❶ 八年級下冊數學第一章知識點總結
八年級下冊數學第一章知識點總結
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。下面是我整理的關於八年級下冊數學第一章知識點總結,歡迎大家參考!
函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有唯一確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等於斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有這種關系,那麼這個三角形是直角三角形。
3、勾股數
滿足的三個正整數,稱為勾股數。
常見的勾股數組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)。
二、證明
1、對事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內角和定理:三角形三個內角的和等於180度。
(1)證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內角是互為補角。
3、三角形的外角與它不相鄰的內角關系
(1)三角形的一個外角等於和它不相鄰的兩個內角的和。
(2)三角形的一個外角大於任何一個和它不相鄰的內角。
4、證明一個命題是真命題的基本步驟
(1)根據題意,畫出圖形。
(2)根據條件、結論,結合圖形,寫出已知、求證。
(3)經過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據。如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。
三、數據的分析
1、平均數
①一般地,對於n個數x1x2、、、xn,我們把(x1+x2+???+xn)叫做這n個數的算數平均數,簡稱平均數記為。
②在實際問題中,一組數據里的各個數據的「重要程度」未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數。
2、中位數與眾數
①中位數:一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。
②一組數據中出現次數最多的那個數據叫做這組數據的眾數。
③平均數、中位數和眾數都是描述數據集中趨勢的統計量。
④計算平均數時,所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。
⑤中位數的優點是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息。
⑥各個數據重復次數大致相等時,眾數往往沒有特別意義。
3、從統計圖分析數據的集中趨勢
4、數據的離散程度
①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對於集中趨勢的偏離情況。一組數據中數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統計量。
②數學上,數據的離散程度還可以用方差或標准差刻畫。
③方差是各個數據與平均數差的平方的平均數。
④其中是x1,x2、、、、、xn平均數,s2是方差,而標准差就是方差的算術平方根。
⑤一般而言,一組數據的極差、方差或標准差越小,這組數據就越穩定。
三角形知識概念
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
13、公式與性質:
(1)三角形的內角和:三角形的內角和為180°
(2)三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
(3)多邊形內角和公式:邊形的內角和等於?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形。②邊形共有條對角線。
位置與坐標
1、確定位置
在平面內,確定一個物體的位置一般需要兩個數據。
2、平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。
⑤在直角坐標系中,對於平面上任意一點,都有的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上的一點與它對應。
3、軸對稱與坐標變化
關於x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關於y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數。
解一元一次方程
1、等式與等量:用"="號連接而成的式子叫等式、注意:"等量就能代入"!
2、等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式、
3、方程:含未知數的等式,叫方程、
4、方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:"方程的解就能代入"!
5、移項:改變符號後,把方程的項從一邊移到另一邊叫移項、移項的依據是等式性質1、
6、一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程、
7、一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)、
8、一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0)、
9、一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解)、
10、列一元一次方程解應用題:
(1)讀題分析法:…………多用於"和,差,倍,分問題"
仔細讀題,找出表示相等關系的關鍵字,例如:"大,小,多,少,是,共,合,為,完成,增加,減少,配套-----",利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程、
(2)畫圖分析法:…………多用於"行程問題"
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
統計的初步認識
1、折線統計圖的特點:能獲取數據變化情況的信息,並進行簡單的預測。
2、折線統計圖的方法:在方格紙中,根據所給出的數據把點標出來,再用線將點連接起來,要順次連接。
3、能夠看出折線統計圖所提供的信息,並回答相關的問題。
補充內容:
1、條形統計圖與折線統計圖的不同:條形統計圖用直條表示數量的多少,折線統計圖用折線表示數量的增減變化情況。
2、初步了解復式折線統計圖,能夠從中獲得相應的信息,回答提出的問題。
課後練習
1、統計學的基本涵義是(D)。
A、統計資料
B、統計數字
C、統計活動
D、是一門處理數據的方法和技術的科學,也可以說統計學是一門研究「數據」的科學,任務是如何有效地收集、整理和分析這些數據,探索數據內在的數量規律性,對所觀察的現象做出推斷或預測,直到為採取決策提供依據。
2、要了解某一地區國有工業企業的生產經營情況,則統計總體是(B)。
A、每一個國有工業企業
B、該地區的所有國有工業企業
C、該地區的所有國有工業企業的生產經營情況
D、每一個企業
3、要了解20個學生的學習情況,則總體單位是(C)。
A、20個學生
B、20個學生的學習情況
C、每一個學生
D、每一個學生的學習情況
4、下列各項中屬於數量標志的是(B)。
A、性別
B、年齡
C、職稱
D、健康狀況
5、總體和總體單位不是固定不變的,由於研究目的改變(A)。
A、總體單位有可能變換為總體,總體也有可能變換為總體單位
B、總體只能變換為總體單位,總體單位不能變換為總體
C、總體單位不能變換為總體,總體也不能變換為總體單位
D、任何一對總體和總體單位都可以互相變換
6、以下崗職工為總體,觀察下崗職工的性別構成,此時的標志是(C)。
A、男性職工人數
B、女性職工人數
C、下崗職工的性別
D、性別構成
抽樣調查
(1)調查樣本是按隨機的原則抽取的,在總體中每一個單位被抽取的機會是均等的,因此,能夠保證被抽中的單位在總體中的均勻分布,不致出現傾向性誤差,代表性強。
(2)是以抽取的全部樣本單位作為一個「代表團」,用整個「代表團」來代表總體。而不是用隨意挑選的個別單位代表總體。
(3)所抽選的調查樣本數量,是根據調查誤差的要求,經過科學的計算確定的,在調查樣本的數量上有可靠的保證。
(4)抽樣調查的誤差,是在調查前就可以根據調查樣本數量和總體中各單位之間的差異程度進行計算,並控制在允許范圍以內,調查結果的准確程度較高。
課後練習
1、抽樣成數是一個(A)
A、結構相對數B、比例相對數C、比較相對數D、強度相對數
2、成數和成數方差的關系是(C)
A、成數越接近於0,成數方差越大B、成數越接近於1,成數方差越大
C、成數越接近於0、5,成數方差越大D、成數越接近於0、25,成數方差越大
3、整群抽樣是對被抽中的群作全面調查,所以整群抽樣是(B)
A、全面調查B、非全面調查C、一次性調查D、經常性調查
4、對400名大學生抽取19%進行不重復抽樣調查,其中優等生比重為20%,概率保證程度為95、45%,則優等生比重的極限抽樣誤差為(A)
A、40%B、4、13%C、9、18%D、8、26%
5、根據5%抽樣資料表明,甲產品合格率為60%,乙產品合格率為80%,在抽樣產品數相等的條件下,合格率的抽樣誤差是(B)
A、甲產品大B、乙產品大C、相等D、無法判斷
數學學習方法
注意習慣的養成
比如遇到問題基本上不思考就直接尋求幫助、做題時總是心不在焉摳手玩筆、每次檢查作業的任務都交給家長完成,這些習慣不僅不容易改正,往往還容易由於家長的原因而愈發嚴重。對於一個初中生來說,遇到數學問題獨立思考、學習時擁有一定的自律能力、能夠檢查自己犯下的錯誤這些能力是重要而且必須的,這不僅需要孩子的努力,更需要家長的配合和支持。
高效聽課
1、有準備的去聽,也就是說聽課前要先預習,找出不懂的知識、發現問題,帶著知識點和問題去聽數學課會有解惑的快樂,也更聽得進去,容易掌握;
2、參與交流和互動,不要只是把自己擺在「聽」的旁觀者,而是「聽」的參與者,積極思考老師講的或提出的問題,能回答的時候積極回答(回答數學問題的好處不僅僅是表現,更多的是可以讓你注意力更集中)。
3、聽要結合寫和思考。純粹的聽很容易懈怠,能記住的點也很少,所以一定要學會快速的整理記憶。
多項式定義
在數學中,多項式是指由變數、系數以及它們之間的加、減、乘、冪運算(非負整數次方)得到的表達式。
對於比較廣義的定義,1個或0個單項式的和也算多項式。按這個定義,多項式就是整式。實際上,還沒有一個只對狹義多項式起作用,對單項式不起作用的`定理。0作為多項式時,次數定義為負無窮大(或0)。單項式和多項式統稱為整式。
第一章 勾股定理
定義:如果直角三角形兩條直角邊分別為a,b,斜邊為c,即直角三角形兩直角邊的平方和等於斜邊的平方。
判定:如果三角形的三邊長a,b,c滿足a +b = c ,那麼這個三角形是直角三角形。 定義:滿足a +b =c 的三個正整數,稱為勾股數。
第二章 實數
定義:任何有限小數或無限循環小數都是有理數。無限不循環小數叫做無理數 (有理數總可以用有限小數或無限循環小數表示)
一般地,如果一個正數x的平方等於a,那麼這個正數x就叫做a的算術平方根。 特別地,我們規定0的算術平方根是0。
一般地,如果一個數x的平方等於a,那麼這個數x就叫做a的平方根(也叫二次方根) 一個正數有兩個平方根;0隻有一個平方根,它是0本身;負數沒有平方根。 求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。
一般地,如果一個數x的立方等於a,那麼這個數x就叫做a的立方根(也叫做三次方根)。 正數的立方根是正數;0的立方根是0;負數的立方根是負數。 求一個數a的立方根的運算,叫做開立方,其中a叫做被開方數。 有理數和無理數統稱為實數,即實數可以分為有理數和無理數。
每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都表示一個實數。即實數和數軸上的點是一一對應的。
在數軸上,右邊的點表示的數比左邊的點表示的數大。
第三章 圖形的平移與旋轉
定義:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形的形狀和大小。
經過平移,對應點所連的線段平行也相等;對應線段平行且相等,對應角相等。
在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形的大小和形狀。
任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。
第四章 四邊形性質探索
定義:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線之間的距離。
平行四邊形: 兩組對邊分別平行的四邊形.。 對邊相等,對角相等,對角線互相平分。 兩組對邊分別平行的四邊形是平行四邊形,兩組對邊分別相等的四邊形是平行四邊形,兩條對角線互相平分的四邊形是平行四邊形,一組對邊平行且相等的四邊形是平行四邊形
菱形 :一組鄰邊相等的平行四邊形 (平行四邊形的性質)。四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。 一組鄰邊相等的平行四邊形是菱形,對角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。
矩形: 有一個內角是直角的平行四邊形 (平行四邊形的性質)。對角線相等,四個角都是直角。 有一個內角是直角的平行四邊形是矩形,對角線相等的平行四邊形是矩形。
正方形: 一組鄰邊相等的矩形。 正方形具有平行四邊形、菱形、矩形的一切性質。 一組鄰邊相等的矩形是正方形,一個內角是直角的菱形是正方形。
梯形: 一組對邊平行而另一組對邊不平行的四邊形。 一組對邊平行而另一組對邊不平行的四邊形是梯形 。 等腰梯形 :兩條腰相等的梯形。 同一底上的兩個內角相等,對角線相等。 兩腰相等的梯形是等腰梯形,
同一底上兩個內角相等的梯形是等腰梯形 。
直角梯形 :一條腰和底垂直的梯形。 一條腰和底垂直的梯形是直角梯形。
多邊形:在平面內,由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內角和等於(n-2)180
多邊形內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。 多邊形的外角和都等於360。三角形、四邊形和六邊形都可以密鋪。
定義:在平面內,一個圖形繞某個點旋轉180,如果旋轉前後的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
第五章 位置的確定
位置表示方法:方位角加距離;坐標;經緯度
定義:在平面內,兩條互相垂直且有公共原點的書軸組成平面直角坐標系。
通常,兩條數軸分別至於水平位置與鉛直位置,取向右與向上方向分別為兩條數軸的正方向。水平的數軸叫做x軸或橫軸,鉛直的數軸叫做y軸或縱軸,x軸和y統稱坐標軸,它們的公共原點O稱為直角坐標系的原點。
圖形隨坐標變化:向上/下/左/右平移X個單位長度、橫向/縱向拉長X倍、橫向/縱向壓縮X倍、放大/縮小了X倍、關於x/y軸成軸對稱、關於原點O成中心對稱
第六章 一次函數
定義:一般地,在某個變化過程中,有兩個變數x和y,如果給定一個x值,相應地就確定了一個y值,那麼我們稱y是x的函數,其中是x自變數,y是因變數。
若兩個變數x,y間的關系式可以表示成y=kx+b(k,b為常數,k0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。
把一個函數的自變數x與對應的因變數y的值分別作為點的橫坐標和縱坐標,在直角坐標系中描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。 正比例函數y=kx的圖象是經過原點(0,0)的一條直線。 在一次函數y=kx+b中,
當k0時,的值隨值的增大而增大; 當k0時,的值隨值的增大而減小。
第七章 二元一次方程組
定義:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。 像這樣含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。 適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。 二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。 解二元一次方程組的基本思路是「消元」把「二元」變為「一元」。 以一個未知數代另一個未知數的解法稱為代入消元法,簡稱代入法。 通過兩式加減消去其中一個未知數的解法稱做加減消元法,簡稱加減法。
第八章 數據的代表
定義:一般地,對於n個數X1,X2,Xn,我們把1/n(X1+X2++Xn)叫做這個數的算術平均數,簡稱平均數,記為X。
為A的三項測試成績的加權平均數。
一般地,個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數,一組數據出現次數最多的那個數據叫做這組數據的眾數。
;❷ 八年級下冊數學人教版第一章內容是什麼
分式 :
1、分式的概念
所謂分式指的是形如A/B,A、B是整式,B中含有字母且B不等於0的式子。其中A叫做分式的分子,B叫做分式的分母。如x/y是分式,還有x(y+2)/y也是分式。
2、分式的基本性質
分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:A/B=(A*C)/(B*C), A/B=(A÷C)/(B÷C)(A,B,C為整式,且B、C不等於0)。
3、分式的乘除運演算法則
分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。用字母表示為:a/b * c/d=ac/bd。
分式的除法法則:
(1).兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。例如a/b÷c/d=ad/bc。
(2).除以一個分式,等於乘以這個分式的倒數:例如:a/b÷c/d=a/b*d/c。
4、分式的加減運演算法則
.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減。用字母表示為:a/c±b/c=(a±b)/c。異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然後再按同分母分式的加減法法則進行計算。用字母表示為:a/b±c/d=(ad±cb)/bd。
5、含字母系數的方程
6.分式方程
分母中含有未知數的方程叫做分式方程。
7.a=bc型數量關系
8.分式方程的應用
❸ 八年級下冊數學重點知識點
數學是一門很重要的學科,下面是八年級下冊數學重點知識點的總結,希望能在數學的學習上給大家帶來幫助。
軸對稱
1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
3.角平分線上的點到角兩邊距離相等。
4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
6.軸對稱圖形上對應線段相等、對應角相等。
7.畫一圖形關於某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。
8.點(x,y)關於x軸對稱的點的坐標為(x,-y)
點(x,y)關於y軸對稱的點的坐標為(-x,y)
點(x,y)關於原點軸對稱的點的坐標為(-x,-y)
四邊形
1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分。
3.平行四邊形的判定:兩組對邊分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形; 兩組對角分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
5.直角三角形斜邊上的中線等於斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。
7.矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理:有一個角是直角的平行四邊形叫做矩形;對角線相等的平行四邊形是矩形;有三個角是直角的四邊形是矩形。
9.菱形的定義 :鄰邊相等的平行四邊形。
10.菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
11.菱形的判定定理:一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四條邊相等的四邊形是菱形。
S菱形=1/2×ab(a、b為兩條對角線)
12.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
13.正方形的性質:四條邊都相等,四個角都是直角。 正方形既是矩形,又是菱形。
14.正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個角是直角的菱形是正方形。
15.梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
16.直角梯形的定義:有一個角是直角的梯形
17.等腰梯形的定義:兩腰相等的梯形。
18.等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
19.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
分解因式
一、公式:1、ma+mb+mc=m(a+b+c);
2、a2-b2=(a+b)(a-b);
3、a22ab+b2=(ab)2。
二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。
1、把幾個整式的積化成一個多項式的形式,是乘法運算。
2、把一個多項式化成幾個整式的積的形式,是因式分解。
3、ma+mb+mcm(a+b+c)4、因式分解與整式乘法是相反方向的變形。
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式.找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式。
四、分解因式的一般步驟為:(1)若有-先提取-,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止。
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式。
分解因式的方法:1、提公因式法.2、運用公式法。
數據的分析
1.加權平均數:加權平均數的計算公式。權的理解:反映了某個數據在整個數據中的重要程度。而是以比的或百分比的形式出現及頻數分布表求加權平均數的方法。
2.將一組數據按照由小到大(或由大到小)的順序排列,如果數據的個數是奇數,則處於中間位置的數就是這組數據的中位數;如果數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數。
3.一組數據中出現次數最多的數據就是這組數據的眾數。
4.一組數據中的最大數據與最小數據的差叫做這組數據的極差。
5.方差越大,數據的波動越大;方差越小,數據的波動越小,就越穩定。
❹ 八年級下學期數學知識點
八年級下學期數學知識點
在日常的學習中,很多人都經常追著老師們要知識點吧,知識點是指某個模塊知識的重點、核心內容、關鍵部分。還在為沒有系統的知識點而發愁嗎?下面是我為大家整理的八年級下學期數學知識點,希望能夠幫助到大家。
一元一次不等式和一元一次不等式組
一、一般地,用符號(或),(或)連接的式子叫做不等式。
能使不等式成立的未知數的值,叫做不等式的解。不等式的解不,把所有滿足不等式的解集合在一起,構成不等式的解集。求不等式解集的過程叫解不等式。
由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組
不等式組的解集:一元一次不等式組各個不等式的解集的公共部分。
等式基本性質1:在等式的兩邊都加上(或減去)同一個數或整式,所得的結果仍是等式。
基本性質2:在等式的兩邊都乘以或除以同一個數(除數不為0),所得的結果仍是等式。
二、不等式的基本性質
性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變。(註:移項要變號,但不等號不變。)
性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。
性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。
三、解不等式的步驟
1、去分母;
2、去括弧;
3、移項合並同類項;
4、系數化為1。
四、解不等式組的步驟
1、解出不等式的解集
2、在同一數軸表示不等式的解集。
五、列一元一次不等式組解實際問題的一般步驟:
(1)審題;
(2)設未知數,找(不等量)關系式;
(3)設元,(根據不等量)關系式列不等式(組)
(4)解不等式組;檢驗並作答。
六、常考題型:
1、求4x—6 7x—12的非負數解。
2、已知3(x—a)=x—a+1r的解適合2(x—5)8a,求a的范圍。
3、當m取何值時,3x+m—2(m+2)=3m+x的解在—5和5之間。
函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
數學的學習方法
1、養成良好的學習數學習慣。建立良好的學習數學習慣,會使自己學習感到有序而輕松。數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的.數學思想和方法,學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。
3、逐步形成「以我為主」的學習模式數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神。
4、記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
如何建立數學思維方式
到了初中,數學出現了很多新的知識點,也是重點考點和關鍵難點,比如系統性的開始學習幾何知識,首次引入函數的概念並求解一般的線性函數問題,這些對於初中生來說既是全新的,又是有一定難度的。這就需要學生創新數學思維方式,緊跟教材進度和課堂進度,訓練自己的數學思維尤其的幾何圖形的感覺,以及對函數的深刻理解。
;❺ 初二數學下冊基礎知識點總結
失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二下冊數學知識點歸納北師大版
第一章一元一次不等式和一元一次不等式組
一、不等關系
1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式.
2、要區別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系.
3、准確"翻譯"不等式,正確理解"非負數"、"不小於"等數學術語.
非負數<===>大於等於0(≥0)<===>0和正數<===>不小於0
非正數<===>小於等於0(≤0)<===>0和負數<===>不大於0
二、不等式的基本性質
1、掌握不等式的基本性質,並會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c,a-c>b-c.
(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc,.
(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac
2、比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a
即:
a>b<===>a-b>0
a=b<===>a-b=0
aa-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
初二數學重要知識點
【相似、全等三角形】
1、定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
2、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)
3、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
4、判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)
5、判定定理3三邊對應成比例,兩三角形相似(SSS)
6、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
7、性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
8、性質定理2相似三角形周長的比等於相似比
9、性質定理3相似三角形面積的比等於相似比的平方
10、邊角邊公理有兩邊和它們的夾角對應相等的兩個三角形全等
11、角邊角公理有兩角和它們的夾邊對應相等的兩個三角形全等
12、推論有兩角和其中一角的對邊對應相等的兩個三角形全等
13、邊邊邊公理有三邊對應相等的兩個三角形全等
14、斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個直角三角形全等
15、全等三角形的對應邊、對應角相等
八年級 下冊數學期中知識點 總結
1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分。
3.平行四邊形的判定:兩組對邊分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
5.直角三角形斜邊上的中線等於斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。
7.矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理:有一個角是直角的平行四邊形叫做矩形;對角線相等的平行四邊形是矩形;有三個角是直角的四邊形是矩形。
9.菱形的定義:鄰邊相等的平行四邊形。
10.菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
11.菱形的判定定理:一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)
12.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
13.正方形的性質:四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。
14.正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個角是直角的菱形是正方形。
15.梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
16.直角梯形的定義:有一個角是直角的梯形
17.等腰梯形的定義:兩腰相等的梯形。
18.等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
19.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
初二數學 學習 經驗 心得
1學好初中數學課前要預習
初中生想要學好數學,那麼就要利用課前的時間將課上老師要講的內容預習一下。初中數學課前的預習是要明白老師在課上大致所講的內容,這樣有利於和方便初中生整理知識結構。
初中生 課前預習 數學還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現溜號和走神的情況。同時課前預習還可以將知識點形成體系,可以幫助初中生建立完整的知識結構。
2學習初中數學課上是關鍵
初中生想要學好學生,在課上就是一個字:跟。上初中數學課時跟住老師,老師講到哪裡一定要跟上,仔細看老師的板書,隨時知道老師講的是哪裡,涉及到的知識點是什麼。有的初中生喜歡記筆記,這里提醒大家,初中數學課上的時候盡量不要記筆記。
你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課後完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。
3課後可以適當做一些初中數學基礎題
在每學完一課後,初中生可以在課後做一些初中數學的基礎題型,在做這樣的題時,建議大家是,不要出現錯誤的情況,做完題後要學會思考和整理。當你的初中數學基礎題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據解析看題。
但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數學的學習有幫助的,但是如果將重點放在這上面,沒有什麼好處。同時要學會整理,將自己錯題歸納並總結,
數學是由簡單明了的事項一步一步地發展而來,所以,只要學習數學的人老老實實地、一步一步地去理解,並同時記住其要點,以備以後之需用,就一定能理解其全部內容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復地做同一件事,故不管誰都應該會做.
初二數學下冊基礎知識點總結相關 文章 :
★ 八年級下冊數學知識點歸納
★ 初二數學知識點歸納整理
★ 八年級下冊數學知識點
★ 初中數學基礎知識點歸納總結
★ 八年級數學知識點整理歸納
★ 初中數學基礎知識整理歸納
★ 初二數學基本知識匯總
★ 初中數學基礎知識點總結
★ 初二數學基本知識匯總(2)
★ 人教版八年級下冊數學復習提綱
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❻ 數學八年級下冊知識點
如果說創新是成功的常青樹,那麼知識就是滋養的長流水;如果說潛能是創造力的根基,那麼知識就是潛能的主要內容。接下來我給大家分享關於數學 八年級 下冊知識,希望對大家有所幫助!
數學八年級下冊知識1
一元一次不等式與一元一次不等式組
一. 不等關系
※1. 一般地,用符號「<」(或「≤」), 「>」(或「≥」)連接的式子叫做不等式
※2. 准確「翻譯」不等式,正確理解「非負數」、「不小於」等數學術語.
非負數 <===> 大於等於0(≥0) <===> 0和正數 <===> 不小於0
非正數 <===> 小於等於0(≤0) <===> 0和負數 <===> 不大於0
二. 不等式的基本性質
※1. 掌握不等式的基本性質,並會靈活運用:
(1) 不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c, a-c>b-c.
(2) 不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即:
如果a>b,並且c>0,那麼ac>bc,
(3) 不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac<bc, < span=""></bc, <>
※2. 比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a<b,那麼a-b是負數;反過來,如果a-b是正數,那麼a<b;< span=""></b,那麼a-b是負數;反過來,如果a-b是正數,那麼a<b;<>
即:
a>b <===> a-b>0
a=b <===> a-b=0
a a-b<0
三. 不等式的解集:
※1.能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式。
※2.不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同
3.不等式的解集在數軸上的表示:
用數軸表示不等式的解集時,要確定邊界和方向:
①邊界:有等號的是實心圓圈,無等號的是空心圓圈;
②方向:大向右,小向左
四. 一元一次不等式:
※1.只含有一個未知數,且含未知數的式子是整式,未知數的次數是1,像這樣的不等式叫做一元一次不等式。
※2.解一元一次不等式的過程與解一元一次方程類似,當不等式兩邊都乘以一個負數時,不等號要改變方向。
※3.解一元一次不等式的步驟:
①去分母;
②去括弧;
③移項;
④合並同類項;
⑤系數化為1(不等號的改變問題)
※4.一元一次不等式基本情形為ax>b(或ax<b)< span=""></b)<>
①當a>0時,解為 ;
②當a=0時,且b<0,則x取一切實數;
當a=0時,且b≥0,則無解;
③當a<0時,解為 。
5. 列不等式解應用題基本步驟與列方程解應用題相類似,即:
①審:認真審題,找出題中的不等關系,要抓住題中的關鍵字眼,如「大於」、「小於」、「不大於」、「不小於」等含義;
②設:設出適當的未知數;
③列:根據題中的不等關系,列出不等式;
④解:解出所列的不等式的解集;
⑤答:寫出答案,並檢驗答案是否符合題意。
六. 一元一次不等式組
※1.定義:由含有一個相同未知數的幾個一元一次不等式組成的不等式組,叫做一元一次不等式組。
※2.一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集。如果這些不等式的解集無公共部分,就說這個不等式組無解。(解集的公共部分,通常是利用數軸來確定。)
※3.解一元一次不等式組的步驟:
(1)分別求出不等式組中各個不等式的解集;
(2)利用數軸求出這些解集的公共部分,即這個不等式組的解集。
兩個一元一次不等式組的解集的四種情況(a、b為實數,且a<b)< span=""></b)<>
x>b,兩大取較大
x>a,兩小取小
a<x<b,大小交叉中間找< span=""></x<b,大小交叉中間找<>
無解,在大小分離沒有解(是空集)
數學八年級下冊知識2
圖形的平移與旋轉
一、平移變換:
1.概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。
2.性質:
(1)平移前後圖形全等;
(2)對應點連線平行或在同一直線上且相等。
3.平移的作圖步驟和 方法 :
(1)分清題目要求,確定平移的方向和平移的距離;
(2)分析所作的圖形,找出構成圖形的關健點;
(3)沿一定的方向,按一定的距離平移各個關健點;
(4)連接所作的各個關鍵點,並標上相應的字母;
(5)寫出結論。
二、旋轉變換:
1.概念:
在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。
說明:
(1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;
(2)旋轉過程中旋轉中心始終保持不動。
(3)旋轉過程中旋轉的方向是相同的.
(4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。
旋轉不改變圖形的大小和形狀。
2.性質:
(1)對應點到旋轉中心的距離相等;
(2)對應點與旋轉中心所連線段的夾角等於旋角;
(3)旋轉前、後的圖形全等。
3.旋轉作圖的步驟和方法:
(1)確定旋轉中心及旋轉方向、旋轉角;
(2)找出圖形的關鍵點;
(3)將圖形的關鍵點和旋轉中心連接起來,然後按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;
(4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉後的圖形。
說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。
4.常見考法
(1)把平移旋轉結合起來證明三角形全等;
(2)利用平移變換與旋轉變換的性質,設計一些題目
數學八年級下冊知識3
因式分解
一. 分解因式
※1.把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。
※2.因式分解與整式乘法是互逆關系:
因式分解與整式乘法的區別和聯系:
(1)整式乘法是把幾個整式相乘,化為一個多項式;
(2)因式分解是把一個多項式化為幾個因式相乘。
二.提公共因式法
※1.如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法。
※2.概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律。
※3.易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式;提出後;括弧中這一項為+1;不漏掉。
三.公式法
※1.如果把乘法公式反過來,就可以用來把某些多項式分解因式,這種分解因式的方法叫做運用公式法。
※2.主要公式:
(1)平方差公式:a2-b2=(a+b)(a-b)
(2)完全平方公式: 圖片
※3.運用公式法:
(1)平方差公式:a2-b2=(a+b)(a-b)
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號。
(2)完全平方公式:圖片
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍。
※4.因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止。
四.分組分解法:
※1.分組分解法:利用分組來分解因式的方法叫做分組分解法。
圖片
※2.概念內涵:
分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式。
※3.注意:分組時要注意符號的變化。
五. 十字相乘法:
※1.對於二次三項式圖片 ,將a和c分別分解成兩個因數的乘積,圖片 ,圖片 ,且滿足圖片 ,往往寫成圖片的形式,將二次三項式進行分解。
※2. 二次三項式圖片的分解:
圖片
※3.規律內涵:
(1)理解:分解因式時,如果常數項q是正數,那麼把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同。
(2)如果常數項q是負數,那麼把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對於分解的兩個因數,還要看它們的和是不是等於一次項系數p。
4. 易錯點點評:
(1)十字相乘法在對系數分解時易出錯;
(2)分解的結果與原式不等,這時通常採用多項式乘法還原後檢驗分解的是否正確。
數學八年級下冊知識點相關 文章 :
★ 八年級下冊數學知識點整理
★ 初二數學下冊知識點歸納與數學學習方法
★ 人教版八年級下冊數學復習提綱
★ 八年級下冊數學知識點歸納
★ 八年級下冊數學知識點總復習
★ 八年級數學下冊知識點整理
★ 八年級下冊的數學知識點
★ 八年級下冊數學知識點匯總
★ 人教版八年級下冊數學知識點總結
★ 八年級下冊數學知識點期末復習提綱
❼ 初二數學下冊知識點人教版
初二數學下冊知識點人教版有哪些你知道嗎?數學是對現實世界的一種思考、描述、刻畫、解釋、理解,其目的是發現現實世界中所蘊藏的一些數與形的規律,為社會的進步與人類的發展服務。一起來看看初二數學下冊知識點人教版,歡迎查閱!
初二下冊數學知識點
第五章 分式與分式方程
1、認識分式
①一般地,用AB表示兩個整式。A÷B可以表示成的形式,如果B中含有字母,那麼稱為分式,其中A稱為分式的分子,B稱為分式的分母。對於任意一個分式,分母都不能為零
②分式的基本性質:分式的分子與分母都乘以或除以同一個不為零的整式,分式的值不變
③把一個分式的分子,分母的公因式約去,這種變形稱為分式的約分
④在一個分式中,分子分母已經沒有公因式,這樣的分式稱為最簡分式,化簡分式時,通常要使結果稱為最簡分式或者整式。
2、分式的乘除法
①兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個分式相除,把除式的分子和分母顛倒位置後再與被除數相乘
3、分式的加減法
①同分母的分式相加減,分母不變,把分子相加減
②根據分式的基本性質,異分母的分式可以化為同分母的分式。這一過程稱為分式的通分。
③為了計算方便,異分母分式通分時,通常採取最簡單的公分母,簡稱最簡公分母,作為它們的共同分母
④異分母的分式相加減,先通分,化為同分母的分式,然後再按同分母分式的加減法法則進行計算
4、分式方程
①分母中含有未知數的方程叫做分式方程
②增跟:一個數使原分式方程的分母為零,原因是,我們在方程的兩邊同乘以一個使分母為零的整式
初二數學下冊知識點 總結
函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有唯一確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的.自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的 方法 叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
初二下冊數學知識點
第三章 圖形的平移和旋轉
1、圖形的平移
①在平面內,將一個圖形沿某一個方向移動一定的距離,這樣的圖形運動稱為平移,平移不改變圖形的形狀大小
②一個圖形和它經過平移所得的圖形中,對應點所連的線段平行(或在一條直線上)且相等;對應線段平行(或在一條直線上)且相等,對應角相等
③一個圖形依次沿x軸方向,y軸方向平移後所得圖形,可以看成是由原來的圖形經過一次平移得到的
2、圖形的旋轉
①在平面內,將一個圖形繞一個定點按某一個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個頂點稱為旋轉中心,轉動的角稱為旋轉角,旋轉不改變圖形的形狀和大小
②一個圖形和它經過旋轉所得的圖形中,對應點到旋轉中心的距離相等,任意一組對應點與旋轉中心的連線所成的角都等於旋轉角;對應線段相等,對應角相等
3、中心對稱
①如果把一個圖形繞著某一點旋轉180°,它能夠與另一個圖形重合,那麼說這兩個圖形關於這個點對稱或中心對稱,這個點叫做它們的對稱中心
②成中心對稱的兩個圖形中,對應點所連線段經過對稱中心,且被對稱中心平分
③把一個圖形繞某個點旋轉180°,如果旋轉後的圖形能與原來的圖形重合,那麼這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心
4、簡單的圖案設計
初二下數學知識總結
第四章 因式分解
1、因式分解
①把一個多項式化成幾個整式的積的形式,這種變形叫做因式分解,因式分解也可稱為分解因式
2、提公因式法
①多項式ab+bc的各項都含有相同的因式b,我們把多項式各項都含有的相同因式,叫做這個多項式各項的公因式,如b就是多項式ab+bc各項的公因式
②如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來。從而將多項式化成兩個因式乘積的形式。這種因式分解的方法叫做提公因式法
3、公式法
①A2-b2=(a+b)(a-b)
②當多項式的各項含有公因式時,通常先提出這個公因式,然後再進一步因式分解
③a2+2ab+b2=(a+b)2 。a2-2ab+b2=(a-b)2
④根據因式分解與整式乘法的關系,我們可以利用乘法公式把某些多項式因式分解,這種因式分解叫做公式法
初二數學下冊知識點人教版相關 文章 :
★ 初二數學下冊知識點人教版
★ 初二數學下冊重點知識總結
★ 初二下冊人教版數學復習資料
★ 八年級數學知識點整理歸納
★ 新人教版八年級數學下冊目錄
★ 人教版八年級數學上下冊課本目錄
★ 初中數學知識點總結
★ 人教版八年級下冊數學課本目錄
★ 新人教版八年級數學下冊教學進度表
★ 人教版初二數學下冊期末試題
❽ 北師大版八年級數學下冊第1章重要知識點匯總
北師大版八年級數學下冊第1章重要知識點匯總已奉上,請查閱。這是我費了九牛二虎之力整理出來分享給大家的北師大版八年級數學下冊第1章重要知識點匯總的資料,記得查看哦。
第1章重要知識點匯總1
等腰三角形
(1)三角形全等的判定及性質
判定:
三邊分別相等的兩個三角形全等.(SSS)
兩邊及其夾角分別相等的兩個三角形全等.(SAS)
兩角及其夾邊分別相等的兩個三角形全等.(ASA)
兩角分別相等且其中一組等角的對邊相等的兩個三角形全 等.(AAS)
斜邊和一條直角邊分別相等的兩個直角三角形全等.(HL)
性質:
全等三角形的對應邊相等,對應角也相等.
(2)等腰三角形的判定、性質及推論
性質:等腰三角形的兩個底角相等(等邊對等角)
判定:有兩個角相等的三角形是等腰三角形(等角對等邊)
推論:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合(即“三線合一”)
(3)等邊三角形的性質及判定定理
性質定理:等邊三角形的三個角都相等,並且每個角都等於60度;等邊三角形的三條邊都滿足“三線合一”的性質;等邊三角形是軸對稱圖形,有3條對稱軸。
判定定理:有一個角是60度的等腰三角形是等邊三角形。或者三個角都相等的三角形是等邊三角形。
第1章重要知識點匯總2
直角三角形
(1)勾股定理及其逆定理
定理:直角三角形的兩條直角邊的平方和等於斜邊的平方。
逆定理:如果三角形兩邊的平方和等於第三邊的平方,那麼這個三角形是直角三角形。
(2)命題和逆命題
命題包括已知和結論兩部分;逆命題是將倒是的已知和結論交換;正確的逆命題就是逆定理。
互逆命題:在兩個命題中,如果一個命題的條件和結論分別是另一個命題的結論和條件,那麼這兩個命題稱為互逆命題,其中一個命題稱為另一個命題的逆命題.
互逆定理:如果一個定理的逆命題經過證明是真命題,那麼它也是一個定理,這兩個定理稱為互逆定理,其中一個定理稱為另一個定理的逆定理.
備註:一個命題一定有逆命題,但一個定理不一定有逆定理.
(3)直角三角形全等的判定定理
定理:斜邊和一條直角邊對應相等的兩個直角三角形全等(HL)
(4)定理:直角三角形的兩個銳角互余.
(5)含30度的直角三角形的邊的性質
定理:在直角三角形中,如果一個銳角等於30度,那麼它所對的直角邊等於斜邊的一半。
第1章重要知識點匯總3
線段的垂直平分線
(1)線段垂直平分線的性質及判定
性質:線段垂直平分線上的點到這條線段兩個端點的距離相等。
判定:到一條線段兩個端點距離相等的點在這條線段的垂直平分線上。
(2)三角形三邊的垂直平分線的性質
三角形三條邊的垂直平分線相交於一點,並且這一點到三個頂點的距離相等。
(3)如何用尺規作圖法作線段的垂直平分線
分別以線段的兩個端點A、B為圓心,以大於AB的一半長為半徑作弧,兩弧交於點M、N;作直線MN,則直線MN就是線段AB的垂直平分線。
第1章重要知識點匯總4
角平分線
(1)角平分線的性質及判定定理
性質:角平分線上的點到這個角的兩邊的距離相等;
判定:在一個角的內部,且到角的兩邊的距離相等的點,在這個角的平分線上。
(2)三角形三條角平分線的性質定理
性質:三角形的三條角平分線相交於一點,並且這一點到三條邊的距離相等。
(3)如何用尺規作圖法作出角平分線
第1章重要知識點匯總5
尺規作圖的應用
已知等腰三角形的底邊及底邊上的高作等腰三角形.
第1章重要知識點匯總6
反證法
在證明時,先假設命題的結論不成立,然後推導出與定義、基本事實、已有定理或已知條件相矛盾的結果,從而證明命題的結論一定成立.這種證明方法稱為反證法.
❾ 八年級數學下冊知識點總結
八年級數學下冊知識點總結
數學(mathematics或maths),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。下面是我整理的關於八年級數學下冊知識點總結,歡迎大家參考!
第十六章 分式
一.知識框架
二.知識概念
1.分式:形如A/B,A、B是整式,B中含有未知數且B不等於0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。
2.分式有意義的條件:分母不等於0
3.約分:把一個分式的分子和分母的公因式(不為1的數)約去,這種變形稱為約分。
4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。
分式的基本性質:分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C為整式,且C≠0)
5.最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式.約分時,一般將一個分式化為最簡分式.
6.分式的四則運算:1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c
2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然後再按同分母分式的加減法法則進行計算.用字母表示為:a/b±c/d=ad±cb/bd
3.分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b * c/d=ac/bd
4.分式的除法法則:(1).兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘.a/b÷c/d=ad/bc
(2).除以一個分式,等於乘以這個分式的倒數:a/b÷c/d=a/b*d/c
7.分式方程的意義:分母中含有未知數的方程叫做分式方程.
8.分式方程的解法:①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數的值;③驗根(求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能產生增根).
分式和分數有著許多相似點。教師在講授本章內容時,可以對比分數的特點及性質,讓學生自主學習。重點在於分式方程解實際應用問題。
第十七章 反比例函數
一.知識框架
二.知識概念
1.反比例函數:形如y= (k為常數,k≠0)的函數稱為反比例函數。其他形式xy=k
2.圖像:反比例函數的圖像屬於雙曲線。反比例函數的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點
3.性質:當k>0時雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小;
當k<0時雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。
4.|k|的幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。
在學習反比例函數時,教師可讓學生對比之前所學習的一次函數啟發學生進行對比性學習。在做題時,培養和養成數形結合的思想。
第十八章 勾股定理
一.知識框架
二 知識概念
1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那麼a2+b2=c2。
勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那麼這個三角形是直角三角形。
2.定理:經過證明被確認正確的命題叫做定理。
3.我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那麼另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
勾股定理是直角三角形具備的重要性質。本章要求學生在理解勾股定理的前提下,學會利用這個定理解決實際問題。可以通過自主學習的發展體驗獲取數學知識的感受
第十九章 四邊形
一.知識框架
二.知識概念
1.平行四邊形定義: 有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
3.平行四邊形的判定 1.兩組對邊分別相等的四邊形是平行四邊形
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
5.直角三角形斜邊上的中線等於斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。
7.矩形的性質: 矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理: 1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
9.菱形的定義 :鄰邊相等的平行四邊形。
10.菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
11.菱形的判定定理:1.一組鄰邊相等的平行四邊形是菱形。
2.對角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。
12.S菱形=1/2×ab(a、b為兩條對角線)
13.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
14.正方形的性質:四條邊都相等,四個角都是直角。 正方形既是矩形,又是菱形。
15.正方形判定定理: 1.鄰邊相等的矩形是正方形。 2.有一個角是直角的菱形是正方形。
16.梯形的'定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
17.直角梯形的定義:有一個角是直角的梯形
18.等腰梯形的定義:兩腰相等的梯形。
19.等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
20.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
本章內容是對平面上四邊形的分類及性質上的研究,要求學生在學習過程中多動手多動腦,把自己的發現和知識帶入做題中。因此教師在教學時可以多鼓勵學生自己總結四邊形的特點,這樣有利於學生對知識的把握。
第二十章 數據的分析
一.知識框架
二.知識概念
1.加權平均數:加權平均數的計算公式。 權的理解:反映了某個數據在整個數據中的重要程度。
2.中位數:將一組數據按照由小到大(或由大到小)的順序排列,如果數據的個數是奇數,則處於中間位置的數就是這組數據的中位數(median);如果數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數。
3. 眾數:一組數據中出現次數最多的數據就是這組數據的眾數(mode)。
4. 極差:組數據中的最大數據與最小數據的差叫做這組數據的極差(range)。
5.方差越大,數據的波動越大;方差越小,數據的波動越小,就越穩定。
本章內容要求學生在經歷數據的收集、整理、分析過程中發展學生的統計意識和數據處理的方法與能力。在教學過程中,以生活實例為主,讓學生體會到數據在生活中的重要性。
;❿ 八年級下冊數學重點知識點總結
八年級下冊數學知識點很多,希望同學們可以整理成系統的知識框架,方便學習和復習,接下來給大家分享八年級下冊數學知識點,供參考。
一次函數知識點
(一)一般地,形如y=kx+b(k,b是常數,且k≠0)的函數,叫做一次函數,其中x是自變數。當b=0時,一次函數y=kx,又叫做正比例函數。
(二)一次函數的圖像及性質
1.在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。
2.一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)。
3.正比例函數的圖像總是過原點。
4.k,b與函數圖像所在象限的關系:
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
當k>0,b>0時,直線通過一、二、三象限;
當k>0,b<0時,直線通過一、三、四象限;
當k<0,b>0時,直線通過一、二、四象限;
當k<0,b<0時,直線通過二、三、四象限;
當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
分解因式
一、公式:1、ma+mb+mc=m(a+b+c);
2、a2-b2=(a+b)(a-b);
3、a22ab+b2=(ab)2。
二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。
1、把幾個整式的積化成一個多項式的形式,是乘法運算。
2、把一個多項式化成幾個整式的積的形式,是因式分解。
3、ma+mb+mcm(a+b+c)4、因式分解與整式乘法是相反方向的變形。
三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式.找公因式的一般步驟:(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.
四、分解因式的一般步驟為:(1)若有-先提取-,若多項式各項有公因式,則再提取公因式.(2)若多項式各項沒有公因式,則根據多項式特點,選用平方差公式或完全平方公式.(3)每一個多項式都要分解到不能再分解為止.
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.
分解因式的方法:1、提公因式法.2、運用公式法。
數據的收集與處理
1、普查的定義:這種為了一定目的而對考察對象進行的全面調查,稱為普查。
2、總體:其中所要考察對象的全體稱為總體。
3、個體:組成總體的每個考察對象稱為個體
4、抽樣調查:從總體中抽取部分個體進行調查,這種調查稱為抽樣調查。
5、樣本:其中從總體中抽取的一部分個體叫做總體的一個樣本。
6、當總體中的個體數目較多時,為了節省時間、人力、物力,可採用抽樣調查。為了獲得較為准確的調查結果,抽樣時要注意樣本的代表性和廣泛性。還要注意關注樣本的大小。
7、我們稱每個對象出現的次數為頻數。而每個對象出現的次數與總次數的比值為頻率。