它是證明兩個角相等的依據及重要橋梁。
5、對頂角是從位置上定義的,對頂角一定相等,但相等的角不一定是對頂角。
四、垂線及其性質
1、垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
2、垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
五、同位角、內錯角、同旁內角
1、兩條直線被第三條直線所截,形成了8個角。
2、同位角:兩個角都在兩條直線的同側,並且在第三條直線(截線)的同旁,這樣的一對角叫做同位角。
3、內錯角:兩個角都在兩條直線之間,並且在第三條直線(截線)的兩旁,這樣的一對角叫做內錯角。
4、同旁內角:兩個角都在兩條直線之間,並且在第三條直線(截線)的同旁,這樣的一對角叫同旁內角。
5、這三種角只與位置有關,與大小無關,通常情況下,它們之間不存在固定的大小關系。
六、六類角
1、補角、餘角、對頂角、同位角、內錯角、同旁內角六類角都是對兩角來說的。
2、餘角、補角只有數量上的關系,與其位置無關。
3、同位角、內錯角、同旁內角只有位置上的關系,與其數量無關。
4、對頂角既有數量關系,又有位置關系。
七、平行線的判定方法
1、同位角相等,兩直線平行。
2、內錯角相等,兩直線平行。
3、同旁內角互補,兩直線平行。
4、在同一平面內,如果兩條直線都平行於第三條直線,那麼這兩條直線平行。
5、在同一平面內,如果兩條直線都垂直於第三條直線,那麼這兩條直線平行。
八、平行線的性質
1、兩直線平行,同位角相等。
2、兩直線平行,內錯角相等。
3、兩直線平行,同旁內角互補。
4、平行線的判定與性質具備互逆的特徵,其關系如下:
在應用時要正確區分積極向上的題設和結論。
九、尺規作線段和角
1、在幾何里,只用沒有刻度的直尺和圓規作圖稱為尺規作圖。
2、尺規作圖是最基本、最常見的作圖方法,通常叫基本作圖。
3、尺規作圖中直尺的功能是:
(1)在兩點間連接一條線段;
(2)將線段向兩方延長。
(2)將線段向兩方延長。
4、尺規作圖中圓規的功能是:
(1)以任意一點為圓心,任意長為半徑作一個圓;
(2)以任意一點為圓心,任意長為半徑畫一段弧;
5、熟練掌握以下作圖語言:
(1)作射線××;
(2)在射線上截取××=××;
(3)在射線××上依次截取××=××=××;
(4)以點×為圓心,××為半徑畫弧,交××於點×;
(5)分別以點×、點×為圓心,以××、××為半徑作弧,兩弧相交於點×;
(6)過點×和點×畫直線××(或畫射線××);
(7)在∠×××的外部(或內部)畫∠×××=∠×××;
6、在作較復雜圖形時,涉及基本作圖的地方,不必重復作圖的詳細過程,只用一句話概括敘述就可以了。
(1)畫線段××=××;
(2)畫∠×××=∠×××;
七年級數學下冊知識點總結(三)
第三章變數之間的關系
一、變數、自變數、因變數
1、在某一變化過程中,不斷變化的量叫做變數。
2、如果一個變數y隨另一個變數x的變化而變化,則把x叫做自變數,y叫做因變數。
3、自變數與因變數的確定:
(1)自變數是先發生變化的量;因變數是後發生變化的量。
(2)自變數是主動發生變化的量,因變數是隨著自變數的變化而發生變化的量。
(3)利用具體情境來體會兩者的依存關系。
二、表格
1、表格是表達、反映數據的一種重要形式,從中獲取信息、研究不同量之間的關系。
(1)首先要明確表格中所列的是哪兩個量;
(2)分清哪一個量為自變數,哪一個量為因變數;
(3)結合實際情境理解它們之間的關系。
2、繪製表格表示兩個變數之間關系
(1)列表時首先要確定各行、各列的欄目;
(2)一般有兩行,第一行表示自變數,第二行表示因變數;
(3)寫出欄目名稱,有時還根據問題內容寫上單位;
(4)在第一行列出自變數的各個變化取值;第二行對應列出因變數的各個變化取值。
(5)一般情況下,自變數的取值從左到右應按由小到大的順序排列,這樣便於反映因變數與自變數之間的關系。
三、關系式
1、用關系式表示因變數與自變數之間的關系時,通常是用含有自變數(用字母表示)的代數式表示因變數(也用字母表示),這樣的數學式子(等式)叫做關系式。
2、關系式的寫法不同於方程,必須將因變數單獨寫在等號的左邊。
3、求兩個變數之間關系式的途徑:
(1)將自變數和因變數看作兩個未知數,根據題意列出關於未知數的方程,並最終寫成關系式的形式。
(2)根據表格中所列的數據寫出變數之間的關系式;
(3)根據實際問題中的基本數量關系寫出變數之間的關系式;
(4)根據圖象寫出與之對應的變數之間的關系式。
4、關系式的應用:
(1)利用關系式能根據任何一個自變數的值求出相應的因變數的值;
(2)同樣也可以根據任何一個因變數的值求出相應的自變數的值;
(3)根據關系式求值的實質就是解一元一次方程(求自變數的值)或求代數式的值(求因變數的值)。
四、圖象
1、圖象是刻畫變數之間關系的又一重要方法,其特點是非常直觀、形象。
2、圖象能清楚地反映出因變數隨自變數變化而變化的情況。
3、用圖象表示變數之間的關系時,通常用水平方向的數軸(又稱橫軸)上的點表示自變數,用豎直方向的數軸(又稱縱軸)上的點表示因變數。
4、圖象上的點:
(1)對於某個具體圖象上的點,過該點作橫軸的垂線,垂足的數據即為該點自變數的取值;
(2)過該點作縱軸的垂線,垂足的數據即為該點相應因變數的值。
(3)由自變數的值求對應的因變數的值時,可在橫軸上找到表示自變數的值的點,過這個點作橫軸的垂線與圖象交於某點,再過交點作縱軸的垂線,縱軸上垂足所表示的數據即為因變數的相應值。
(4)把以上作垂線的過程過來可由因變數的值求得相應的自變數的值。
5、圖象理解
(1)理解圖象上某一個點的意義,一要看橫軸、縱軸分別表示哪個變數;
(2)看該點所對應的橫軸、縱軸的位置(數據);
(3)從圖象上還可以得到隨著自變數的變化,因變數的變化趨勢。
五、速度圖象
1、弄清哪一條軸(通常是縱軸)表示速度,哪一條軸(通常是橫軸)表示時間;
2、准確讀懂不同走向的線所表示的意義:
(1)上升的線:從左向右呈上升狀的線,其代錶速度增加;
(2)水平的線:與水平軸(橫軸)平行的線,其代表勻速行駛或靜止;
(3)下降的線:從左向右呈下降狀的線,其代錶速度減小。
六、路程圖象
1、弄清哪一條軸(通常是縱軸)表示路程,哪一條軸(通常是橫軸)表示時間;
2、准確讀懂不同走向的線所表示的意義:
(1)上升的線:從左向右呈上升狀的線,其代表勻速遠離起點(或已知定點);
(2)水平的線:與水平軸(橫軸)平行的線,其代表靜止;
(3)下降的線:從左向右呈下降狀的線,其代表反向運動返回起點(或已知定點)。
七年級數學下冊知識點總結(四)
第四章三角形
一、三角形概念
1、不在同一條直線上的三條線段首尾順次相接所組成的圖形,稱為三角形,可以用符號“Δ”表示。
2、頂點是A、B、C的三角形,記作“ΔABC”,讀作“三角形ABC”。
3、組成三角形的三條線段叫做三角形的邊,即邊AB、BC、AC,有時也用a,b,c來表示,頂點A所對的邊BC用a表示,邊AC、AB分別用b,c來表示;
4、∠A、∠B、∠C為ΔABC的三個內角。
二、三角形中三邊的關系
5. 初一下學期數學知識點
一、整式 單項式和多項式統稱整式。 1、單項式 a) 由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。 b) 單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前 面的性質符號,如果一個單項式只是字母的積,並非沒有系數,系數為1或-1。 c) 一個單項式中,所有字母的指數和叫做這個單項式的次數(注意:常數項的單 項式次數為0) 2、多項式 a) 幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項。其中, 不含字母的項叫做常數項。一個多項式中,次數最高項的次數,叫做這個多項式的次數. b) 單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數。多項 式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數。多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數. 二、整式的加減 a) 整式的加減實質上就是去括弧後,合並同類項,運算結果是一個多項式或是單項式. b) 括弧前面是「-」號,去括弧時,括弧內各項要變號,一個數與多項式相乘時, 這個數與括弧內各項都要相乘。 三、同底數冪的乘法 1、同底數冪的乘法法則: nmnmaaa(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要 注意以下幾點: a) 法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體 的數字式字母,也可以是一個單項或多項式; b) 指數是1時,不要誤以為沒有指數; 六、整式的乘法 1、單項式乘法法則: 單項式相乘,它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。 單項式乘法法則在運用時要注意以下幾點: a) 積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯 誤的是,將系數相乘與指數相加混淆; b) 相同字母相乘,運用同底數冪的乘法法則; c) 只在一個單項式里含有的字母,要連同它的指數作為積的一個因式; d) 單項式乘法法則對於三個以上的單項式相乘同樣適用; e) 單項式乘以單項式,結果仍是一個單項式。 2、單項式與多項式相乘法則: 單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。 單項式與多項式相乘時要注意以下幾點: a) 單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同; b) 運算時要注意積的符號,多項式的每一項都包括它前面的符號; c) 在混合運算時,要注意運算順序。 3、多項式與多項式相乘法則 多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項相乘,再把所得的積相加。 多項式與多項式相乘時要注意以下幾點: a) 多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積 的項數應等於原兩個多項式項數的積; b) 多項式相乘的結果應注意合並同類項; c) 對含有同一個字母的一次項系數是1的兩個一次二項式相乘 abxbaxbxax)())((2,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到 abxnambmnxbnxamx)())((2 七.平方差公式 1、平方差公式: 兩數和與這兩數差的積,等於它們的平方差,即22))((bababa。 其結構特徵是: a) 公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數; b) 公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。 八、完全平方公式 1、完全平方公式: 兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,即 2222)(bababa; 口訣:首平方,尾平方,2倍乘積在中央; 2、結構特徵: a) 公式左邊是二項式的完全平方; b) 公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2 倍。 c) 在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 222)(baba這樣的錯誤。 九、整式的除法 1、單項式除法單項式 單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式; 2、多項式除以單項式 多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。 第二章 平行線與相交線知識點匯總 一、檯球桌面上的角 1、互為餘角和互為補角的有關概念與性質 a) 如果兩個角的和為90°(或直角),那麼這兩個角互為餘角; b) 如果兩個角的和為180°(或平角),那麼這兩個角互為補角; 注意:這兩個概念都是對於兩個角而言的,而且兩個概念強調的是兩個角的數量關系,與兩個角的相互位置沒有關系。 c) 它們的主要性質:同角或等角的餘角相等; d) 同角或等角的補角相等。 二、探索直線平行的條件 1、兩條直線互相平行的條件即兩條直線互相平行的判定定理共有三條: a) 同位角相等,兩直線平行; b) 內錯角相等,兩直線平行; c) 同旁內角互補,兩直線平行。 三、平行線的特徵 1、平行線的特徵即平行線的性質定理,共有三條: a) 兩直線平行,同位角相等; b) 兩直線平行,內錯角相等; c) 兩直線平行,同旁內角互補。 四、用尺規作線段和角 1、關於尺規作圖 尺規作圖是指只用圓規和沒有刻度的直尺來作圖。 2、關於尺規的功能 a) 直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。 b) 圓規的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為 圓心,任意長度為半徑畫一段弧。 第三章 生活中的數據知識點 一、科學記數法: 對任意一個正數可能寫成a×10n的形式,其中1≤a<10,n是整數,這種記數的方法稱為科學記數法。 二、近似數和有效數字: 1、近似數 利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位; 2、有效數字 對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。 3、統計工作包括: a) 設定目標; b) 收集數據; c) 整理數據; d) 表達與描述數據; e) 分析結果。 第四章 概率知識點 1、隨機事件發生與不發生的可能性不總是各佔一半,都為50%。 2、現實生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學科。 3、了解必然事件和不可能事件發生的概率。 必然事件發生的概率為1,即P(必然事件)=1;不可能事件發生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那麼0<P(A)<1 1 2 必然發生 不可能發生 1 0
6. 七年級下冊數學的知識點
此書名為「知識不是力量」,目的不是要宣揚知識無用論,而是希望藉此名重新思考學習的本質。下面我給大家分享一些七年級下冊數學的知識,希望能夠幫助大家,歡迎閱讀!
七年級下冊數學的知識1
相交線與平行線
一、相交線 兩條直線相交,形成4個角。
1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質是對頂角相等。
①鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線。具有這種關系的兩個角,互為鄰補角。如:∠1、∠2。
②對頂角:兩個角有一個公共頂點,並且一個角的兩條邊,分別是另一個角的兩條邊的反向延長線,具有這種關系的兩個角,互為對頂角。如:∠1、∠3。
③對頂角相等。
二、垂線
1.垂直:如果兩條直線相交成直角,那麼這兩條直線互相垂直。
2.垂線: 垂直是相交的一種特殊情形,兩條直線垂直,其中一條直線叫做另一條直線的垂線。
3.垂足:兩條垂線的交點叫垂足。
4.垂線特點:過一點有且只有一條直線與已知直線垂直。
5.點到直線的距離: 直線外一點到這條直線的垂線段的長度,叫點到直線的距離。連接直線外一點與直線上各點的所有線段中,垂線段最短。
三、同位角、內錯角、同旁內角
兩條直線被第三條直線所截形成8個角。
1.同位角:(在兩條直線的同一旁,第三條直線的同一側)在兩條直線的上方,又在直線EF的同側,具有這種位置關系的兩個角叫同位角。如:∠1和∠5。
2.內錯角:(在兩條直線內部,位於第三條直線兩側)在兩條直線之間,又在直線EF的兩側,具有這種位置關系的兩個角叫內錯角。如:∠3和∠5。
3.同旁內角:(在兩條直線內部,位於第三條直線同側)在兩條直線之間,又在直線EF的同側,具有這種位置關系的兩個角叫同旁內角。如:∠3和∠6。
四、平行線及其判定
平行線
1.平行:兩條直線不相交。互相平行的兩條直線,互為平行線。a∥b(在同一平面內,不相交的兩條直線叫做平行線。)
2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3.平行公理推論:平行於同一直線的兩條直線互相平行。如果b//a,c//a,那麼b//c
平行線的判定:
1. 兩條平行線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。(同位角相等,兩直線平行)
2. 兩條平行線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。(內錯角相等,兩直線平行)
3. 兩條平行線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。(同旁內角互補,兩直線平行)
推論:在同一平面內,如果兩條直線都垂直於同一條直線,那麼這兩條直線平行。
平行線的性質
(一)平行線的性質
1.兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
2.兩條平行線被第三條直線所截,內錯角相等。(兩直線平行,內錯角相等)
3.兩條平行線被第三條直線所截,同旁內角互補。(兩直線平行,同旁內角相等)
(二)命題、定理、證明
1.命題的概念:判斷一件事情的語句,叫做命題。
2.命題的組成:每個命題都是題設、結論兩部分組成。
題設是已知事項;結論是由已知事項推出的事項。命題常寫成「如果??,那麼??」的形式。具有這種形式的命題中,用「如果」開始的部分是題設,用「那麼」開始的部分是結論。
3.真命題:正確的命題,題設成立,結論一定成立。
4.假命題:錯誤的命題,題設成立,不能保證結論一定成立。
5.定理:經過推理證實得到的真命題。(定理可以做為繼續推理的依據)
6.證明:推理的過程叫做證明。
平移
1.平移:平移是指在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移變換 (簡稱平移),平移不改變物體的形狀和大小。
2.平移的性質
①把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
②新圖形中的每一點,都是由原圖形中的某一點移動後得到的,這兩個點是對應點。連接各組對應點的線段平行且相等。
七年級下冊數學的知識2
實數
一、平方根
1、平方根
(1)平方根的定義:如果一個數x的平方等於a,那麼這個數x就叫做a的平方根.即:如果x2=a,那麼x叫做a的平方根.
(2)開平方的定義:求一個數的平方根的運算,叫做開平方.開平方運算的被開方數必須是非負數才有意義。
(3)平方與開平方互為逆運算:±3的平方等於9,9的平方根是±3
(4)一個正數有兩個平方根,即正數進行開平方運算有兩個結果;一個負數沒有平方根,即負數不能進行開平方運算;0的平方根是0.
(7)平方根和算術平方根兩者既有區別又有聯系:
區別在於正數的平方根有兩個,而它的算術平方根只有一個;
聯系在於正數的正平方根就是它的算術平方根,而正數的負平方根是它的算術平方根的相反數。
三、實數
一、實數的概念及分類
無理數:像前面的很多數的平方根和立方根都是無限不循環小數,無限不循環小數又叫無理數。
實數:有理數和無理數統稱實數。
1、實數的分類
二、實數的倒數、相反數和絕對值
1、相反數
實數與它的相反數是一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關於原點對稱,如果a與b互為相反數,則有a+b=0,a=—b,反之亦成立。
數a的相反數是—a,這里a表示任意一個實數。
2、絕對值
一個數的絕對值就是表示這個數的點與原點的距離,|a|≥0。零的絕對值是它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。
一個正實數的絕對值是它本身,一個負實數的絕對值是它的相反數,零的絕對值是0。
正數大於零,負數小於零,正數大於一切負數,兩個負數,絕對值大的反而小。
3、倒數
如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和-1。零沒有倒數。
4. 實數與數軸上點的關系:
每一個無理數都可以用數軸上的一個點表示出來,
數軸上的點有些表示有理數,有些表示無理數,
實數與數軸上的點就是一一對應的,即每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都是表示一個實數。
三、科學記數法和近似數
1、有效數字
一個近似數四捨五入到哪一位,就說它精確到哪一位,這時,從左邊第一個不是零的數字起到右邊精確的數位止的所有數字,都叫做這個數的有效數字。
2、科學記數法
把一個數寫做±a×10n的形式,其中1≤a<10,n是整數,這種記數法叫做科學記數法。
四、實數大小的比較
1、數軸
規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意三要素缺一不可)。
解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,並能靈活運用。
2、實數大小比較的幾種常用 方法
(1)數軸比較:在數軸上表示的兩個數,右邊的數總比左邊的數大。
(2)求差比較:設a、b是實數,
七年級下冊數學的知識3
平面直角坐標系
一、平面直角坐標系
有序數對
1.有序數對:用兩個數來表示一個確定的位置,其中兩個數各自表示不同的意義,我們把這種有順序的兩個數組成的數對,叫做有序數對,記作(a,b)
2.坐標:數軸(或平面)上的點可以用一個數(或數對)來表示,這個數(或數對)叫做這個點的坐標。
平面直角坐標系
1.平面直角坐標系:在平面內畫兩條互相垂直,並且有公共原點的數軸。這樣我們就說在平面上建立了平面直角坐標系,簡稱直角坐標系。
2.X軸:水平的數軸叫X軸或橫軸。向右方向為正方向。
3.Y軸:豎直的數軸叫Y軸或縱軸。向上方向為正方向。
4.原點:兩個數軸的交點叫做平面直角坐標系的原點。
對應關系:平面直角坐標系內的點與有序實數對一一對應。
坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。
象限
1.象限:X軸和Y軸把坐標平面分成四個部分,也叫四個象限。右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數軸為界,橫軸、縱軸上的點及原點不屬於任何象限。一般,在x軸和y軸取相同的單位長度。
2.象限的特點:
1、特殊位置的點的坐標的特點:
(1)x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2)第一、三象限角平分線上的點橫、縱坐標相等;
第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3)在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行於縱軸;如果兩點的縱坐標相同,則兩點的連線平行於橫軸。
2、點到軸及原點的距離:
點到x軸的距離為|y|;
點到y軸的距離為|x|;
點到原點的距離為x的平方加y的平方再開根號;
3、三大規律
(1)平移規律:
點的平移規律
左右平移→縱坐標不變,橫坐標左減右加;
上下平移→橫坐標不變,縱坐標上加下減。
圖形的平移規律 找特殊點
(2)對稱規律
關於x軸對稱→橫坐標不變,縱坐標互為相反數;
關於y軸對稱→橫坐標互為相反數,縱坐標不變;
關於原點對稱→橫縱坐標都互為相反數。
(3)位置規律
二、坐標方法的簡單應用
用坐標表示地理位置的過程:
1.建立坐標系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據具體問題確定適當的比例尺,在坐標軸上標出單位長度。
3.在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
用坐標表示平移
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去) 一個正數a,相應的新圖形就把原圖形向上(下)平移a個單位長度。
用坐標表示地理位置的過程:
1.建立坐標系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據具體問題確定適當的比例尺,在坐標軸上標出單位長度。
3.在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
用坐標表示平移
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去) 一個正數a,相應的新圖形就把原圖形向上(下)平移a個單位長度。
七年級下冊數學的知識點相關 文章 :
★ 初一數學下冊知識點
★ 七年級數學下冊知識點總結
★ 七年級數學下冊知識點歸納
★ 人教版初一數學下冊知識點復習總結備戰中考
★ 初一下期數學知識點總結
★ 2017年七年級下冊數學知識點
★ 初一下冊數學重要知識點
★ 人教版七年級下冊數學復習提綱
★ 初一數學下冊基本知識點總結
7. 數學七年級下冊知識點
知識的寬度、厚度和精度決定人的成熟度。每一個人比別人成功,只不過是多學了一點知識,多用了一點心而已。接下來我給大家分享關於數學七年級下冊知識,希望對大家有所幫助!
數學七年級下冊知識1
相交線與平行線
一、相交線 兩條直線相交,形成4個角。
1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質是對頂角相等。
①鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線。具有這種關系的兩個角,互為鄰補角。如:∠1、∠2。
②對頂角:兩個角有一個公共頂點,並且一個角的兩條邊,分別是另一個角的兩條邊的反向延長線,具有這種關系的兩個角,互為對頂角。如:∠1、∠3。
③對頂角相等。
二、垂線
1.垂直:如果兩條直線相交成直角,那麼這兩條直線互相垂直。
2.垂線: 垂直是相交的一種特殊情形,兩條直線垂直,其中一條直線叫做另一條直線的垂線。
3.垂足:兩條垂線的交點叫垂足。
4.垂線特點:過一點有且只有一條直線與已知直線垂直。
5.點到直線的距離: 直線外一點到這條直線的垂線段的長度,叫點到直線的距離。連接直線外一點與直線上各點的所有線段中,垂線段最短。
圖片 圖片
三、同位角、內錯角、同旁內角
兩條直線被第三條直線所截形成8個角。
1.同位角:(在兩條直線的同一旁,第三條直線的同一側)在兩條直線的上方,又在直線EF的同側,具有這種位置關系的兩個角叫同位角。如:∠1和∠5。
2.內錯角:(在兩條直線內部,位於第三條直線兩側)在兩條直線之間,又在直線EF的兩側,具有這種位置關系的兩個角叫內錯角。如:∠3和∠5。
3.同旁內角:(在兩條直線內部,位於第三條直線同側)在兩條直線之間,又在直線EF的同側,具有這種位置關系的兩個角叫同旁內角。如:∠3和∠6。
四、平行線及其判定
平行線
1.平行:兩條直線不相交。互相平行的兩條直線,互為平行線。a∥b(在同一平面內,不相交的兩條直線叫做平行線。)
2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3.平行公理推論:平行於同一直線的兩條直線互相平行。如果b//a,c//a,那麼b//c
平行線的判定:
1. 兩條平行線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。(同位角相等,兩直線平行)
2. 兩條平行線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。(內錯角相等,兩直線平行)
3. 兩條平行線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。(同旁內角互補,兩直線平行)
推論:在同一平面內,如果兩條直線都垂直於同一條直線,那麼這兩條直線平行。
平行線的性質
(一)平行線的性質
1.兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
2.兩條平行線被第三條直線所截,內錯角相等。(兩直線平行,內錯角相等)
3.兩條平行線被第三條直線所截,同旁內角互補。(兩直線平行,同旁內角相等)
(二)命題、定理、證明
1.命題的概念:判斷一件事情的語句,叫做命題。
2.命題的組成:每個命題都是題設、結論兩部分組成。
題設是已知事項;結論是由已知事項推出的事項。命題常寫成「如果??,那麼??」的形式。具有這種形式的命題中,用「如果」開始的部分是題設,用「那麼」開始的部分是結論。
3.真命題:正確的命題,題設成立,結論一定成立。
4.假命題:錯誤的命題,題設成立,不能保證結論一定成立。
5.定理:經過推理證實得到的真命題。(定理可以做為繼續推理的依據)
6.證明:推理的過程叫做證明。
平移
1.平移:平移是指在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移變換 (簡稱平移),平移不改變物體的形狀和大小。
2.平移的性質
①把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
②新圖形中的每一點,都是由原圖形中的某一點移動後得到的,這兩個點是對應點。連接各組對應點的線段平行且相等。
數學七年級下冊知識2
平面直角坐標系
一、平面直角坐標系
有序數對
1.有序數對:用兩個數來表示一個確定的位置,其中兩個數各自表示不同的意義,我們把這種有順序的兩個數組成的數對,叫做有序數對,記作(a,b)
2.坐標:數軸(或平面)上的點可以用一個數(或數對)來表示,這個數(或數對)叫做這個點的坐標。
平面直角坐標系
1.平面直角坐標系:在平面內畫兩條互相垂直,並且有公共原點的數軸。這樣我們就說在平面上建立了平面直角坐標系,簡稱直角坐標系。
2.X軸:水平的數軸叫X軸或橫軸。向右方向為正方向。
3.Y軸:豎直的數軸叫Y軸或縱軸。向上方向為正方向。
4.原點:兩個數軸的交點叫做平面直角坐標系的原點。
對應關系:平面直角坐標系內的點與有序實數對一一對應。
坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。
象限
1.象限:X軸和Y軸把坐標平面分成四個部分,也叫四個象限。右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數軸為界,橫軸、縱軸上的點及原點不屬於任何象限。一般,在x軸和y軸取相同的單位長度。
2.象限的特點:
1、特殊位置的點的坐標的特點:
(1)x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2)第一、三象限角平分線上的點橫、縱坐標相等;
第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3)在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行於縱軸;如果兩點的縱坐標相同,則兩點的連線平行於橫軸。
2、點到軸及原點的距離:
點到x軸的距離為|y|;
點到y軸的距離為|x|;
點到原點的距離為x的平方加y的平方再開根號;
3、三大規律
(1)平移規律:
點的平移規律
左右平移→縱坐標不變,橫坐標左減右加;
上下平移→橫坐標不變,縱坐標上加下減。
圖形的平移規律 找特殊點
(2)對稱規律
關於x軸對稱→橫坐標不變,縱坐標互為相反數;
關於y軸對稱→橫坐標互為相反數,縱坐標不變;
關於原點對稱→橫縱坐標都互為相反數。
(3)位置規律
各象限點的坐標符號:(注意:坐標軸上的點不屬於任何一個象限)
圖片
二、坐標 方法 的簡單應用
用坐標表示地理位置的過程:
1.建立坐標系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據具體問題確定適當的比例尺,在坐標軸上標出單位長度。
3.在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
用坐標表示平移
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去) 一個正數a,相應的新圖形就把原圖形向上(下)平移a個單位長度。
用坐標表示地理位置的過程:
1.建立坐標系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據具體問題確定適當的比例尺,在坐標軸上標出單位長度。
3.在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
用坐標表示平移
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去) 一個正數a,相應的新圖形就把原圖形向上(下)平移a個單位長度。
數學七年級下冊知識3
不等式與不等式組
一、不等式
不等式及其解集
1.不等式:用不等號(包括:>、圖片、圖片、<、≠)表示大小關系的式子。
2.不等式的解:使不等式成立的未知數的值,叫不等式的解。
3.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
不等式的性質:
性質1:如果a>b,b>c,那麼a>c(不等式的傳遞性).
性質2:不等式的兩邊同加(減)同一個數(或式子),不等號的方向不變。如果a>b,那麼a+c>b+c(不等式的可加性).
性質3: 不等式的兩邊同乘(除以)同一個正數,不等號的方向不變。不等式的兩邊同乘(除以)同一個負數,不等號的方向改變。
如果a>b,c>0,那麼ac>bc;如果a>b,c<0,ac<bc.(不等式的乘法法則)< span=""></bc.(不等式的乘法法則)<>
性質4:如果a>b,c>d,那麼a+c>b+d. (不等式的加法法則)
性質5:如果a>b>0,c>d>0,那麼ac>bd. (可乘性)
性質6:如果a>b>0,n∈N,n>1,那麼an>bn,且.當0<n<1時也成立. (乘方法則) < span=""></n<1時也成立. (乘方法則) <>
二、一元一次不等式
1.一元一次不等式:含有一個未知數,未知數的次數是1的不等式。
2、不等式的解法:
步驟:去分母,去括弧,移項,合並同類項,系數化為一;
注意:去分母與系數化為一要特別小心,因為要在不等式兩端同時乘或除以某一個數,要考慮不等號的方向是否發生改變的問題。
三、一元一次不等式組
1.一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2.不等式組的解:幾個不等式的解集的公共部分,叫做由它們組成的不等式組的解集。解不等式組就是求它的解集。
3.解不等式組:先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式的解集。
解一元一次不等式組的一般方法:
以兩條不等式組成的不等式組為例,
①若兩個未知數的解集在數軸上表示同向左,就取在左邊的未知數的解集為不等式組的解集,此乃「同小取小」
②若兩個未知數的解集在數軸上表示同向右,就取在右邊的未知數的解集為不等式組的解集,此乃「同大取大」
③若兩個未知數的解集在數軸上相交,就取它們之間的值為不等式組的解集。若x表示不等式的解集,此時一般表示為a<x<b,或a≤x≤b。此乃「相交取中
④若兩個未知數的解集在數軸上向背,那麼不等式組的解集就是空集,不等式組無解。此乃「向背取空」不等式組的解集的確定方法(a>b)
數學七年級下冊知識點相關 文章 :
★ 初一數學下冊知識點
★ 初中數學七年級下冊知識點提綱
★ 七年級下數學知識點總結
★ 初一數學下冊知識點歸納總結
★ 七年級下冊數學復習提綱
★ 初一數學下冊基本知識點總結
★ 七年級下冊數學的知識點
★ 初一數學下冊知識點匯總
★ 初一下期數學知識點總結
★ 七年級數學下冊知識點總結
8. 初一數學下冊基本知識點總結
學數學要在理解的基礎上去做題,學會數學關鍵在於個人的悟性,除了上課認真聽講、課後做匹配練習外,還需要練就獨立解題能力與 總結 反思 能力,學會以不變應萬變。這次我給大家整理了初一數學下冊基本知識點總結,供大家閱讀參考。
初一數學下冊基本知識點總結
第一章 有理數
1.1 正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。
1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。
1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。
第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。
第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。
第四章 數據的收集與整理
收集、整理、描述和分析數據是數據處理的基本過程。
第五章 相交線與平行線
5.1 相交線
對頂角(vertical angles)相等。
過一點有且只有一條直線與已知直線垂直(perpendicular)。
連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。
5.2 平行線
經過直線外一點,有且只有一條直線與這條直線平行(parallel)。
如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
直線平行的條件:
兩條直線被第三條直線所截,如果同位角相等,那麼兩直線平行。
兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行。
兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行。
5.3 平行線的性質
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內錯角相等。
兩條平行線被第三條直線所截,同旁內角互補。
判斷一件事情的語句,叫做命題(proposition)。
第六章 平面直角坐標系
6.1 平面直角坐標系
含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義,我們把這種有順序的兩個數a和b組成的數對,叫做有序數對(ordered pair)。
第七章 三角形
7.1 與三角形有關的線段
三角形(triangle)具有穩定性。
7.2 與三角形有關的角
三角形的內角和等於180度。
三角形的一個外角等於與它不相鄰的兩個內角的和。
三角形的一個外角大於與它不相鄰的任何一個內角
7.3 多邊形及其內角和
n邊形內角和等於:(n-2)?180度
多邊形(polygon)的外角和等於360度。
第八章 二元一次方程組
8.1 二元一次方程組
方程中含有兩個未知數(x和y),並且未知數的指數都是1,像這樣的方程叫做二元一次方程(linear equations of two unknowns) 。
把兩個二元一次方程合在一起,就組成了一個二元一次方程組(system of linear equations of two unknowns)。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
8.2 消元
將未知數的個數由多化少、逐一解決的想法,叫做消元思想。
第九章 不等式與不等式組
9.1 不等式
用小於號或大於號表示大小關系的式子,叫做不等式(inequality)。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。
含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性質:
不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
三角形中任意兩邊之差小於第三邊。
三角形中任意兩邊之和大於第三邊。
9.3 一元一次不等式組
把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組(linear inequalities of one unknown)。
第十章 實數
10.1 平方根
如果一個正數x的平方等於a,那麼這個正數x叫做a的算術平方根(arithmetic square root),2是根指數。
a的算術平方根讀作「根號a」,a叫做被開方數(radicand)。
0的算術平方根是0。
如果一個數的平方等於a,那麼這個數叫做a的平方根或二次方根(square root) 。
求一個數a的平方根的運算,叫做開平方(extraction of square root)。
10.2 立方根
如果一個數的立方等於a,那麼這個數叫做a的立方根或三次方根(cube root)。
求一個數的立方根的運算,叫做開立方(extraction of cube root)。
10.3 實數
無限不循環小數又叫做無理數(irrational number)。
有理數和無理數統稱實數(real number)。
如何學好數學
作好 課前預習 ,掌握聽課主動權
「凡事預則主,不預則廢」。課堂就是戰場,學習就是戰爭,不能打無准備的仗。如果第二天有數學課,第一天就要進行充分准備。一方面要通讀教材中的相關內容,看看哪些是懂得的,是已經學過的知識;哪些是不懂的,是要通過老師講解才能理解的新知識。把不懂的部分標注清楚,進行初步思考,把需要解決的問題提出來。另一方面還要對教材後邊的習題初做一遍,把不會做的題做上記號,一起帶到課堂去解決。
專心聽講,做好課堂筆記
聽課要提前進入狀態。課前准備的好壞,直接影響聽課的效果。正式上課鈴聲未響,老師尚未走進教室之前,就該把有關的課本(包括 筆記本 ,練習本)和文具事先擺放在桌面上,等待老師的到來。不要指望老師站在講台上等大家慢慢翻箱倒櫃,找這找那。老師進入教室,就應該帶著預習過程中需要解決的問題,專心聽講。還要掌握老師講課的規律,圍繞老師講課質點,積極思考,踴躍回答老師提出的問題。
及時復習,把知識轉化為技能
復習是學習過程的重要環節。復習時,要再次閱讀教材,回想當天所學的內容,追憶老師講課的過程,再現課堂所學的知識,讀懂老師已講的例題,(這些例題通常對完成作業有較強的啟發和示範作用),理解和記憶基本的定義、定理、公式、法則(這些就是必須掌握的知識點)。當天及時復習,能夠減少知識遺忘,易於鞏固和記憶。
數學的 學習 方法
1、養成良好的學習數學習慣。 建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的數學思想和方法,學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。
3、逐步形成 「以我為主」的學習模式 數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神。
4、記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
初一數學下冊基本知識點總結相關 文章 :
★ 關於初一數學下冊知識點歸納
★ 初一數學下冊基礎知識點
★ 初一數學下冊重要知識點
★ 初一數學下冊知識點梳理
★ 七年級下數學知識點總結
★ 初一數學下冊知識點冀教版
★ 七年級數學下冊的知識點
★ 初一數學考試知識點下冊
★ 七年級數學下冊知識點人教版
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();9. 初一數學下冊知識點
初一數學上冊知識點匯總
(一)有理數及其運算復習
一、有理數的基礎知識
1、三個重要的定義:
(1)正數:像1、2.5、這樣大於0的數叫做正數;(2)負數:在正數前面加上「-」號,表示比0小的數叫做負數;(3)0即不是正數也不是負數.
2、有理數的分類:
(1)按定義分類:
(2)按性質符號分類:
3、數軸
數軸有三要素:原點、正方向、單位長度.畫一條水平直線,在直線上取一點表示0(叫做原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸.在數軸上的所表示的數,右邊的數總比左邊的數大,所以正數都大於0,負數都小於0,正數大於負數.
4、相反數
如果兩個數只有符號不同,那麼其中一個數就叫另一個數的相反數.0的相反數是0,互為相反的兩上數,在數軸上位於原點的兩則,並且與原點的距離相等.
5、絕對值
(1)絕對值的幾何意義:一個數的絕對值就是數軸上表示該數的點與原點的距離.
(2)絕對值的代數意義:一個正數的絕對值是它本身;0的絕對值是0;一個負數的絕對值是它的相反數,可用字母a表示如下:
(3)兩個負數比較大小,絕對值大的反而小.
二、有理數的運算
1、有理數的加法
(1)有理數的加法法則:同號兩數相加,取相同的符號,並把絕對值相加;絕對值不等的異號兩數相加,取絕對值較大數的符號,並用較大的絕對值減去較小的絕對值;互為相反的兩個數相加得0;一個數同0相加,仍得這個數.
(2)有理數加法的運算律:
加法的交換律 :a+b=b+a;加法的結合律:( a+b ) +c = a + (b +c)
用加法的運算律進行簡便運算的基本思路是:先把互為相反數的數相加;把同分母的分數先相加;把符號相同的數先相加;把相加得整數的數先相加.
2、有理數的減法
(1)有理數減法法則:減去一個數等於加上這個數的相反數.
(2)有理數減法常見的錯誤:顧此失彼,沒有顧到結果的符號;仍用小學計算的習慣,不把減法變加法;只改變運算符號,不改變減數的符號,沒有把減數變成相反數.
(3)有理數加減混合運算步驟:先把減法變成加法,再按有理數加法法則進行運算;
3、有理數的乘法
(1)有理數乘法的法則:兩個有理數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0.
(2)有理數乘法的運算律:交換律:ab=ba;結合律:(ab)c=a(bc);交換律:a(b+c)=ab+ac.
(3)倒數的定義:乘積是1的兩個有理數互為倒數,即ab=1,那麼a和b互為倒數;倒數也可以看成是把分子分母的位置顛倒過來.
4、有理數的除法
有理數的除法法則:除以一個數,等於乘上這個數的倒數,0不能做除數.這個法則可以把除法轉化為乘法;除法法則也可以看成是:兩個數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數都等於0.
5、有理數的乘法
(1)有理數的乘法的定義:求幾個相同因數a的運算叫做乘方,乘方是一種運算,是幾個相同的因數的特殊乘法運算,記做「 」其中a叫做底數,表示相同的因數,n叫做指數,表示相同因數的個數,它所表示的意義是n個a相乘,不是n乘以a,乘方的結果叫做冪.
(2)正數的任何次方都是正數,負數的偶數次方是正數,負數的奇數次方是負數
6、有理數的混合運算
(1)進行有理數混合運算的關建是熟練掌握加、減、乘、除、乘方的運演算法則、運算律及運算順序.比較復雜的混合運算,一般可先根據題中的加減運算,把算式分成幾段,計算時,先從每段的乘方開始,按順序運算,有括弧先算括弧里的,同時要注意靈活運用運算律簡化運算.
(2)進行有理數的混合運算時,應注意:一是要注意運算順序,先算高一級的運算,再算低一級的運算;二是要注意觀察,靈活運用運算律進行簡便運算,以提高運算速度及運算能力.
(2)整式的加減復習
(3)一元一次方程復習
一、方程的有關概念
1、方程的概念:
(1)含有未知數的等式叫方程.
(2)在一個方程中,只含有一個未知數,並且未知數的指數是1,系數不為0,這樣的方程叫一元一次方程.
2、等式的基本性質:
(1)等式兩邊同時加上(或減去)同一個代數式,所得結果仍是等式.若a=b,則a+c=b+c或a – c = b – c .
(2)等式兩邊同時乘以(或除以)同一個數(除數不能為0),所得結果仍是等式.若a=b,則ac=bc或
(3)對稱性:等式的左右兩邊交換位置,結果仍是等式.若a=b,則b=a.
(4)傳遞性:如果a=b,且b=c,那麼a=c,這一性質叫等量代換.
二、解方程
1、移項的有關概念:
把方程中的某一項改變符號後,從方程的一邊移到另一邊,叫做移項.這個法則是根據等式的性質1推出來的,是解方程的依據.要明白移項就是根據解方程變形的需要,把某一項從方程的左邊移到右邊或從右邊移到左邊,移動的項一定要變號.
2、解一元一次方程的步驟:
(1)去分母 等式的性質2
注意拿這個最小公倍數乘遍方程的每一項,切記不可漏乘某一項,分母是小數的,要先利用分數的性質,把分母化為整數,若分子是代數式,則必加括弧.
(2)去括弧 去括弧法則、乘法分配律
嚴格執行去括弧的法則,若是數乘括弧,切記不漏乘括弧內的項,減號後去括弧,括弧內各項的符號一定要變號.
(3)移項 等式的性質1
越過「=」的叫移項,屬移項者必變號;未移項的項不變號,注意不遺漏,移項時把含未知數的項移在左邊,已知數移在右邊,書寫時,先寫不移動的項,把移動過來的項改變符號寫在後面
(4)合並同類項 合並同類項法則
注意在合並時,僅將系數加到了一起,而字母及其指數均不改變.
(5)系數化為1 等式的性質2
兩邊同除以未知數的系數,記住未知數的系數永遠是分母(除數),切不可分子、分母顛倒.
(6)檢驗
二、列方程解應用題
1、列方程解應用題的一般步驟:
(1)將實際問題抽象成數學問題;
(2)分析問題中的已知量和未知量,找出等量關系;
(3)設未知數,列出方程;
(4)解方程;
(5)檢驗並作答.
2、一些實際問題中的規律和等量關系:
(1)日歷上數字排列的規律是:橫行每整行排列7個連續的數,豎列中,下面的數比上面的數大7.日歷上的數字范圍是在1到31之間,不能超出這個范圍.
(2)幾種常用的面積公式:
長方形面積公式:S=ab,a為長,b為寬,S為面積;正方形面積公式:S = a2,a為邊長,S為面積;
梯形面積公式:S = ,a,b為上下底邊長,h為梯形的高,S為梯形面積;
圓形的面積公式: ,r為圓的半徑,S為圓的面積;
三角形面積公式: ,a為三角形的一邊長,h為這一邊上的高,S為三角形的面積.
(3)幾種常用的周長公式:
長方形的周長:L=2(a+b),a,b為長方形的長和寬,L為周長.
正方形的周長:L=4a,a為正方形的邊長,L為周長.
圓:L=2πr,r為半徑,L為周長.
(4)柱體的體積等於底面積乘以高,當體積不變時,底面越大,高度就越低.所以等積變化的相等關系一般為:變形前的體積=變形後的體積.
(5)打折銷售這類題型的等量關系是:利潤=售價–成本.
(6)行程問題中關建的等量關系:路程=速度×時間,以及由此導出的其化關系.
(7)在一些復雜問題中,可以藉助表格分析復雜問題中的數量關系,找出若干個較直接的等量關系,藉此列出方程,列表可幫助我們分析各量之間的相互關系.
(8)在行程問題中,可將題目中的數字語言用「線段圖」表達出來,分析問題中的數量關系,從而找出等量關系,列出方程.
(9)關於儲蓄中的一些概念:
本金:顧客存入銀行的錢;利息:銀行給顧客的酬金;本息:本金與利息的和;期數:存入的時間;利率:每個期數內利息與本金的比;利息=本金×利率×期數;本息=本金+利息.
(4)圖形初步認識總復習
(一)多姿多彩的圖形
立體圖形:稜柱、棱錐、圓柱、圓錐、球等.
1、幾何圖形
平面圖形:三角形、四邊形、圓等.
主(正)視圖---------從正面看
2、幾何體的三視圖 側(左、右)視圖-----從左(右)邊看
俯視圖---------------從上面看
(1)會判斷簡單物體(直稜柱、圓柱、圓錐、球)的三視圖.
(2)能根據三視圖描述基本幾何體或實物原型.
3、立體圖形的平面展開圖
(1)同一個立體圖形按不同的方式展開,得到的平現圖形不一樣的.
(2)了解直稜柱、圓柱、圓錐、的平面展開圖,能根據展開圖判斷和製作立體模型.
4、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形最基本的圖形.
線:面和面相交的地方是線,分為直線和曲線.
面:包圍著體的是面,分為平面和曲面.
體:幾何體也簡稱體.
(2)點動成線,線動成面,面動成體.
(二)直線、射線、線段
1、基本概念
圖形 直線 射線 線段
端點個數 無 一個 兩個
表示法 直線a
直線AB(BA) 射線AB 線段a
線段AB(BA)
作法敘述 作直線AB;
作直線a 作射線AB 作線段a;
作線段AB;
連接AB
延長敘述 不能延長 反向延長射線AB 延長線段AB;
反向延長線段BA
2、直線的性質
經過兩點有一條直線,並且只有一條直線.
簡單地:兩點確定一條直線.
3、畫一條線段等於已知線段
(1)度量法
(2)用尺規作圖法
4、線段的大小比較方法
(1)度量法
(2)疊合法
5、線段的中點(二等分點)、三等分點、四等分點等
定義:把一條線段平均分成兩條相等線段的點.
圖形:
A M B
符號:若點M是線段AB的中點,則AM=BM=AB,AB=2AM=2BM.
6、線段的性質
兩點的所有連線中,線段最短.簡單地:兩點之間,線段最短.
7、兩點的距離
連接兩點的線段長度叫做兩點的距離.
8、點與直線的位置關系
(1)點在直線上 (2)點在直線外.
(三)角
1、角:由公共端點的兩條射線所組成的圖形叫做角.
2、角的表示法(四種):
3、角的度量單位及換算
4、角的分類
∠β 銳角 直角 鈍角 平角 周角
范圍 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180° ∠β=360°
5、角的比較方法
(1)度量法
(2)疊合法
6、角的和、差、倍、分及其近似值
7、畫一個角等於已知角
(1)藉助三角尺能畫出15°的倍數的角,在0~180°之間共能畫出11個角.
(2)藉助量角器能畫出給定度數的角.
(3)用尺規作圖法.
8、角的平線線
定義:從一個角的頂點出發,把這個角分成相等的兩個角的射線叫做角的平分線.
圖形:
符號:
9、互余、互補
(1)若∠1+∠2=90°,則∠1與∠2互為餘角.其中∠1是∠2的餘角,∠2是∠1的餘角.
(2)若∠1+∠2=180°,則∠1與∠2互為補角.其中∠1是∠2的補角,∠2是∠1的補角.
(3)余(補)角的性質:等角的補(余)角相等.
10、方向角
(1)正方向
(2)北(南)偏東(西)方向
(3)東(西)北(南)方向
希望能幫助你!