當前位置:首頁 » 基礎知識 » 初二數學上冊學科知識點歸納

初二數學上冊學科知識點歸納

發布時間: 2022-08-28 13:51:48

A. 初二數學上冊知識點總結

初二數學上冊知識點總結

數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。以下是我整理的關於初二數學上冊知識點總結,希望大家認真閱讀!

第十一章 三角形

一、知識結構圖

與三角形有關的線段 高

中線

角平分線

三角形的內角和 多邊形的內角和

三角形的外角和 多邊形的外角和

二、知識定義

三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

平面鑲嵌:用一些不重疊擺放的多邊形把平面的`一部分完全覆蓋,叫做用多邊形覆蓋平面。

三、公式與性質

三角形的內角和:三角形的內角和為180°

三角形外角的性質:

性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。

性質2:三角形的一個外角大於任何一個和它不相鄰的內角。

多邊形內角和公式:n邊形的內角和等於(n-2)·180°

多邊形的角和:多邊形的外角和為360°。

多邊形對角線的條數:(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。

(2)n邊形共有條對角線。

第十二章 全等三角形

一、全等三角形

1.定義:能夠完全重合的兩個三角形叫做全等三角形。

2.全等三角形的性質

①全等三角形的對應邊相等、對應角相等。

②全等三角形的周長相等、面積相等。

③全等三角形的對應邊上的對應中線、角平分線、高線分別相等。

3.全等三角形的判定

邊邊邊:三邊對應相等的兩個三角形全等(可簡寫成「SSS」)

邊角邊:兩邊和它們的夾角對應相等兩個三角形全等(可簡寫成「SAS」)

角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成「ASA」)

角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成「AAS」)

斜邊、直角邊:斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成「HL」)

4.證明兩個三角形全等的基本思路:

二、角的平分線:

1.(性質)角的平分線上的點到角的兩邊的距離相等

2.(判定)角的內部到角的兩邊的距離相等的點在角的平分線上

三、學習全等三角形應注意以下幾個問題:

1.要正確區分「對應邊」與「對邊」,「對應角」與「對角」的不同含義;

2.表示兩個三角形全等時,表示對應頂點的字母要寫在對應的位置上;

3.有三個角對應相等或有兩邊及其中一邊的對角對應相等的兩個三角形不一定全等;

4.時刻注意圖形中的隱含條件,如 「公共角」 、「公共邊」、「對頂角」

;

B. 八年級數學上冊知識點總結

失敗乃成功之母,重復是學習之母。學習,需要不斷的重復重復,重復學過的知識,加深印象,其實任何科目的 學習 方法 都是不斷重復學習。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。

初二上學期數學知識點歸納

一、勾股定理

1、勾股定理

直角三角形兩直角邊a,b的平方和等於斜邊c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果三角形的三邊長a,b,c有這種關系,那麼這個三角形是直角三角形。

3、勾股數

滿足的三個正整數,稱為勾股數。

常見的勾股數組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)。

二、證明

1、對事情作出判斷的 句子 ,就叫做命題。即:命題是判斷一件事情的句子。

2、三角形內角和定理:三角形三個內角的和等於180度。

(1)證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。

(2)三角形的外角與它相鄰的內角是互為補角。

3、三角形的外角與它不相鄰的內角關系

(1)三角形的一個外角等於和它不相鄰的兩個內角的和。

(2)三角形的一個外角大於任何一個和它不相鄰的內角。

4、證明一個命題是真命題的基本步驟

(1)根據題意,畫出圖形。

(2)根據條件、結論,結合圖形,寫出已知、求證。

(3)經過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據。如果兩條直線都和第三條直線平行,那麼這兩條直線也相互平行。

八年級上冊數學知識點

(一)運用公式法

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

(二)平方差公式

平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。

(三)因式分解

1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。

2.因式分解,必須進行到每一個多項式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個公式叫完全平方公式。

(2)完全平方式的形式和特點

①項數:三項

②有兩項是兩個數的的平方和,這兩項的符號相同。

③有一項是這兩個數的積的兩倍。

(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

初二數學知識點歸納

第一章分式

1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變

2分式的運算

(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。

(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減

3整數指數冪的加減乘除法

4分式方程及其解法

第二章反比例函數

1反比例函數的表達式、圖像、性質

圖像:雙曲線

表達式:y=k/x(k不為0)

性質:兩支的增減性相同;

2反比例函數在實際問題中的應用


八年級數學上冊知識點 總結 相關 文章 :

★ 人教版八年級數學上冊知識點總結

★ 初二數學上冊知識點總結

★ 八年級數學知識點整理歸納

★ 八年級數學上冊知識點歸納

★ 初二上冊數學知識點歸納總結

★ 初二數學上冊知識點

★ 八年級上冊數學的知識點歸納

★ 初二數學上冊知識點總結

★ 初二數學上冊知識點總結人教版

★ 初二數學知識點歸納上冊人教版

C. 八年級上冊數學知識點歸納總結

初中生學習數學要注意熟練掌握知識點,以下是我為大家整理的八年級上冊數學知識點,希望對大家學習數學有幫助。

八年級數學知識點上冊

軸對稱圖形1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那麼這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關於這條直線(成軸)對稱。2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那麼就說這兩個圖關於這條直線對稱。這條直線叫做對稱軸。折疊後重合的點是對應點,叫做對稱點3、軸對稱圖形和軸對稱的區別與聯系4.軸對稱的性質①關於某直線對稱的兩個圖形是全等形。②如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連線段的垂直平分線。③軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。④如果兩個圖形的對應點連線被同條直線垂直平分,那麼這兩個圖形關於這條直線對稱。

初中數學知識點八年級上冊

三角形的三邊關系定理及推論(1)三角形三邊關系定理:三角形的兩邊之和大於第三邊。推論:三角形的兩邊之差小於第三邊。(2)三角形三邊關系定理及推論的作用:①判斷三條已知線段能否組成三角形②當已知兩邊時,可確定第三邊的范圍。③證明線段不等關系。

三角形的內角和定理及推論三角形的內角和定理:三角形三個內角和等於180°。推論:①直角三角形的兩個銳角互余。②三角形的一個外角等於和它不相鄰的來兩個內角的和。③三角形的一個外角大於任何一個和它不相鄰的內角。註:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。

三角形的面積=1/2×底×高

精選數學知識點八年級上冊

因式分解:把一個多項式化成了幾個整式的積的形式,叫做這個多項式的因式分解,也叫做把這個多項式分解因式。

因式分解的方法:口訣:一提、二看、三檢查。(1)提公因式法:公因式的確定:系數的最大公約數、相同因式的最低次冪.注意公式:a+b=b+a;a-b=-(b-a)(2)公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2(3)十字相乘法公式:x2+(p+q)x+pq=(x+p)(x+q)

解分式方程的步驟:(1)方程兩邊乘最簡公分母(去分母),得(2)解得(3)檢驗:當時,最簡公分母≠0(或最簡公分母=0)(4)所以,原分式方程的解為(或所以,原分式方程無解)

以上就是我為大家整理的八年級上冊數學知識點,希望對所有初中生學習數學有一點幫助。

D. 人教版初二數學上冊知識點歸納

很多同學都需要整理數學知識點,我整理了一些初二的數學知識點,大家一起來看看吧。

三角形知識點

1、全等三角形的對應邊、對應角相等。

2、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等。

3、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等。

4、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等。

5、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等。

6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等。

7、定理1在角的平分線上的點到這個角的兩邊的距離相等。

8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上。

9、角的平分線是到角的兩邊距離相等的所有點的集合。

10、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)。

函數與方程知識點

1、一次函數也叫做線性函數,一般在X,Y坐標軸中用一條直線來表示,當一次函數中的一個變數的值確定的情況下,可以用一元一次方程來解答出另一個變數的值。

2、任何一個一元一次方程都可以轉化成ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變數的值(從數的角度);從圖像上來看,就相當於已知直線y=ax+b,確定它與x軸的交點橫坐標的值(從形的角度)。

3、利用函數圖像解方程:-2x+2=0,可以轉化為求一次函數y=-2x+2與x軸交點的橫坐標。而y=-2x+2與x軸交點的橫坐標為1,所以方程-2x+2=0的解為x=1。

注意:解一元一次方程ax+b=0(a≠0)與求函數y=ax+b(a≠0)的圖像與x軸交點的橫坐標是同一個問題。不同的是前者從數的角度來解決問題,後者從形的角度來解決問題。

4、每個二元一次方程組都對應兩個一次函數,從數的角度來看,解方程組相當於考慮自變數為何值時兩個函數的值相等,以及這個函數是何值;從形的角度來看,解方程組相當於確定兩條直線交點的坐標,從而使方程組得出答案。

5、解答一次函數的作法最簡單的就是列表法,取一個滿足一次函數表達式的兩個點的坐標,來確定另一個未知數的值。還有一個描點法。一般取兩個點,根據「兩點確定一條直線」的道理,也可叫「兩點法」。通常情況下y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點即可畫出。

數據的分析

1、平均數

①一般地,對於n個數x1x2...xn,我們把(x1+x2+...+xn)叫做這n個數的算數平均數,簡稱平均數記為。

②在實際問題中,一組數據里的各個數據的「重要程度」未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數。

2、中位數與眾數

①中位數:一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。

②一組數據中出現次數最多的那個數據叫做這組數據的眾數。

③平均數、中位數和眾數都是描述數據集中趨勢的統計量。

④計算平均數時,所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。

⑤中位數的優點是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息。

⑥各個數據重復次數大致相等時,眾數往往沒有特別意義。

3、從統計圖分析數據的集中趨勢。

4、數據的離散程度

①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對於集中趨勢的偏離情況。一組數據中數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統計量。

②數學上,數據的離散程度還可以用方差或標准差刻畫。

③方差是各個數據與平均數差的平方的平均數。

④其中是x1,x2.....xn平均數,s2是方差,而標准差就是方差的算術平方根。

⑤一般而言,一組數據的極差、方差或標准差越小,這組數據就越穩定。

以上就是一些數學知識點的總結,供大家參考。

E. 數學八上知識點歸納有哪些

數學八上知識點如下:

1、把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那麼就說這兩個圖關於這條直線對稱。這條直線叫做對稱軸。折疊後重合的點是對應點,叫做對稱點。

2、與一條線段兩個端點距離相等的點,在線段的垂直平分線上。

3、如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等。

4、等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。

5、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那麼這個三角形是等腰三角形。

F. 初二數學上冊重點知識點總結

初中生在學習數學的過程中應該注意知識點的總結,下面總結了初二數學上冊知識點,供大家參考。

位置與坐標

1.確定位置

在平面內,確定一個物體的位置一般需要兩個數據。

2.平面直角坐標系

①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

②通常地,兩條數軸分別置於水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。

③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示。

④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。

⑤在直角坐標系中,對於平面上任意一點,都有唯一的一個有序實數對(即點的坐標)與它對應;反過來,對於任意一個有序實數對,都有平面上唯一的一點與它對應。

3.軸對稱與坐標變化

關於x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關於y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數。

一次函數

(一)一次函數是函數中的一種,一般形如y=kx+b(k,b是常數,k≠0),其中x是自變數,y是因變數。特別地,當b=0時,y=kx+b(k為常數,k≠0),y叫做x的正比例函數。

(二)函數三要素

1.定義域:設x、y是兩個變數,變數x的變化范圍為D,如果對於每一個數x∈D,變數y遵照一定的法則總有確定的數值與之對應,則稱y是x的函數,記作y=f(x),x∈D,x稱為自變數,y稱為因變數,數集D稱為這個函數的定義域。

2.在函數經典定義中,因變數改變而改變的取值范圍叫做這個函數的值域,在函數現代定義中是指定義域中所有元素在某個對應法則下對應的所有的象所組成的集合。如:f(x)=x,那麼f(x)的取值范圍就是函數f(x)的值域。

3.對應法則:一般地說,在函數記號y=f(x)中,「f」即表示對應法則,等式y=f(x)表明,對於定義域中的任意的x值,在對應法則「f」的作用下,即可得到值域中唯一y值。

(三)一次函數的表示方法

1.解析式法:用含自變數x的式子表示函數的方法叫做解析式法。

2.列表法:把一系列x的值對應的函數值y列成一個表來表示的函數關系的方法叫做列表法。

3.圖像法:用圖象來表示函數關系的方法叫做圖象法。

(四)一次函數的性質

1.y的變化值與對應的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等於0,且k,b為常數)。

2.當x=0時,b為函數在y軸上的交點,坐標為(0,b)。當y=0時,該函數圖象在x軸上的交點坐標為(-b/k,0)。

3.k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。

4.當b=0時(即y=kx),一次函數圖象變為正比例函數,正比例函數是特殊的一次函數。

5.函數圖象性質:當k相同,且b不相等,圖像平行;當k不同,且b相等,圖象相交於Y軸;當k互為負倒數時,兩直線垂直。

6.平移時:上加下減在末尾,左加右減在中間。

全等三角形

1.經過翻轉、平移後,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。

2.三角形全等的判定

(1)SSS(邊邊邊)

三邊對應相等的三角形是全等三角形。

(2)SAS(邊角邊)

兩邊及其夾角對應相等的三角形是全等三角形。

(3)ASA(角邊角)

兩角及其夾邊對應相等的三角形全等。

(4)AAS(角角邊)

兩角及其一角的對邊對應相等的三角形全等。

(5)RHS(直角、斜邊、邊)

在一對直角三角形中,斜邊及另一條直角邊相等。

3.角平分線

(1)從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線。

(2)性質

①角平分線分得的兩個角相等,都等於該角的一半。

②角平分線上的點到角的兩邊的距離相等。

分式

(一)分式的運算

分式四則運算,順序乘除加減,

乘除同級運算,除法符號須變(乘),

乘法進行化簡,因式分解在先,

分子分母相約,然後再行運算,

加減分母需同,分母化積關鍵,

找出最簡公分母,通分不是很難,

變號必須兩處,結果要求最簡。

(二)分式的運演算法則

(1)約分

①如果分式的分子和分母都是單項式或者是幾個因式乘積的形式,將它們的公因式約去。

②分式的分子和分母都是多項式,將分子和分母分別分解因式,再將公因式約去。

(2)公因式的提取方法

系數取分子和分母系數的最大公約數,字母取分子和分母共有的字母,指數取公共字母的最小指數,即為它們的公因式。

(3)除法

兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。

(4)乘方

分子乘方做分子,分母乘方做分母,可以約分的約分,最後化成最簡。

圖形的平移與旋轉

1.平移,是指在同一平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。

2.平移性質

(1)圖形平移前後的形狀和大小沒有變化,只是位置發生變化。

(2)圖形平移後,對應點連成的線段平行(或在同一直線上)且相等。

G. 初二數學上學期知識點歸納

數學是一門基礎學科,對於廣大八年級學生來說,數學水平的高低,直接影響到物理、化學等學科的學習成績,數學的重要地位由此可見。這是我整理的初二上學期數學知識點歸納,希望你能從中得到感悟!

初二數學上學期知識點歸納1-40

1 全等三角形的對應邊、對應角相等 ¬

2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ¬

3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ¬

4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ¬

5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ¬

6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ¬

7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ¬

8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ¬

9 角的平分線是到角的兩邊距離相等的所有點的集合 ¬

10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ¬

21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 ¬

22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ¬

23 推論3 等邊三角形的各角都相等,並且每一個角都等於60° ¬

24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) ¬

25 推論1 三個角都相等的三角形是等邊三角形 ¬

26 推論 2 有一個角等於60°的等腰三角形是等邊三角形 ¬

27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 ¬

28 直角三角形斜邊上的中線等於斜邊上的一半 ¬

29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ¬

30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ¬

31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ¬

32 定理1 關於某條直線對稱的兩個圖形是全等形 ¬

33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 ¬

34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 ¬

35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 ¬

36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 ¬

37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 ¬

38定理 四邊形的內角和等於360° ¬

39四邊形的外角和等於360° ¬

40多邊形內角和定理 n邊形的內角的和等於(n-2)×180° ¬

初二數學上學期知識點歸納41-80

41推論 任意多邊的外角和等於360° ¬

42平行四邊形性質定理1 平行四邊形的對角相等 ¬

43平行四邊形性質定理2 平行四邊形的對邊相等 ¬

44推論 夾在兩條平行線間的平行線段相等 ¬

45平行四邊形性質定理3 平行四邊形的對角線互相平分 ¬

46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 ¬

47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 ¬

48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 ¬

49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 ¬

50矩形性質定理1 矩形的四個角都是直角 ¬

51矩形性質定理2 矩形的對角線相等 ¬

52矩形判定定理1 有三個角是直角的四邊形是矩形 ¬

53矩形判定定理2 對角線相等的平行四邊形是矩形 ¬

54菱形性質定理1 菱形的四條邊都相等 ¬

55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 ¬

56菱形面積=對角線乘積的一半,即S=(a×b)÷2 ¬

57菱形判定定理1 四邊都相等的四邊形是菱形 ¬

58菱形判定定理2 對角線互相垂直的平行四邊形是菱形 ¬

59正方形性質定理1 正方形的四個角都是直角,四條邊都相等 ¬

60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 ¬

61定理1 關於中心對稱的兩個圖形是全等的 ¬

62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 ¬

63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 ¬

點平分,那麼這兩個圖形關於這一點對稱 ¬

64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 ¬

65等腰梯形的兩條對角線相等 ¬

66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 ¬

67對角線相等的梯形是等腰梯形 ¬

68平行線等分線段定理 如果一組平行線在一條直線上截得的線段 ¬

相等,那麼在其他直線上截得的線段也相等 ¬

69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 ¬

70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 ¬

三邊 ¬

71 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 ¬

的一半 ¬

72 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 ¬

一半 L=(a+b)÷2 S=L×h ¬

73 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc ¬

如果ad=bc,那麼a:b=c:d ¬

74 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d ¬

75 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼 ¬

(a+c+…+m)/(b+d+…+n)=a/b ¬

76 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 ¬

線段成比例 ¬

77 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 ¬

78 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊 ¬

79 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 ¬

80 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 ¬

初二數學上學期知識點歸納81-136

81 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) ¬

82 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 ¬

83 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) ¬

84 判定定理3 三邊對應成比例,兩三角形相似(SSS) ¬

85 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 ¬

角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似 ¬

86 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 ¬

分線的比都等於相似比 ¬

87 性質定理2 相似三角形周長的比等於相似比 ¬

88 性質定理3 相似三角形面積的比等於相似比的平方 ¬

89 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 ¬

於它的餘角的正弦值 ¬

90任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 ¬

於它的餘角的正切值 ¬

91圓是定點的距離等於定長的點的集合 ¬

92圓的內部可以看作是圓心的距離小於半徑的點的集合 ¬

93圓的外部可以看作是圓心的距離大於半徑的點的集合 ¬

94同圓或等圓的半徑相等 ¬

95到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半 ¬

徑的圓 ¬

96和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 ¬

平分線 ¬

97到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 ¬

98到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 ¬

離相等的一條直線 ¬

99定理 不在同一直線上的三點確定一個圓. ¬

100垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧 ¬

101推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧 ¬

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧 ¬

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧 ¬

102推論2 圓的兩條平行弦所夾的弧相等 ¬

103圓是以圓心為對稱中心的中心對稱圖形 ¬

104定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 ¬

相等,所對的弦的弦心距相等 ¬

105推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 ¬

弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等 ¬

106定理 一條弧所對的圓周角等於它所對的圓心角的一半 ¬

107推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 ¬

108推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 ¬

對的弦是直徑 ¬

109推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形 ¬

110定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 ¬

的內對角 ¬

111①直線L和⊙O相交 d

②直線L和⊙O相切 d=r ¬

③直線L和⊙O相離 d>r ¬

112切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線 ¬

113切線的性質定理 圓的切線垂直於經過切點的半徑 ¬

114推論1 經過圓心且垂直於切線的直線必經過切點 ¬

115推論2 經過切點且垂直於切線的直線必經過圓心 ¬

116切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, ¬

圓心和這一點的連線平分兩條切線的夾角 ¬

117圓的外切四邊形的兩組對邊的和相等 ¬

118弦切角定理 弦切角等於它所夾的弧對的圓周角 ¬

119推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等 ¬

120相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 ¬

相等 ¬

121推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的 ¬

兩條線段的比例中項 ¬

122切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 ¬

線與圓交點的兩條線段長的比例中項 ¬

123推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 ¬

124如果兩個圓相切,那麼切點一定在連心線上 ¬

125①兩圓外離 d>R+r ②兩圓外切 d=R+r ¬

③兩圓相交 R-r<d r) ¬</d

④兩圓內切 d=R-r(R>r) ⑤兩圓內含d r) ¬

126定理 相交兩圓的連心線垂直平分兩圓的公共弦 ¬

127定理 把圓分成n(n≥3): ¬

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形 ¬

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 ¬

128定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓 ¬

129正n邊形的每個內角都等於(n-2)×180°/n ¬

130定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 ¬

131正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長 ¬

132正三角形面積√3a/4 a表示邊長 ¬

133如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 ¬

360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 ¬

134弧長計算公式:L=n兀R/180 ¬

135扇形面積公式:S扇形=n兀R^2/360=LR/2 ¬

136內公切線長= d-(R-r) 外公切線長= d-(R+r)¬

H. 八年級數學上知識點歸納

有智慧的人未必先天就很聰明,反而更多的是通過後天畢生的努力。只要勤奮努力學習八年級數學知識點,希望就在面前。我整理了關於八年級數學上知識點歸納,希望對大家有幫助!

八年級數學上知識點歸納第11-12章

第十一章 全等三角形

知識概念

1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。

2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。

3.三角形全等的判定公理及推論有:

(1)“邊角邊”簡稱“SAS”

(2)“角邊角”簡稱“ASA”

(3)“邊邊邊”簡稱“SSS”

(4)“角角邊”簡稱“AAS”

(5)斜邊和直角邊相等的兩直角三角形(HL)。

4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。

5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).

在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。

第十二章 軸對稱

知識概念

1.對稱軸:如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。

2.性質: (1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

(2)角平分線上的點到角兩邊距離相等。

(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。

(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

(5)軸對稱圖形上對應線段相等、對應角相等。

3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)

4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。

5.等腰三角形的判定:等角對等邊。

6.等邊三角形角的特點:三個內角相等,等於60°,

7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。

有一個角是60°的等腰三角形是等邊三角形

有兩個角是60°的三角形是等邊三角形。

8.直角三角形中,30°角所對的直角邊等於斜邊的一半。

9.直角三角形斜邊上的中線等於斜邊的一半。

本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。

八年級數學上知識點歸納第13-14章

第十三章 實數

1.算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。

2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。

3.正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。

4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。

5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0

實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。

第十四章 一次函數

知識概念

1.一次函數:若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。

2.正比例函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。

3.正比例函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中:當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。

4.已知兩點坐標求函數解析式:待定系數法

一次函數是初中學生學習函數的開始,也是今後學習其它函數知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變數,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重於理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。

八年級數學上知識點歸納第15章

第十五章 整式的乘除與分解因式

1.同底數冪的乘法法則: (m,n都是正數)

2.. 冪的乘方法則:(m,n都是正數)

3. 整式的乘法

(1) 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。

(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

(3).多項式與多項式相乘

多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。

4.平方差公式:

5.完全平方公式:

6. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).

在應用時需要注意以下幾點:

①法則使用的前提條件是“同底數冪相除”而且0不能做除數,所以法則中a≠0.

②任何不等於0的數的0次冪等於1,即,如,(-2.50=1),則00無意義.

③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的.

④運算要注意運算順序.

7.整式的除法

單項式除法單項式:單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;

多項式除以單項式: 多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.

8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.

分解因式的一般方法:1. 提公共因式法2. 運用公式法3.十字相乘法

分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;

(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;

(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.

整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多准備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。

I. 初二數學上冊課本內容 必背知識點概括

初二是初中生學習非常重要的一個階段,下面我為大家總結了初二數學上冊課本內容,僅供大家參考。

初二數學知識點
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。

2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。

3.三角形全等的判定公理及推論有:

(1)「邊角邊」簡稱「SAS」

(2)「角邊角」簡稱「ASA」

(3)「邊邊邊」簡稱「SSS」

(4)「角角邊」簡稱「AAS」

(5)斜邊和直角邊相等的兩直角三角形(HL)。

4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
數學實數知識點
1. 算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。

2.平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。

3.正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。

4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。

5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0

實數部分主要要求學生了解 無理數 和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運演算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運演算法則及運算律。
初中數學分解因式的步驟
(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;

(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;

(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.

數學 整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多准備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。

以上就是我為大家總結的初二數學上冊課本內容。僅供參考,希望對大家有幫助。

J. 初二上冊數學重點提綱

很多的學生對於數學都感到頭痛,因為數學的分數每次都不高,並且很多的知識點都不太懂,下面我給大家分享一些初二上冊數學重點提綱,希望能夠幫助大家,歡迎閱讀!

初二上冊數學重點提綱

實數知識點

1、實數的分類:有理數和無理數

2、數軸:規定了原點、正方向和單位長度的直線叫數軸.實數和數軸上點一一對應.

3、相反數:符號不同的兩個數,叫做互為相反數.a的相反數是-a,0的相反數是0.(若a與b護衛相反數,則a+b=0)

4、絕對值:在數軸上表示數a的點到原點的距離叫數a的絕對值,記作∣a∣,正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0.

5、倒數:乘積為1的兩個數

6、乘方:求相同因數的積的運算叫乘方,乘方運算的結果叫冪.(平方和立方)

7、平方根:一般地,如果一個數x的平方等於a,即x2=a那麼這個數x就叫做a的平方根(也叫做二次方根).一個正數有兩個平方根,它們互為相反數;0隻有一個平方根,它是0本身;負數沒有平方根.(算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼這個正數x就叫做a的算術平方根,0的算術平方根是0.)

實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的點相對應的數。實數可以直觀地看作有限小數與無限小數,它們能把數軸「填滿」。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成復數。

實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是循環的,也可以是非循環的)。在實際運用中,實數經常被近似成一個有限小數(保留小數點後n位,n為正整數,包括整數)。在計算機領域,由於計算機只能存儲有限的小數位數,實數經常用浮點數來表示。

1)相反數(只有符號不同的兩個數,它們的和為零,我們就說其中一個是另一個的相反數,叫做互為相反數)實數a的相反數是-a,a和-a在數軸上到原點0的距離相等。

2)絕對值(在數軸上一個數a與原點0的距離)實數a的絕對值是:|a|

①a為正數時,|a|=a(不變),a是它本身;

②a為0時,|a|=0,a也是它本身;

③a為負數時,|a|=-a(為a的絕對值),-a是a的相反數。

(任何數的絕對值都大於或等於0,因為距離沒有負數。)

3)倒數(兩個實數的乘積是1,則這兩個數互為倒數)實數a的倒數是:1/a(a≠0)

4)數軸

定義:規定了原點,正方向和單位長度的直線叫數軸

(1)數軸的三要素:原點、正方向和單位長度。

(2)數軸上的點與實數一一對應。

平方根與立方根知識點

平方根:

概括1:一般地,如果一個數的平方等於a,這個數就叫做a的平方根(或二次方根)。就是說,如果x=a,那麼x就叫做a的平方根。如:23與-23都是529的平方根。

因為(±23)=529,所以±23是529的平方根。問:(1)16,49,100,1100都是正數,它們有幾個平方根?平方根之間有什麼關系?(2)0的平方根是什麼?

概括2:一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根。

概括3:求一個數a(a≥0)的平方根的運算,叫做開平方。

開平方運算是已知指數和冪求底數。平方與開平方互為逆運算。一個數可以是正數、負數或者是0,它的平方數只有一個,正數或負數的平方都是正數,0的平方是0。但一個正數的平方根卻有兩個,這兩個數互為相反數,0的平方根是0。負數沒有平方根。因為平方與開平方互為逆運算,因此我們可以通過平方運算來求一個數的平方根,也可以通過平方運算來檢驗一個數是不是另一個數的平方根。

一、算術平方根的概念

正數a有兩個平方根(表示為?

根,表示為a。

0的平方根也叫做0的算術平方根,因此0的算術平方根是0,即0?0。「

」是算術平方根的符號,a就表示a的算術平方根。a的意義有兩點:

a),我們把其中正的平方根,叫做a的算術平方

(1)被開方數a表示非負數,即a≥0;

(2)a也表示非負數,即a≥0。也就是說,非負數的「算術」平方根是非負數。負數不存在算術平方根,即a<0時,a無意義。

如:=3,8是64的算術平方根,?6無意義。

9既表示對9進行開平方運算,也表示9的正的平方根。

二、平方根與算術平方根的區別在於

①定義不同;

②個數不同:一個正數有兩個平方根,而一個正數的算術平方根只有一個;③表示 方法 不同:正數a的平方根表示為?a,正數a的算術平方根表示為a;④取值范圍不同:正數的算術平方根一定是正數,正數的平方根是一正一負.⑤0的平方根與算術平方根都是0.三、例題講解:

例1、求下列各數的算術平方根:

(1)100;

(2)49;

(3)0.8164

注意:由於正數的算術平方根是正數,零的算術平方根是零,可將它們概括成:非負數的算

術平方根是非負數,即當a≥0時,a≥0(當a<0時,a無意義)

用幾何圖形可以直觀地表示算術平方根的意義如有一個面積為a(a應是非負數)、邊長為

的正方形就表示a的算術平方根。

這里需要說明的是,算術平方根的符號「」不僅是一個運算符號,如a≥0時,a表示對非負數a進行開平方運算,另一方面也是一個性質符號,即表示非負數a的正的平方根。

3、立方根

(1)立方根的定義:如果一個數x的立方等於a,這個數叫做a的立方根(也叫做三次方根),即如果x?a,那麼x叫做a的立方根

(2)一個數a的立方根,讀作:「三次根號a」,其中a叫被開方數,3叫根指數,不能省略,若省略表示平方。

(3)一個正數有一個正的立方根;0有一個立方根,是它本身;一個負數有一個負的立方根;任何數都有的立方根。

(4)利用開立方和立方互為逆運算關系,求一個數的立方根,就可以利用這種互逆關系,檢驗其正確性,求負數的立方根,可以先求出這個負數的絕對值的立方根,再取其相反數。

直角三角形知識點

一、解直角三角形

1.定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。

2.依據:①邊的關系:初中數學復習提綱

②角的關系:A+B=90°

③邊角關系:三角函數的定義。

注意:盡量避免使用中間數據和除法。

二、對實際問題的處理

1.初中數學復習提綱俯、仰角

2.方位角、象限角

3.坡度:

4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。

圖形的軸對稱知識點

I線段的垂直平分線

①定義:垂直並且平分已知線段的直線叫做線段的垂直平分線或中垂線

②性質:

a、線段的垂直平分線上的點到線段兩端點的距離相等的點在線段的垂直平分線上;

b、到線段兩端點距離相等的點在線段的垂直平分線上;

c、線段是軸對稱圖形,線段的垂直平分線是線段的一條對稱軸,另一條是線段所在的直線。

II角平分線的性質

①角平分線上的點到已知角兩邊的距離相等

②到已知角兩邊距離相等的點在已知角的角平分線上

③角是軸對稱圖形,角平分線所在的直線是該角的對稱軸。

二次根式知識點

1.二次根式:式子(≥0)叫做二次根式。

2.最簡二次根式:

(1)最簡二次根式的定義:①被開方數是整數,因式是整式;②被開方數中不含能開得盡方的數或因式;③分母中不含根式。

(2)最簡二次根式必須同時滿足下列條件:

①被開方數中不含開方開的盡的因數或因式;

②被開方數中不含分母;

③分母中不含根式。

3.同類二次根式(可合並根式):

幾個二次根式化成最簡二次根式後,如果被開方數相同,這幾個二次根式就叫做同類二次根式,即可以合並的兩個根式。

4.二次根式的性質

非負性:是一個非負數.

注意:此性質可作公式記住,後面根式運算中經常用到.

①字母不一定是正數.

②能開得盡方的因式移到根號外時,必須用它的算術平方根代替.

③可移到根號內的因式,必須是非負因式,如果因式的值是負的,應把負號留在根號外.

(4)公式與的區別與聯系:

①表示求一個數的平方的算術根,a的范圍是一切實數.

②表示一個數的算術平方根的平方,a的范圍是非負數.

③和的運算結果都是非負的.

估算知識點

1.四捨五入

例題:2的算數平方根(保留到0.01)

解:根號2=1.414.....≈1.41

2.進一法

例題:一支筆2.6元,四支需多少錢(保留到整數)

解:2.6x=10.4元≈11元

如果四捨五入的話是10元,是不夠的,所以是要進上去的

3.去尾法

例題:有20元,買3元一支的筆,可賣多少支?

解:20/3=6.6666....支≈6支

如果四捨五入的話是7支,買不到,所以是要去掉的

按照一般方法就是把854估做840,840除以7等於120.但這樣在尺度上讓學生不好把握.我們可以直接算出854除以7等於122.再看122最接近那個整十或整百數.我們不難看出122字接近120,所以估算結果等於120.這樣學生通過求除法的准確值,再找出商最接近的整十或整百數就容易多了

比如2個數或多個數相乘或則相加、相減、相除,我們不能很快且正確的算出來,就是只有打開的算出來。

中考數學答題技巧

1、直接推演法

直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法。

2、驗證法

由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

3、特殊元素法

用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

4、排除法

對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

5、圖解法

藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

數學 學習方法

1、基礎很重要

是不是感覺數學都能考滿分的同學,連書都不用看,其實數學學霸更重視基礎。,數學公式,幾何圖形的性質,函數的性質等,都是數學學習的基礎,甚至可以說基礎的好壞,直接決定中考數學成績的高低。

李現良表示,班裡某位同學來找自己講題,其實題目並不難,但這位同學就是因為一些最基礎的知識沒有掌握透徹,導致做題的時候沒有思路。基礎不牢、地動山搖,一個小小的知識漏洞可能導致你在整一個題中都沒有思路,非常危險。

2、錯題本很重要

在所有科目中,數學這個科目最重要錯題本學習法。李現良同學也特別提倡大家整理錯題,李現良對於錯題本有一些小竅門,那就是平時如果堅持整理錯題,最終會導致自己錯題本很多很厚,我們可以定期復習,對於一些徹底掌握的,可以做個標記,以後就不用再次復習,這樣錯題本使用起來就會效率更高。

3、做題要多 反思

數學學習要大量做題去鞏固,但做題不要只講究數量,更要講究質量,遇到經典題,綜合性高的題目時,每道題寫完解答過程後,需要進行分析和反思,多問幾個為什麼,這樣才能把題真正做透。

4、把數學知識形成體系

數學學霸李現良表示,課本上的知識都是零散的,建議大家自己畫 思維導圖 把知識串起來,畫思維導圖的過程,就是不斷理解,讓知識變成結構的過程。


初二上冊數學重點提綱相關 文章 :

★ 八年級上冊數學復習提綱整理

★ 八年級上冊數學復習提綱2020

★ 數學八年級上冊知識點整理

★ 初二數學上冊知識點總結

★ 八年級上冊期末數學重點筆記

★ 八年級上冊數學總復習知識點

★ 初二數學知識點歸納上冊人教版

★ 2021初二上學期數學復習提綱

★ 2021八年級上冊數學復習提綱

★ 魯教版八年級上冊數學提綱