當前位置:首頁 » 基礎知識 » 解讀數學知識點總結
擴展閱讀
兒童什麼時候進入深睡 2025-01-15 08:00:59
徐州學前教育需要多少分 2025-01-15 07:33:44

解讀數學知識點總結

發布時間: 2022-08-29 03:41:42

① 高二數學重點知識點歸納

總結 是事後對某一時期、某一項目或某些工作進行回顧和分析,從而做出帶有規律性的結論,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,一起來學習寫總結吧。你想知道總結怎麼寫嗎?下面是我給大家帶來的 高二數學 重點知識點歸納,以供大家參考!

高二數學重點知識點歸納

第一章:集合和函數的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。次一級的知識點就是集合的韋恩圖,會畫圖,集合的「並、補、交、非」也就解決了,還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,的 方法 是寫在 筆記本 上,每天至少看上一遍。

第二章:基本初等函數:指數、對數、冪函數三大函數的運算性質及圖像。函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關於這三大函數的運算公式,多記多用,多做一點練習基本就沒多大問題。函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對於冪函數還要搞清楚當指數冪大於一和小於一時圖像的不同及函數值的大小關系,這也是常考常錯點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化問題也要了解清楚。

第三章:函數的應用。主要就是函數與方程的結合。其實就是的實根,即函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間的靈活轉化,以求能最簡單的解決問題。關於證明零點的方法,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這是這一章的難點,這幾種證明方法都要記得,多練習強化。這二次函數的零點的Δ判別法,這個倒不算難。

高中數學知識點總結

1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。

2.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。

3.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1 ……(檢驗方程的解)。

4.列一元一次方程解應用題:

(1)讀題分析法:多用於「和,差,倍,分問題」

仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套—————」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程。

(2)畫圖分析法:多用於「行程問題」

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。

11.列方程解應用題的常用公式:

(1)行程問題:距離=速度·時間;

(2)工程問題:工作量=工效·工時;

(3)比率問題:部分=全體·比率;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

(5)商品價格問題:售價=定價·折·,利潤=售價—成本,;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

S正方形=a2,S環形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。

本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。

高二數學知識點摘要

1.函數的奇偶性。

(1)若f(x)是偶函數,那麼f(x)=f(-x)。

(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數)。

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性。

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性。

2.復合函數的有關問題。

(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的`定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由「同增異減」判定。

3.函數圖像(或方程曲線的對稱性)。

(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上。

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然。

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0。

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱。

4.函數的周期性。

(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恆成立,則y=f(x)是周期為2a的周期函數。

(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2|a|的周期函數。

(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4|a|的周期函數。

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數。

5.判斷對應是否為映射時,抓住兩點。

(1)A中元素必須都有象且。

(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象。

6.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。


高二數學重點知識點歸納相關 文章 :

★ 高二數學各類考試的知識點總結

★ 高二數學知識的重點要點的總結

★ 高二數學考點知識點總結復習大綱

★ 高二數學知識點歸納總結

★ 高二數學考試必考知識點

★ 高二數學文科重點知識點總結

★ 高二數學知識點歸納小總結

★ 高二數學知識點總結

★ 高二數學知識點歸納

② 九年級數學知識點歸納

各個科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,基本離不開背、記,練,數學作為最燒腦的科目之一,也是一樣的。下面是我給大家整理的一些 九年級數學 知識點的學習資料,希望對大家有所幫助。

初三下冊數學知識點 總結

半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑連。

切線長度的計算,勾股定理最方便。要想證明是切線,半徑垂線仔細辨。

是直徑,成半圓,想成直角徑連弦。弧有中點圓心連,垂徑定理要記全。

圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。

要想作個外接圓,各邊作出中垂線。還要作個內接圓,內角平分線夢圓。

如果遇到相交圓,不要忘作公共弦。內外相切的兩圓,經過切點公切線。

若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。

輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對稱旋轉去實驗。

基本作圖很關鍵,平時掌握要熟練。解題還要多心眼,經常總結方法顯。

切勿盲目亂添線,方法靈活應多變。分析綜合方法選,困難再多也會減。

虛心勤學加苦練,成績上升成直線。

九年級下冊數學知識點

知識點1.概念

把形狀相同的圖形叫做相似圖形。(即對應角相等、對應邊的比也相等的圖形)

解讀:(1)兩個圖形相似,其中一個圖形可以看做由另一個圖形放大或縮小得到.

(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同.

(3)判斷兩個圖形是否相似,就是看這兩個圖形是不是形狀相同,與其他因素無關.

知識點2.比例線段

對於四條線段a,b,c,d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那麼這四條線段叫做成比例線段,簡稱比例線段.

知識點3.相似多邊形的性質

相似多邊形的性質:相似多邊形的對應角相等,對應邊的比相等.

解讀:(1)正確理解相似多邊形的定義,明確「對應」關系.

(2)明確相似多邊形的「對應」來自於書寫,且要明確相似比具有順序性.

知識點4.相似三角形的概念

對應角相等,對應邊之比相等的三角形叫做相似三角形.

解讀:(1)相似三角形是相似多邊形中的一種;

(2)應結合相似多邊形的性質來理解相似三角形;

(3)相似三角形應滿足形狀一樣,但大小可以不同;

(4)相似用「∽」表示,讀作「相似於」;

(5)相似三角形的對應邊之比叫做相似比.

知識點5.相似三角的判定方法

(1)定義:對應角相等,對應邊成比例的兩個三角形相似;

(2)平行於三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構成的三角形與原三角形相似.

(3)如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那麼這兩個三角形相似.

(4)如果一個三角的兩條邊與另一個三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似.

(5)如果一個三角形的三條邊分別與另一個三角形的三條邊對應成比例,那麼這兩個三角形相似.

(6)直角三角形被斜邊上的高分成的兩個直角三角形與原三角形都相似.

知識點6.相似三角形的性質

(1)對應角相等,對應邊的比相等;

(2)對應高的比,對應中線的比,對應角平分線的比都等於相似比;

(3)相似三角形周長之比等於相似比;面積之比等於相似比的平方.

(4)射影定理

蘇教版九年級上冊數學知識點歸納

1二次根式:形如式子為二次根式;

性質:是一個非負數;

2二次根式的乘除:

3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合並.

4海倫-秦九韶公式:,S是的面積,p為.

1:等號兩邊都是整式,且只有一個未知數,未知數的次是2的方程.

2配方法:將方程的一邊配成完全平方式,然後兩邊開方;

因式分解法:左邊是兩個因式的乘積,右邊為零.

3一元二次方程在實際問題中的應用

4韋達定理:設是方程的兩個根,那麼有

1:一個圖形繞某一點轉動一個角度的圖形變換

性質:對應點到中心的距離相等;

對應點與旋轉中心所連的線段的夾角等於旋轉角

旋轉前後的圖形全等.

2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關於這個點中心對稱;

中心對稱圖形:一個圖形繞某一點旋轉180度後得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;


九年級數學知識點歸納相關 文章 :

★ 初三數學知識點歸納總結

★ 九年級上冊數學知識點歸納整理

★ 初三數學知識點考點歸納總結

★ 初三數學知識點歸納人教版

★ 九年級數學上冊重要知識點總結

★ 九年級上冊數學知識點歸納

★ 初中九年級數學知識點總結歸納

★ 初三數學中考復習重點章節知識點歸納

★ 初三數學知識點整理

③ 七年級數學全冊知識點梳理

知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

初中 一年級數學 上冊知識點

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

七年級下冊數學知識點

概率

一、事件:

1、事件分為必然事件、不可能事件、不確定事件。

2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。

4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。

二、等可能性:是指幾種事件發生的可能性相等。

1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。

2、必然事件發生的概率為1,記作P(必然事件)=1;

3、不可能事件發生的概率為0,記作P(不可能事件)=0;

4、不確定事件發生的概率在0—1之間,記作0

三、幾何概率

1、事件A發生的概率等於此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。

2、求幾何概率:

(1)首先分析事件所佔的面積與總面積的關系;

(2)然後計算出各部分的面積;

(3)最後代入公式求出幾何概率。

初一數學的 學習 方法 技巧

1、做好預習:

單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。

2、認真聽課:

聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善於聯想、類比和歸納,二是要敢於質疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。

3、認真解題:

課堂練習是最及時最直接的反饋,一定不能錯過。不要急於完成作業,要先看看你的 筆記本 ,回顧學習內容,加深理解,強化記憶。

4、及時糾錯:

課堂練習、作業、檢測,反饋後要及時查閱,分析錯題的原因,必要時強化相關計算的訓練。不明白的問題要及時向同學和老師請教了,不能將問題處於懸而未解的狀態,養成今日事今日畢的好習慣。

5、學會 總結 :

馮老師說:「數學一環扣一環,知識間的聯系非常緊密,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,做到瞭然於心,融會貫通。

6、學會管理:

管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷。馮老師稱,這可是大考復習時最有用的資料,千萬不可疏忽。

目前初中學生學習數學存在一個嚴重的問題就是不善於讀數學教材,他們往往是死記硬背。重視閱讀方法對提高初中學生的學習能力是至關重要的。新學一個章節內容,先粗粗讀一遍,即瀏覽本章節所學內容的枝幹,然後一邊讀一邊勾,粗略懂得教材的內容及其重點、難點所在,對不理解的地方打上記號。然後細細地讀,即根據每章節後的學習要求,仔細閱讀教材內容,理解數學概念、公式、法則、思想方法的實質及其因果關系,把握重點、突破難點。再次帶著研究者的態度去讀,即帶著發展的觀點研討知識的來龍去脈、結構關系、編排意圖,並歸納要點,把書讀懂,並形成知識網路,完善認識結構,當學生掌握了這三種讀法,形成習慣之後,就能從本質上改變其學習方式,提高學習效率了。

提高聽課質量要培養會聽課,聽懂課的習慣。注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最後的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由「聽會」轉變為「會聽」。

有疑必問是提高學習效率的有效辦法學習過程中,遇到疑問,抓緊時間問老師和同學,把沒有弄懂,沒有學明白的知識,最短的時間內掌握。建立自己的錯題本,經常翻閱,提醒自己同樣的錯誤不要犯第二次。從而提高學習效率。


七年級數學全冊知識點梳理相關 文章 :

★ 七年級數學知識點整理大全

★ 七年級數學知識點梳理總結

★ 七年級數學知識點整理部編版

★ 初一數學知識點梳理歸納

★ 初中七年級數學知識點歸納整理

★ 初一數學上冊知識點歸納

★ 初一數學上冊知識點梳理

★ 初一上冊數學知識點歸納整理

★ 七年級數學知識點總結

★ 初一數學知識點梳理

④ 數學向量知識點總結

數學向量知識點總結

數學向量是一個重要的知識點,考察的機會也是十分的大,下面數學向量知識點總結是我想跟大家分享的,歡迎大家瀏覽。

數學向量知識點總結

考點一:向量的概念、向量的基本定理

【內容解讀】了解向量的實際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

注意對向量概念的理解,向量是可以自由移動的,平移後所得向量與原向量相同;兩個向量無法比較大小,它們的模可比較大小。

考點二:向量的運算

【內容解讀】向量的運算要求掌握向量的加減法運算,會用平行四邊形法則、三角形法則進行向量的加減運算;掌握實數與向量的積運算,理解兩個向量共線的含義,會判斷兩個向量的平行關系;掌握向量的數量積的運算,體會平面向量的數量積與向量投影的關系,並理解其幾何意義,掌握數量積的坐標表達式,會進行平面向量積的運算,能運用數量積表示兩個向量的夾角,會用向量積判斷兩個平面向量的垂直關系。

【命題規律】命題形式主要以選擇、填空題型出現,難度不大,考查重點為模和向量夾角的定義、夾角公式、向量的坐標運算,有時也會與其它內容相結合。

考點三:定比分點

【內容解讀】掌握線段的定比分點和中點坐標公式,並能熟練應用,求點分有向線段所成比時,可藉助圖形來幫助理解。

【命題規律】重點考查定義和公式,主要以選擇題或填空題型出現,難度一般。由於向量應用的廣泛性,經常也會與三角函數,解析幾何一並考查,若出現在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

考點四:向量與三角函數的綜合問題

【內容解讀】向量與三角函數的綜合問題是高考經常出現的問題,考查了向量的知識,三角函數的知識,達到了高考中試題的覆蓋面的要求。

【命題規律】命題以三角函數作為坐標,以向量的坐標運算或向量與解三角形的'內容相結合,也有向量與三角函數圖象平移結合的問題,屬中檔偏易題。

考點五:平面向量與函數問題的交匯

【內容解讀】平面向量與函數交匯的問題,主要是向量與二次函數結合的問題為主,要注意自變數的取值范圍。

【命題規律】命題多以解答題為主,屬中檔題。

考點六:平面向量在平面幾何中的應用

【內容解讀】向量的坐標表示實際上就是向量的代數表示.在引入向量的坐標表示後,使向量之間的運算代數化,這樣就可以將“形”和“數”緊密地結合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉化為大家熟悉的代數運算的論證.也就是把平面幾何圖形放到適當的坐標系中,賦予幾何圖形有關點與平面向量具體的坐標,這樣將有關平面幾何問題轉化為相應的代數運算和向量運算,從而使問題得到解決.

【命題規律】命題多以解答題為主,屬中等偏難的試題。

平面向量

戴氏航天學校老師總結加法與減法的代數運算:

(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).

向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

戴氏航天學校老師總結向量加法有如下規律:+= +(交換律); +( +c)=( + )+c (結合律);

兩個向量共線的充要條件:

(1) 向量b與非零向量共線的充要條件是有且僅有一個實數,使得b= .

(2) 若=(),b=()則‖b .

平面向量基本定理:

若e1、e2是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量,戴氏航天學校老師提醒有且只 有一對實數,,使得= e1+ e2

;

⑤ 關於初二數學知識點

學習中的困難莫過於一節一節的台階,雖然台階很陡,但只要一步一個腳印的踏,攀登一層一層的台階,才能實現學習的理想。下面是我為大家精心整理的關於初二數學知識點,希望對大家有所幫助。

軸對稱

一、知識框架:

二、知識概念:

1.基本概念:

⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形.

⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線對稱.

⑶線段的垂直平分線:經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線.

⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.

⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形.

2.基本性質:

⑴對稱的性質:

①不管是軸對稱圖形還是兩個圖形關於某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線.

②對稱的圖形都全等.

⑵線段垂直平分線的性質:

①線段垂直平分線上的點與這條線段兩個端點的距離相等.

②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上.

⑶關於坐標軸對稱的點的坐標性質

①點P(x,y)關於x軸對稱的點的坐標為P'(x,y).

②點P(x,y)關於y軸對稱的點的坐標為P"(x,y).

⑷等腰三角形的性質:

①等腰三角形兩腰相等.

②等腰三角形兩底角相等(等邊對等角).

③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.

④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條).

⑸等邊三角形的性質:

①等邊三角形三邊都相等.

②等邊三角形三個內角都相等,都等於60°

③等邊三角形每條邊上都存在三線合一.

④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).

3.基本判定:

⑴等腰三角形的判定:

①有兩條邊相等的三角形是等腰三角形.

②如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊).

⑵等邊三角形的判定:

①三條邊都相等的三角形是等邊三角形.

②三個角都相等的三角形是等邊三角形.

③有一個角是60°的等腰三角形是等邊三角形.

4.基本 方法 :

⑴做已知直線的垂線:

⑵做已知線段的垂直平分線:

⑶作對稱軸:連接兩個對應點,作所連線段的垂直平分線.

⑷作已知圖形關於某直線的對稱圖形:

⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短.

一次函數

(一)一次函數是函數中的一種,一般形如y=kx+b(k,b是常數,k≠0),其中x是自變數,y是因變數。特別地,當b=0時,y=kx+b(k為常數,k≠0),y叫做x的正比例函數。

(二)函數三要素

1.定義域:設x、y是兩個變數,變數x的變化范圍為D,如果對於每一個數x∈D,變數y遵照一定的法則總有確定的數值與之對應,則稱y是x的函數,記作y=f(x),x∈D,x稱為自變數,y稱為因變數,數集D稱為這個函數的定義域。

2.在函數經典定義中,因變數改變而改變的取值范圍叫做這個函數的值域,在函數現代定義中是指定義域中所有元素在某個對應法則下對應的所有的象所組成的集合。如:f(x)=x,那麼f(x)的取值范圍就是函數f(x)的值域。

3.對應法則:一般地說,在函數記號y=f(x)中,「f」即表示對應法則,等式y=f(x)表明,對於定義域中的任意的x值,在對應法則「f」的作用下,即可得到值域中唯一y值。

(三)一次函數的表示方法

1.解析式法:用含自變數x的式子表示函數的方法叫做解析式法。

2.列表法:把一系列x的值對應的函數值y列成一個表來表示的函數關系的方法叫做列表法。

3.圖像法:用圖象來表示函數關系的方法叫做圖象法。

(四)一次函數的性質

1.y的變化值與對應的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等於0,且k,b為常數)。

2.當x=0時,b為函數在y軸上的交點,坐標為(0,b)。當y=0時,該函數圖象在x軸上的交點坐標為(-b/k,0)。

3.k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。

4.當b=0時(即y=kx),一次函數圖象變為正比例函數,正比例函數是特殊的一次函數。

5.函數圖象性質:當k相同,且b不相等,圖像平行;當k不同,且b相等,圖象相交於Y軸;當k互為負倒數時,兩直線垂直。

6.平移時:上加下減在末尾,左加右減在中間。

直角三角形

1.勾股定理及其逆定理

定理:直角三角形的兩條直角邊的等於的平方。

逆定理:如果三角形兩邊的平方和等於第三邊的平方,那麼這個三角形是直角三角形。

2.含30°的直角三角形的邊的性質

定理:在直角三角形中,如果一個銳角等於30°,那麼等於的一半。

3.直角三角形斜邊上的中線等於斜邊的一半。

要點詮釋:①勾股定理的逆定理在語言敘述的時候一定要注意,不能說成「兩條邊的平方和等於斜邊的平方」,應該說成「三角形兩邊的平方和等於第三邊的平方」。

②直角三角形的全等判定方法,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。

關於初二數學知識點相關 文章 :

★ 初二數學知識點整理歸納

★ 八年級數學知識點梳理總結

★ 初二數學課文知識點歸納

★ 初二數學知識點歸納總結

★ 2021初二數學重要知識點

★ 新版初二數學知識點

★ 初二數學單元的知識點

★ 初中數學三角形知識點歸納

★ 八年級數學必備知識點總結

★ 初二數學課文知識點筆記

⑥ 高一數學知識點總結

高一數學知識點總結(合集15篇)
總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,並做出客觀評價的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,不如靜下心來好好寫寫總結吧。那麼如何把總結寫出新花樣呢?下面是小編整理的高一數學知識點總結,僅供參考,歡迎大家閱讀。

高一數學知識點總結1
集合的有關概念
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:1集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
2集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
3集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N
子集、交集、並集、補集、空集、全集等概念
1)子集:若對x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)並集:A∪B={x|x∈A或x∈B}
5)補集:CUA={x|xA但x∈U}
注意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
子集的幾個等價關系
1A∩B=AAB;2A∪B=BAB;3ABCuACuB;
4A∩CuB=空集CuAB;5CuA∪B=IAB。
交、並集運算的性質
1A∩A=A,A∩?=?,A∩B=B∩A;2A∪A=A,A∪?=A,A∪B=B∪A;
3Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個數:
設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
練習題:
已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關系()
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{x|x=,m∈Z};對於集合N:{x|x=,n∈Z}
對於集合P:{x|x=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。
高一數學知識點總結2
圓的方程定義:
圓的標准方程(x―a)2+(y―b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關系:
1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系。
1Δ>0,直線和圓相交、2Δ=0,直線和圓相切、3Δ
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
1dR,直線和圓相離、
2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質
(1)圓心到切線的距離等於圓的半徑;
(2)過切點的半徑垂直於切線;
(3)經過圓心,與切線垂直的直線必經過切點;
(4)經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
高一數學知識點總結3
集合的運算
運算類型交 集並 集補 集
定義域 R定義域 R
值域>0值域>0
在R上單調遞增在R上單調遞減
非奇非偶函數非奇非偶函數
函數圖象都過定點(0,1)函數圖象都過定點(0,1)
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
二、對數函數
(一)對數
1.對數的概念:
一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( ― 底數, ― 真數, ― 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
指數式與對數式的互化
冪值 真數
= N = b
底數
指數 對數
(二)對數的運算性質
如果 ,且 , , ,那麼:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導下面的結論:(1) ;(2) .
(3)、重要的公式 1、負數與零沒有對數; 2、 , 3、對數恆等式
(二)對數函數
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>10
定義域x>0定義域x>0
值域為R值域為R
在R上遞增在R上遞減
函數圖象都過定點(1,0)函數圖象都過定點(1,0)
(三)冪函數
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義並且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.
第四章 函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。
2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。
即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.
3、函數零點的求法:
○1 (代數法)求方程 的實數根;
○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數 .
(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△
5.函數的模型

⑦ 小學數學知識點總結(全部)

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

⑧ 求高中數學知識點總結(最全版)

高中數學合集網路網盤下載

鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取碼:1234

簡介:高中數學優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。

⑨ 初中數學知識點總結

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

⑩ 七年級上冊數學重要知識點總結

學好數學最重要的就是整理好知識點,下面我就大家整理一下七年級上冊數學重要知識點總結,僅供參考。

負有理數 分數

2、相反數:只有符號不同的兩個數叫做互為相反數,零的相反數是零

3、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。

4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和-1。零沒有倒數。

5、絕對值:在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0。互為相反數的兩個數的絕對值相等。

6、有理數比較大小:正數大於0,負數小於0,正數大於負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。

7、有理數的運算:

(1)五種運算:加、減、乘、除、乘方

多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。

有理數加法法則:

同號兩數相加,取相同的符號,並把絕對值相加。

異號兩數相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。

一個數同0相加,仍得這個數。

互為相反數的兩個數相加和為0。

有理數減法法則:減去一個數,等於加上這個數的相反數!

有理數乘法法則:

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積仍為0。

整式及其加減

1、代數式

用運算符號(加、減、乘、除、乘方、開方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。

注意:①代數式中除了含有數、字母和運算符號外,還可以有括弧;

②代數式中不含有「=、>、<、≠」等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;

③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。

※代數式的書寫格式:

①代數式中出現乘號,通常省略不寫,如vt;

②數字與字母相乘時,數字應寫在字母前面,如4a;

③帶分數與字母相乘時,應先把帶分數化成假分數,如應寫作;

④數字與數字相乘,一般仍用「×」號,即「×」號不省略;

⑤在代數式中出現除法運算時,一般寫成分數的形式,如4÷(a-4)應寫作;注意:分數線具有「÷」號和括弧的雙重作用。

⑥在表示和(或)差的代數式後有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的後面,如平方米。

2、整式:單項式和多項式統稱為整式。

①單項式:都是數字和字母乘積的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個單項式的次數;數字因數叫做這個單項式的系數。

注意:1.單獨的一個數或一個字母也是單項式;2.單獨一個非零數的次數是0;3.當單項式的系數為1或-1時,這個「1」應省略不寫,如-ab的系數是-1,a3b的系數是1。

②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。

3、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。

注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數也相同。

②同類項與系數無關,與字母的排列順序無關;

③幾個常數項也是同類項。

以上就是我為大家整理的七年級上冊數學重要知識點總結 。