當前位置:首頁 » 基礎知識 » 初一數學上冊第三單元知識梳理
擴展閱讀
徐州學前教育需要多少分 2025-01-15 07:33:44
酷狗歌詞怎麼搜 2025-01-15 07:09:11

初一數學上冊第三單元知識梳理

發布時間: 2022-08-29 03:31:11

① 七年級數學課本重要知識點總結

偉大的成績和辛勤勞動是成正比例的,有一分勞動就有一分收獲,積累,從少到多,奇跡就可以創造出來。學習也是一樣的,需要積累,從少變多。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

初一上冊數學第三章《圖形認識初步》知識點

圖形認識初步

3.1 多姿多彩的圖形

現實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形。

3.1.1立體圖形與平面圖形

長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外稜柱、棱錐也是常見的立體圖形。

長方形、正方形、三角形、圓等都是平面圖形。

許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。

3.1.2點、線、面、體

幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、稜柱、棱錐等都是幾何體。

包圍著體的是面。面有平的面和曲的面兩種。

面和 面相 交的地方形成線。

線和線相交的地方是點。

幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素。

3.2 直線、射線、線段

經過兩點有一條直線,並且只有一條直線。

兩點確定一條直線。

點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

直線桑一點和它一旁的部分叫做射線。

兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。

3.3 角的度量

角也是一種基本的幾何圖形。

度、分、秒是常用的角的度量單位。

把一個周角360等分,每一份就是一度的角,記作1;把1度的角60等分,每份叫做1分的角,記作1;把1分的角60等分,每份叫做1秒的角,記作1。

3.4角的比較與運算

3.4.1角的比較

從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。

3.4.2餘角和補角

如果兩個角的和等於90(直角),就說這兩個角互為餘角。

如果兩個角的和等於180(平角),就說這兩個角互為補角。

等角的補角相等。

等角的餘角相等。

初一下冊數學知識點:不等式與不等式組

1.不等式:用符號"<",">","≤","≥"表示大小關系的式子叫做不等式。

2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。

一般地,用純粹的大於號、小於號">","<"連接的不等式稱為嚴格不等式,用不小於號(大於或等於號)、不大於號(小於或等於號)"≥","≤"連接的不等式稱為非嚴格不等式,或稱廣義不等式。

3.不等式的解:使不等式成立的未知數的值,叫做不等式的解。

4.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

5.不等式解集的表示 方法 :

(1)用不等式表示:一般的,一個含未知數的不等式有無數個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3

(2)用數軸表示:不等式的解集可以在數軸上直觀地表示出來,形象地說明不等式有無限多個解,用數軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。

6.解不等式可遵循的一些同解原理

(1)不等式F(x)< G(x)與不等式 G(x)>F(x)同解。

(2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那麼不等式 F(x)< G(x)與不等式H(x)+F(x)

(3)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,並且H(x)>0,那麼不等式F(x)< G(x)與不等式H(x)F(x)0,那麼不等式F(x)< G(x)與不等式H(x)F(x)>H(x)G(x)同解。

7.不等式的性質:

(1)如果x>y,那麼yy;(對稱性)

(2)如果x>y,y>z;那麼x>z;(傳遞性)

(3)如果x>y,而z為任意實數或整式,那麼x+z>y+z;(加法則)

(4)如果x>y,z>0,那麼xz>yz;如果x>y,z<0,那麼xz

(5)如果x>y,z>0,那麼x÷z>y÷z;如果x>y,z<0,那麼x÷z

(6)如果x>y,m>n,那麼x+m>y+n(充分不必要條件)

(7)如果x>y>0,m>n>0,那麼xm>yn

(8)如果x>y>0,那麼x的n次冪>y的n次冪(n為正數)

8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的次數是1,像這樣的不等式,叫做一元一次不等式。

9.解一元一次不等式的一般順序:

(1)去分母 (運用不等式性質2、3)

(2)去括弧

(3)移項 (運用不等式性質1)

(4)合並同類項

(5)將未知數的系數化為1 (運用不等式性質2、3)

(6)有些時候需要在數軸上表示不等式的解集

初一下冊數學輔導復習資料

1.幾何圖形:點、線、面、體這些可幫助人們有效的刻畫錯綜復雜的世界,它們都稱為幾何圖形。從實物中抽象出的各種圖形統稱為幾何圖形。有些幾何圖形的各部分不在同一平面內,叫做立體圖形。有些幾何圖形的各部分都在同一平面內,叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯系的。

2.幾何圖形的分類:幾何圖形一般分為立體圖形和平面圖形。

3.直線:幾何學基本概念,是點在空間內沿相同或相反方向運動的軌跡。從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交於一點。常用直線與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對於X軸)的傾斜程度。

4.射線:在歐幾里德幾何學中,直線上的一點和它一旁的部分所組成的圖形稱為射線或半直線。

5.線段:指一個或一個以上不同線素組成一段連續的或不連續的圖線,如實線的線段或由「長劃、短間隔、點、短間隔、點、短間隔」組成的雙點長劃線的線段。

線段有如下性質:兩點之間線段最短。

6. 兩點間的距離:連接兩點間線段的長度叫做這兩點間的距離。

7. 端點:直線上兩個點和它們之間的部分叫做線段,這兩個點叫做線段的端點。

線段用表示它兩個端點的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段AB或線段BA,線段a。其中AB表示直線上的任意兩點。

8.直線、射線、線段區別:直線沒有距離。射線也沒有距離。因為直線沒有端點,射線只有一個端點,可以無限延長。

9.角:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊。

10.角的靜態定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式;數字或字母的乘積叫單項式(單獨的一個數字或字母也是單項式)。

2.系數:單項式中的數字因數叫做這個單項式的系數。所有字母的指數之和叫做這個單項式的次數。任何一個非零數的零次方等於1。

3.多項式:幾個單項式的和叫多項式。

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數。

5.常數項:不含字母的項叫做常數項。


七年級數學課本重要知識點 總結 相關 文章 :

★ 初一數學課本知識點總結

★ 初中七年級數學知識點歸納整理

★ 七年級數學課本知識點

★ 七年級數學知識點整理大全

★ 七年級數學知識點梳理總結

★ 初一上冊數學重點知識點歸納總結

★ 七年級數學知識點總結

★ 初一人教版數學上冊知識點總結歸納

★ 七年級數學知識點整理部編版

★ 初一數學知識點梳理歸納

② 七年級上冊數學知識點歸納

七年級(上)數學知識點歸納與總結
一、 知識梳理

知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、 -0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。

知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:

註:有限小數和無限循環小數都可看作分數。

知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。

知識點4:絕對值的概念:
(1) 幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2) 代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
註:任何一個數的絕對值均大於或等於0(即非負數).

知識點5:相反數的概念:
(1) 幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;
(2) 代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。

知識點7:有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.

知識點8:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。

加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。

知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。

知識點11: 乘法與除法
1.乘法法則
2.除法法則
3.多個非零的數相乘除最後結果符號如何確定

知識點12:倒數
1. 倒數概念
2. 如何求一個數的倒數?(注意與相反數的區別)

知識點13:乘方
1. 乘方的概念,乘方的結果叫什麼?
2. 認識底數,指數
3. 正數的任何次冪是_________,零的任何次冪________
負數的偶次冪是_________奇次冪是________

知識點14:混合計算
注意:運算順序是關鍵,計算時要嚴格按照順序運算.考試經常考帶乘方的計算.

知識點15:科學記數法
科學記數法的概念? 注意a的范圍一定要採納我哦!

③ 七年級數學上冊知識點歸納

七年級(上)數學知識點歸納與總結
一、 知識梳理

知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、 -0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。

知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:

註:有限小數和無限循環小數都可看作分數。

知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。

知識點4:絕對值的概念:
(1) 幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2) 代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
註:任何一個數的絕對值均大於或等於0(即非負數).

知識點5:相反數的概念:
(1) 幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;
(2) 代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。

知識點7:有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.

知識點8:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。

加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。

知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。

知識點11: 乘法與除法
1.乘法法則
2.除法法則
3.多個非零的數相乘除最後結果符號如何確定

知識點12:倒數
1. 倒數概念
2. 如何求一個數的倒數?(注意與相反數的區別)

知識點13:乘方
1. 乘方的概念,乘方的結果叫什麼?
2. 認識底數,指數
3. 正數的任何次冪是_________,零的任何次冪________
負數的偶次冪是_________奇次冪是________

知識點14:混合計算
注意:運算順序是關鍵,計算時要嚴格按照順序運算.考試經常考帶乘方的計算.

知識點15:科學記數法
科學記數法的概念? 注意a的范圍
(人教)

④ 初一上冊數學的第2和3章的知識梳理 一定要全面

一.填空題(每空2分)1. 孔子出生於公元前551年,如果用-551年來表示,那麼下列中國歷史文化名人的出生年代如何表示?(1)司馬遷出生於公元前145年;表示為__________年(2)李白出生於公元701年;表示為_________年2.比-4大的負整數有___________________3.在數軸上距原點5個單位長度的數是_______________4. 比較大小 : ______ ; _______ ; _______ 5.(-20)-(+7)=__________;(-18)-(-10)=__________6.若 ,則 7.平方等於它本身的數是_____________8.若 9.光在真空里的速度約30萬千米/秒,即_________米/秒。(用科學計數法表示)10. 精確到___________,有______個有效數字.二.選擇題(每題2分)1. 一定是( )A. 正數 B. 負數 C. 非正數 D. 非負數2.下列各式中錯誤的是( )A. B. C.-(+6)=-(-6)D.-(+6)=+(-6)3.下面結論正確的是( )A.有理數包括正數和負數 B.有理數包括整數和分數C.兩個有理數的絕對值相等,則這兩個有理數也相等 D.0是最小的正整數4.計算 所得的結果應該是( )A. B. 4 C. -4 D. 5.用代數式表示「a與-b的差的2倍」是( )A. B. C. D. 6.數0.070961四捨五入保留三個有效數字的近似數是( )A. 0.07 B. 0 . 0 7095 C. 0.0709 D. 0.0710三.計算(每題5分)1. 2. 3. 4。 5. 6。 7. 8。 四.求下列代數式的值(每題4分)1. ,其中 2. ,其中 五.開放性題目(第一題3分,第二題7分)1.定義運算 ,計算3*4的值2.要把面值為1角的人民幣換成零錢,現有足夠的5分、2分、1分的人民幣,請問有多少種換法?

⑤ 七年級上冊數學書重點內容總結

初一數學是初中數學的基礎,這篇文章我給大家總結歸納了初一上冊數學課本的重要知識點,供同學們參考。

整式的加減

1.單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式。

2.單項式的系數與次數:單項式中的數字因數,稱單項式的系數;單項式中所有字母指數的和,叫單項式的次數。

3.多項式:幾個單項式的和叫多項式。

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

5.整式:①單項式②多項式。

6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項。

7.合並同類項法則:系數相加,字母與字母的指數不變。

8.去(添)括弧法則:去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號。

9.整式的加減:

一找:(劃線);

二「+」:(務必用+號開始合並);

三合:(合並)。

10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列)。

一次函數

(一)一次函數是函數中的一種,一般形如y=kx+b(k,b是常數,k≠0),其中x是自變數,y是因變數。特別地,當b=0時,y=kx+b(k為常數,k≠0),y叫做x的正比例函數。

(二)函數三要素

1.定義域:設x、y是兩個變數,變數x的變化范圍為D,如果對於每一個數x∈D,變數y遵照一定的法則總有確定的數值與之對應,則稱y是x的函數,記作y=f(x),x∈D,x稱為自變數,y稱為因變數,數集D稱為這個函數的定義域。

2.在函數經典定義中,因變數改變而改變的取值范圍叫做這個函數的值域,在函數現代定義中是指定義域中所有元素在某個對應法則下對應的所有的象所組成的集合。如:f(x)=x,那麼f(x)的取值范圍就是函數f(x)的值域。

3.對應法則:一般地說,在函數記號y=f(x)中,「f」即表示對應法則,等式y=f(x)表明,對於定義域中的任意的x值,在對應法則「f」的作用下,即可得到值域中唯一y值。

(三)一次函數的表示方法

1.解析式法:用含自變數x的式子表示函數的方法叫做解析式法。

2.列表法:把一系列x的值對應的函數值y列成一個表來表示的函數關系的方法叫做列表法。

3.圖像法:用圖象來表示函數關系的方法叫做圖象法。

(四)一次函數的性質

1.y的變化值與對應的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等於0,且k,b為常數)。

2.當x=0時,b為函數在y軸上的交點,坐標為(0,b)。當y=0時,該函數圖象在x軸上的交點坐標為(-b/k,0)。

3.k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。

4.當b=0時(即y=kx),一次函數圖象變為正比例函數,正比例函數是特殊的一次函數。

5.函數圖象性質:當k相同,且b不相等,圖像平行;當k不同,且b相等,圖象相交於Y軸;當k互為負倒數時,兩直線垂直。

6.平移時:上加下減在末尾,左加右減在中間。

角的知識點

1.角:角是由兩條有公共端點的射線組成的幾何對象。

2.角的度量單位:度、分、秒

3.頂點:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點

4.角的比較:

(1)角可以看成是由一條射線繞著他的端點旋轉而成的。

(2)平角和周角:一條射線繞著他的端點旋轉,當始邊和終邊成一條直線時,所成的角叫平角。當它又和始邊重合的時候,所成的角角周角。平角等於108度,周角等於360度,直角等於90度。

(3)平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

5.餘角和補角:

(1)餘角:如果兩個角的和是90度,那麼稱這兩個角「互為餘角」,簡稱「互余」。

性質:等角的餘角相等。

(2)補角:如果兩個角的和是180度,那麼稱這兩個角「互為補角」,簡稱「互補」。

性質:等角的補角相等。

一元一次方程

(1)定義:

一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

(2)解一元一次方程的步驟

①去分母:把系數化成整數。

②去括弧

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項

⑤系數化為1.

平行線

1.在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

3.如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4.判定兩條直線平行的方法:

(1)兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

(2)兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

(3)兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5.平行線的性質

(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

⑥ 初一數學上冊知識點歸納

七年級初一上冊的數學知識點是奠定中學數學學習的基礎,所以新初一的學生最好趁這個暑期將這部分內容學習好。我在這里整理了相關資料,希望能幫助到您。

目錄

第一章 有理數

第二章 整式的加減

第三章 一元一次方程

第四章 幾何圖形初步

第一章 有理數

1.1 正數與負數

①正數:大於0的數叫正數。(根據需要,有時在正數前面也加上「+」)

②負數:在以前學過的0以外的數前面加上負號「—」的數叫負數。與正數具有相反意義。

③0既不是正數也不是負數。0是正數和負數的分界,是唯一的中性數。

注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等

1.2 有理數

1、有理數(1)整數:正整數、0、負整數統稱整數;(2)分數;正分數和負分數統稱分數;

(3)有理數:整數和分數統稱有理數。

2、數軸(1)定義 :通常用一條直線上的點表示數,這條直線叫數軸;

(2)數軸三要素:原點、正方向、單位長度;

(3)原點:在直線上任取一個點表示數0,這個點叫做原點;

(4)數軸上的點和有理數的關系:所有的有理數都可以用數軸上的點表示出來,但數軸上的點,不都是表示有理數。

3、相反數:只有符號不同的兩個數叫做互為相反數。(例:2的相反數是-2;0的相反數是0)

4、絕對值:(1)數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|。從幾何意義上講,數的絕對值是兩點間的距離。

(2) 一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法

①有理數加法法則:

1、同號兩數相加,取相同的符號,並把絕對值相加。

2、絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

3、一個數同0相加,仍得這個數。

加法的交換律和結合律

②有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法

①有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;

任何數同0相乘,都得0;

乘積是1的兩個數互為倒數。

乘法交換律/結合律/分配律

②有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數;

兩數相除,同號得正,異號得負,並把絕對值相除;

0除以任何一個不等於0的數,都得0。

1.5 有理數的乘方

1、求n個相同因數的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數,n叫做指數。負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。

2、有理數的混合運演算法則:先乘方,再乘除,最後加減;同級運算,從左到右進行;如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

3、把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法,注意a的范圍為1≤a <10。


第二章 整式的加減

2.1 整式

1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數. 單項式指的是數或字母的積的代數式.單獨一個數或一個字母也是單項式.因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式.

2、單項式的系數:是指單項式中的數字因數;

3、單項數的次數:是指單項式中所有字母的指數的和.

4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,常數項,多項式的次數就是多項式中次數最高的次數。多項式的次數是指多項式里次數最高項的次數,這里是次數最高項,其次數是6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的項包括它前面的性質符號.

5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

6、單項式和多項式統稱為整式。

2.2整式的加減

1、同類項:所含字母相同,並且相同字母的指數也相同的項。與字母前面的系數(≠0)無關。

2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數相同,二者缺一不可.同類項與系數大小、字母的排列順序無關

3、合並同類項:把多項式中的同類項合並成一項。可以運用交換律,結合律和分配律。

4、合並同類項法則:合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變;

5、去括弧法則:去括弧,看符號:是正號,不變號;是負號,全變號。

6、整式加減的一般步驟:

一去、二找、三合

(1)如果遇到括弧按去括弧法則先去括弧. (2)結合同類項. (3)合並同類項


第三章 一元一次方程

3.1 一元一次方程

1、方程是含有未知數的等式。

2、方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。

注意:判斷一個方程是否是一元一次方程要抓住三點:

1)未知數所在的式子是整式(方程是整式方程);

2)化簡後方程中只含有一個未知數;

3)經整理後方程中未知數的次數是1.

3、解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。

4、等式的性質: 1)等式兩邊同時加(或減)同一個數(或式子),結果仍相等;

2)等式兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。

注意:運用性質時,一定要注意等號兩邊都要同時變;運用性質2時,一定要注意0這個數.

3.2 、3.3解一元一次方程

在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復使用. 因此在解方程時還要注意以下幾點:

①去分母:在方程兩邊都乘以各分母的最小公倍數,不要漏乘不含分母的項;分子是一個整體,去分母後應加上括弧;去分母與分母化整是兩個概念,不能混淆;

②去括弧:遵從先去小括弧,再去中括弧,最後去大括弧;不要漏乘括弧的項;不要弄錯符號;

③移項:把含有未知數的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號) 移項要變號;

④合並同類項:不要丟項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;

⑤系數化為1::字母及其指數不變系數化成1,在方程兩邊都除以未知數的系數a,得到方程的解。不要分子、分母搞顛倒。

3.4 實際問題與一元一次方程

一.概念梳理

⑴列一元一次方程解決實際問題的一般步驟是:①審題,特別注意關鍵的字和詞的意義,弄清相關數量關系;②設出未知數(注意單位);③根據相等關系列出方程;④解這個方程;⑤檢驗並寫出答案(包括單位名稱)。

⑵一些固定模型中的等量關系及典型例題參照一元一次方程應用題專練學案。

二、思想 方法 (本單元常用到的數學思想方法小結)

⑴建模思想:通過對實際問題中的數量關系的分析,抽象成數學模型,建立一元一次方程的思想.

⑵方程思想:用方程解決實際問題的思想就是方程思想.

⑶化歸思想:解一元一次方程的過程,實質上就是利用去分母、去括弧、移項、合並同類項、未知數的系數化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最後逐步把方程轉化為x=a的形式. 體現了化「未知」為「已知」的化歸思想.

⑷數形結合思想:在列方程解決問題時,藉助於線段示意圖和圖表等來分析數量關系,使問題中的數量關系很直觀地展示出來,體現了數形結合的優越性.

⑸分類思想:在解含字母系數的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關方案設計的實際問題的過程中往往也要注意分類思想在過程中的運用.

三、數學思想方法的學習

1. 解一元一次方程時,要明確每一步過程都作什麼變形,應該注意什麼問題.

2. 尋找實際問題的數量關系時,要善於藉助直觀分析法,如表格法,直線分析法和圖示分析法等.

3. 列方程解應用題的檢驗包括兩個方面:⑴檢驗求得的結果是不是方程的解;

⑵是要判斷方程的解是否符合題目中的實際意義.

四、應用(常見等量關系)

行程問題:s=v×t

工程問題:工作總量=工作效率×時間

盈虧問題:利潤=售價-成本

利率=利潤÷成本×100%

售價=標價×折扣數×10%

儲蓄利潤問題:利息=本金×利率×時間

本息和=本金+利息


第四章 幾何圖形初步

4.1 幾何圖形

1、幾何圖形:從形形色色的物體外形中得到的圖形叫做幾何圖形。

2、立體圖形:這些幾何圖形的各部分不都在同一個平面內。

3、平面圖形:這些幾何圖形的各部分都在同一個平面內。

4、雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯系的。

立體圖形中某些部分是平面圖形。

5、三視圖:從左面看,從正面看,從上面看

6、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形。這樣的平面圖形稱為相應立體圖形的展開圖。

7、⑴幾何體簡稱體;包圍著體的是面;面 面相 交形成線;線線相交形成點;

⑵點無大小,線、面有曲直;

⑶幾何圖形都是由點、線、面、體組成的;

⑷點動成線,線動成面,面動成體;

⑸點:是組成幾何圖形的基本元素。

4.2 直線、射線、線段

1、直線公理:經過兩點有一條直線,並且只有一條直線。即:兩點確定一條直線。

2、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。

3、把一條線段分成相等的兩條線段的點,叫做這條線段的中點。

4、線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。

5、連接兩點間的線段的長度,叫做這兩點的距離。

6、直線的表示方法:如圖的直線可記作直線AB或記作直線m.

(1)用幾何語言描述右面的圖形,我們可以說:

點P在直線AB外,點A、B都在直線AB上.

(2)如圖,點O既在直線m上,又在直線n上,我們稱直線

m、n 相交,交點為O.

7、在直線上取點O,把直線分成兩個部分,去掉一邊的一個部分,保留點0和另一部分就得到一條射線,如圖就是一條射線,記作射線OM或記作射線a.葫蘆島英霸 教育 聯盟http://www.yingbajiaoyu.com/ 18342389605

注意:射線有一個端點,向一方無限延伸.

8、在直線上取兩個點A、B,把直線分成三個部分,去掉兩邊的部分,保留點A、B和中間的一部分就得到一條線段.如圖就是一條線段,記作線段AB或記作線段a.

注意:線段有兩個端點.

4.3 角

1. 角的定義:有公共端點的兩條射線組成的圖形叫角。這個公共端點是角的頂點,兩條射線為角的兩邊。如圖,角的頂點是O,兩邊分別是射線OA、OB.

2、角有以下的表示方法:

① 用三個大寫字母及符號「∠」表示.三個大寫字母分別是頂點和兩邊上的任意點,頂點的字母必須寫在中間.如上圖的角,可以記作∠AOB或∠BOA.

② 用一個大寫字母表示.這個字母就是頂點.如上圖的角可記作∠O.當有兩個或兩個以上的角是同一個頂點時,不能用一個大寫字母表示.

③ 用一個數字或一個希臘字母表示.在角的內部靠近角的頂點

處畫一弧線,寫上希臘字母或數字.如圖的兩個角,分別記作∠、∠1

2、以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進制的。

1度=60分 1分=60秒 1周角=360度 1平角=180度

3、角的平分線:一般地,從一個角的頂點出發,把這個角分成兩個相等的角的射線,叫做這個角的平分線。

4、如果兩個角的和等於90度(直角),就說這兩個叫互為餘角,即其中每一個角是另一個角的餘角;

如果兩個角的和等於180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。

5、同角(等角)的補角相等;同角(等角)的餘角相等。

6、方位角:一般以正南正北為基準,描述物體運動的方向。


初一數學上冊知識點歸納相關 文章 :

1. 初一數學上冊人教版知識點歸納

2. 初一數學知識點總結

3. 初一年級上冊數學的21個熱門知識點

4. 初一上冊數學知識點手抄報

5. 初一上冊數學第一單元知識點

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑦ 七年級數學上冊知識點總結歸納

沒有加倍的勤奮,就沒有才能,也沒有天才。天才其實就是可以持之以恆的人。勤能補拙是良訓,一分辛苦一分才,勤奮一直都是學習通向成功的最好捷徑。下面是我給大家整理的一些 七年級數學 的知識點,希望對大家有所幫助。

七年級數學知識點

整式的加減

1.單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式。

2.單項式的系數與次數:單項式中的數字因數,稱單項式的系數;

單項式中所有字母指數的和,叫單項式的次數.

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;

5..

6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項.

7.合並同類項法則:系數相加,字母與字母的指數不變.

8.去(添)括弧法則:

去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號.

9.整式的加減:一找:(劃線);二「+」(務必用+號開始合並)三合:(合並)

10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).

一元一次方程

1.等式:用「=」號連接而成的式子叫等式.

2.等式的性質:

等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.

3.方程:含未知數的等式,叫方程.

4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:「方程的解就能代入」!

5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.

6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.

7.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).

第一學期初一數學復習資料

一幾何圖形

幾何學:數學中以空間形式為研究對象的分支叫做幾何學。

從實物中抽象出的各種圖形統稱為幾何圖形。幾何圖形可分為立體圖形和平面圖形;各個部分不都在同一平面內的幾何圖形叫做立體圖形,各個部分都在同一平面內的幾何圖形叫做平面圖形。

1、幾何圖形的投影問題

每一種幾何體從不同的方向去看它,可以得到不同的簡單平面幾何圖形。實際上投影所得到的簡單平面幾何圖形是被投影幾何體可遮擋視線的部分在平面內所留下的影子。2、立體圖形的展開問題

將立體圖形的表面適當剪開,一、點、線、面、體

1、點、線、面、體的概念點動成線,線動成面,面動成體由平面和曲成圍成一個幾何體2、點、線、面和體之間的關系(1)點動成線、線動成面、面動成體;

(2)體是由面組成、面與 面相 交成線、線與線相交成點;

二、線段、射線、直線1、線段、射線、直線的定義

(1)線段:線段可以近似地看成是一條有兩個端點的崩直了的線。線段可以量出長度。(2)射線:將線段向一個方向無限延伸就形成了射線,射線有一個端點。射線無法量出長度。(3)直線:將線段向兩個方向無限延伸就形成了直線,直線沒有端點。直線無法量出長度。概念剖析:①線段有兩個端點,射線有一個端點,直線沒有端點;

②「線段可以量出長度」,即線段有明確的長度,「射線和直線都無法量出其長度」,即射線和直線既沒有明確的長度,

也沒有射線與射線、直線與直線、射線與直線之間的長短比較之說;

③線段只有長短之分,而沒有大小之別,射線和直線既沒有長短之分,也沒有大小之別;例1、下列說法正確的是()

A、5㎝長的直線比3㎝長的直線要長2㎝;B、線段向兩個方向無限延伸就形成了直線;

C、直線和射線都是不可度量的,所以它們都無法表示;D、直線AB、射線AB和線段AB表示的都是同一幾何圖形;

2、線段、射線、直線的表示 方法

(1)線段的表示方法有兩種:一是用兩個端點來表示,二是用一個小寫的英文字母來表示。(2)射線的表示方法只有一種:用端點和射線上的另一個點來表示,端點要寫在前面。

(3)直線的表示方法有兩種:一是用直線上的兩個點來表示,二是用一個小寫的英文字母來表示。

概念剖析:①將線段的兩個端點位置顛倒,得到的新線段與原來的線段是同一線段,即線段AB與線段BA是同一線段;

②將表示射線的兩個點位置顛倒,得到的新射線與原來的射線不是同一射線,即射線AB與射線BA不是同一射線,因為它們的端點和方向不同;

③將表示直線的兩個點位置顛倒,得到的新直線與原來的直線是同一直線,即直線AB與直線BA是同一直線;④識別圖中線段的條數要把握一點:只要有一個端點不相同,就是不同的線段;⑤識別圖中射線的條數要把握兩點:端點和方向缺一不可;

初一新生必看:數學 學習方法 指導

1.做好預習:單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。堅持預習,找到疑點,變被動學習為主動學習,能大大提高學習效率噢,興趣是的老師嘛。

2.認真聽課:聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點(記住預習中的疑點了嗎?更要聽仔細了),聽例題的解法和要求,聽蘊含的數學思想和方法,聽課堂小結。思,一是要善於聯想、類比和歸納,二是要敢於質疑,提出問題,大膽猜想。記,當然是指課堂筆記了,不是記得多就是有效的知道嗎?影響了聽課可就不如不記了,記什麼,什麼時候記,可是有學問的哩,記方法,記技巧,記疑點,記要求,記注意點,記住課後一定要整理筆記。

3.認真解題:課堂練習是最及時最直接的反饋,一定不能錯過的,不要急於完成作業,要先看看你的 筆記本 ,回顧學習內容,加深理解,強化記憶,很重要噢。

4.及時糾錯:課堂練習、作業、檢測,反饋後要及時查閱,分析錯題的原因,審題出問題了嗎?概念模糊了嗎?時間緊沒來得及?不會做嗎?切忌不要動不動就以粗心放過自己(形成習慣可就麻煩了),如果思路正確而計算出錯,及時訂正,必要時強化相關計算的訓練。概念模糊和審題出錯都說明你的學習容易出現似懂非懂卻還不自知的狀態,這可是學習數學的大忌,要堅決克服。至於不會做,當然要及時向同學和老師請教了,不能將問題處於懸而未解的狀態,養成今日事今日畢的好習慣。

5.學會 總結 :大人們常說,數學是一環扣一環,這意思是說知識間是緊密相關的,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,學習的目的性,必要性,知識性做到瞭然於心,融會貫通,解題時就能做到入手快,方法直接簡單,即使平時課堂上沒練到的題型,也能得心應手,即舉一反三。

6.學會管理:管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷,這可是大考復習時最有用的資料知道嗎?


七年級數學上冊知識點總結歸納相關 文章 :

★ 初一數學上冊知識點歸納

★ 初一數學上冊知識點匯總歸納

★ 初一人教版數學上冊知識點總結歸納

★ 初一上冊數學知識點歸納整理

★ 初一數學上冊知識點

★ 初一數學上冊知識點總結

★ 初中七年級數學知識點歸納整理

★ 七年級數學上冊知識點匯總

★ 初一數學上冊重點知識整理

★ 七年級數學上冊知識歸納